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In healthy muscle, the rapid release of calcium ions (Ca2+) with excitation–contraction (E-C)
coupling, results in elevations in Ca2+ concentrations which can exceed 10-fold that of rest-
ing values. The sizable transient changes in Ca2+ concentrations are necessary for the ac-
tivation of signaling pathways, which rely on Ca2+ as a second messenger, including those
involved with force generation, fiber type distribution and hypertrophy. However, prolonged
elevations in intracellular Ca2+ can result in the unwanted activation of Ca2+ signaling path-
ways that cause muscle damage, dysfunction, and disease. Muscle employs several cal-
cium handling and calcium transport proteins that function to rapidly return Ca2+ concen-
trations back to resting levels following contraction. This review will detail our current under-
standing of calcium handling during the decay phase of intracellular calcium transients in
healthy skeletal and cardiac muscle. We will also discuss how impairments in Ca2+ transport
can occur and how mishandling of Ca2+ can lead to the pathogenesis and/or progression
of skeletal muscle myopathies and cardiomyopathies.

Introduction
Calcium (Ca2+) is a divalent cation which is indispensably involved with molecular signaling. Innately,
Ca2+ has flexibility in its bonding angles and lengths, allowing for an array of potential ligation patterns
[1]. The diversity in bond arrangements allows molecules to present binding sites with numerous varia-
tions. These slight differences among binding sites allow the kinetics of bond formation to vary among
Ca2+-binding molecules [1,2]. Thus, the complexity of Ca2+ signaling becomes apparent as it can be reg-
ulated by the location and expression of the Ca2+-binding proteins and the kinetics of the Ca2+-binding
site.

Within myofibers, cytosolic Ca2+ concentrations ([Ca2+]cyt) can fluctuate from resting concentrations
of 100 nM to values above 1000 nM during tetanus [3]. When [Ca2+]cyt is elevated above resting con-
centrations, Ca2+ interacts with two categories of Ca2+ binding molecules: buffers and sensors [4]. Ca2+

sensors elicit a downstream signal when binding occurs. The temporal range of Ca2+ signaling can be as
brief as seconds but may also exist on the timescale of days [5]. Ca2+ signaling is effectively diminished
when [Ca2+]cyt reverts back to resting concentrations. One strategy for increasing the rate of [Ca2+]cyt
decay is through Ca2+ buffering. Buffers act to sequester Ca2+ without being directly incorporated into
molecular signaling. The presence of Ca2+ buffers allows for the regulation of Ca2+ diffusion, which can
indirectly affect molecular signaling pathways [6–8].

Although Ca2+ buffering does have a role in altering intracellular Ca2+ transients (ICT), the decay
of [Ca2+]cyt is mediated primarily through the movement of Ca2+ across phospholipid membranes [1].
Within striated muscle, the main strategy for lowering [Ca2+]cyt is through Ca2+ sequestration in the sar-
coplasmic reticulum (SR), a membrane bound organelle which surrounds the contractile myofilaments
[3]. Ca2+ is transported against a concentration gradient into the SR in an ATP-dependent manner. This
occurs through the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), which, under ideal conditions,
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will transport two Ca2+ for every ATP hydrolyzed [9,10]. SERCA not only has a critical role in the regulation of
[Ca2+]cyt but also in the regulation of the energy expenditure of the cell [11]. Within cardiac tissue, a smaller, yet
notable proportion of the cytosolic Ca2+ is also extruded across the plasma membrane to effectively reduce [Ca2+]cyt
during the cardiac cycle [12]. The role of Ca2+ transport is essential for the homeostatic function of cells, especially
within excitable, contractile tissue. During dysregulation, inadequate control of [Ca2+]cyt can result in the unwanted
activation of proteolytic and apoptotic pathways, leading to muscle damage, dysfunction, and even disease. In this
review, we discuss the role of Ca2+ transport in the maintenance of healthy muscle as well as the role it can have in
the genesis and exacerbation of pathological states.

Regulation of calcium transport in healthy muscle
As voluntary tissue, force generation by skeletal muscle follows the excitation of the sarcolemmal membrane by an
associated motor neuron [13]. Neural signaling results in depolarization of the myofiber plasma membrane [13],
which is detected by the voltage sensitive dihydropyridine receptors (DHPR) located within the transverse tubule
(T-tubule) membrane [14]. In skeletal muscle, the DHPR is physically linked with the ryanodine receptor (RyR) and
when changes in voltage are detected, the DHPR acts to increase the open probability of the RyR leading to increased
Ca2+ release [15]. In cardiac muscle, SR Ca2+ release is slightly different such that when Ca2+ enters the cytosol via the
DHPR channels, it binds to and opens RyR channels through a mechanism referred to as Ca2+-induced Ca2+ release
(CICR) [12].

The RyR is a Ca2+ channel embedded in the terminal cisternae of the SR that functions as the major Ca2+ release
channel inside muscle cells and, when activated, increases the [Ca2+]cyt [15]. Within healthy muscle tissue, the increase
in [Ca2+]cyt results in the immediate activation of SERCA, which acts to pump Ca2+ back into the SR. However, with
the continuance of high frequency neural signaling the rate of Ca2+ outflow is greater than the ability for SERCA to
re-sequester Ca2+. Consequently, [Ca2+]cyt rises within the myofiber and binds to troponin C resulting in the move-
ment of tropomyosin and thus uncovering the myosin binding site on the thin filaments [16,17]. With the myosin
binding site exposed, crossbridge formation between the thick and thin filaments results in the generation of force
[18,19]. Muscle relaxation will not occur until the termination of high frequency neural signaling and inactivation of
RYR. Upon the cessation of Ca2+ release, the decay phase of [Ca2+]cyt begins.

In a single-twitch stimulus, a rapid rise in [Ca2+]cyt to a peak is quickly followed by a decay, all within milliseconds
[20–22]. The decay phase of [Ca2+]cyt has a negative exponential relationship in which the initial rate of decay is rapid
but as [Ca2+]cyt approaches pre-stimulation resting concentrations the rate of calcium uptake is attenuated. Within
skeletal muscle tissue, the characteristics of a Ca2+ transient varies across different types of muscle fibers. Baylor and
Hollingworth (2003) compared the ICTs of slow fibers from soleus tissue and fast fibers from EDL muscle [23]. They
found identical times to peak [Ca2+]cyt during Ca2+ release in the slow and fast fibre types; however, the peak [Ca2+]cyt
amplitude was two times greater and the ICT half duration was ∼1.6 times shorter in fast EDL fibers compared with
the slow soleus fibers [23]. The rate of Ca2+ sequestration in the final half of the ICT decay phase was also three times
greater in fast fibers compared with slow fibers [23]. The fiber type differences in the rate of ICT decay are believed to
contribute to different force summation responses at submaximal stimulation frequencies. With evoked contractions
at 67 Hz, the ICT amplitudes and force grew only slightly with continued stimulation in fast fibers whereas ICT
amplitude and force increased with each subsequent stimulation in slow fibers [23].

The myocardium of the heart contracts in response to neural excitation to pump blood out of the heart and re-
laxes upon the cessation of neural stimulation to allow the heart to refill with blood. Cardiomyocytes within the
myocardium express similar but different isoforms of Ca2+ handling proteins than found in skeletal muscle as dis-
cussed below; however, their regulation and contribution to excitation–contraction (E-C) coupling vary slightly (see
Figure 1). Like skeletal muscle, SERCA is the dominant Ca2+ transport protein in cardiomyocytes that contributes
to the decay of Ca2+ transients during E-C coupling [12,24]. Unlike skeletal muscle, the NCX and the slow Ca2+

sequestering systems, which include mitochondrial Ca2+ uniport (MCU) and sarcolemmal Ca2+ ATPase (PMCA),
also contribute to Ca2+ decay in cardiac muscle [12,24]. During cardiomyocyte relaxation in rat ventricle, SERCA ac-
counts for as much as 92% of ICT decay, while that of NCX, and the slow system contribute 7% and 1%, respectively
[25]. In contrast, within rabbit ventricle myocytes incubated at 25◦C, the contribution from SERCA, NCX, and the
slow systems has been reported as 70%, 27%, and 3%, respectively [26]; however, under stimulated conditions (in the
presence of isoproterenol), the contribution by SERCA has been found to be increased to 83% in rabbits [27].
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Figure 1. Movement of Ca 2+ in skeletal myofibers and cardiomyocytes during E-C coupling

Movement of Ca2+ in skeletal myofibers (A) and cardiomyocytes (B) during E-C coupling. The relative contribution of Ca2+ transport

proteins to Ca2+ ion removal during the decay phase of Ca2+ transients is indicated by different arrows with thicker solid arrows

indicating a major contribution, thinner dashed arrows indicating a minor contribution, and no contribution of expressed proteins

where arrows are not shown. Refer to the text for further details.
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Sarco(endo)plasmic reticulum Ca2+-ATPase
SERCA is a 110 kDa P-type ATPase, which is embedded in the membrane of the longitudinal SR. Struc-
turally, SERCA is composed of three cytoplasmic domains: phosphorylation (P-domain), actuator (A-domain) and
nucleotide-binding (N-domain); and 10 transmembrane helices (M1–M10) [28]. During the catalytic cycle, SERCA
undergoes drastic conformational changes with the binding of cations and ATP by alternating between an E1 and
E2 state [29]. Previous genomic and proteomic analyses have shown that there are multiple SERCA isoforms derived
from three distinct genes: ATP2A1, ATP2A2, and ATP2A3. From these genes, 13 different mRNA splice variants
and 10 protein isoforms have been identified [30–34]. SERCA isoforms are between 75 and 84% homologous [35].
The SERCA isoform expression changes with development and aging and varies between tissues. Within fetal and
neonatal rat skeletal muscle, SERCA1b and SERCA2a are expressed in fast fibers while SERCA2a is expressed in slow
fibers [35]. In rat heart, SERCA2a and SERCA3 are initially expressed during early developmental stages but as devel-
opment continues only SERCA2a mRNA remains expressed [35]. In adult rats, SERCA1a becomes most commonly
found within fast twitch muscle fibers, and SERCA2a is found most commonly in slow twitch fibers and myocardial
tissue [35]. Smooth muscle expresses both SERCA2a and SERCA2b [35,36]. Nonmuscle tissue is known to express
SERCA2b and SERCA3a–c [35].

Despite considerable homology among SERCA isoforms, there are drastic differences in the lusitropic measures
between these tissue types. Differences do exist in the kinetics of SERCA isoforms [37]; however, the large contrast in
relaxation appears to be more so associated with differences in the quantity of SERCA molecules expressed, with fast
twitch fibers expressing ∼5-fold greater levels of SERCA compared with slow twitch fibers [11,38]. Another factor
affecting ICT decay differences among fiber types is the expression of the SR luminal protein calsequestrin, which is
greater in type II muscle fibers [38]. Greater calsequestrin expression results in more Ca2+ buffering capacity within
the SR resulting in less back-inhibition while SERCA pumps Ca2+ [38]. Thus, with greater Ca2+ buffering within the
SR lumen, SERCA can maintain a higher rate of Ca2+ uptake [38].

The major isoform of SERCA that is expressed in cardiac tissue is SERCA2a with greater expression in the atria
compared with ventricles [39], which is associated with faster contractile kinetics of atria compared with ventricles
[40]. The ventricles of the heart are also thicker and produce stronger contractions than atria [39] and considering the
importance of SR Ca2+ load to contractile force, SERCA2a expression and function is vital in these chambers. Studies
in transgenic animal models provide good evidence for this. In animal models with reduced SERCA2a activity, the
contractility of the left ventricle (LV) is significantly impaired compared with the wild-type controls [41]. Conversely,
in models with increased SERCA2a activity, contractility of the LV is significantly enhanced [42].

Phospholamban
Several proteins have been identified which act to regulate SERCA function either positively or negatively [43–45].
Among these SERCA regulators, phospholamban (PLN) is one of the most studied due to its vital role in cardiac
function and disease [46–48]. PLN is expressed in cardiac tissue and in type I fibers of skeletal muscle [49,50], where
it predominantly associates with SERCA2a [44]. However, it should be noted that work from our group has identified
that in human muscles PLN can be found in type II fibres as well [44]. PLN is a 52-amino acid protein located in
the SR membrane where it can interact with SERCA (Figure 2) [51,52]. PLN is composed of a small luminal domain,
a transmembranous domain and a cytosolic domain [46,53,54]. The transmembranous domain consists of a single
helix, which can directly bind to the Ca2+-binding sites formed by the M2, M4, M6 and M9 helices of SERCA [53,55].
In binding to SERCA, PLN elicits an inhibitory effect on the Ca2+ pump by reducing the apparent affinity of Ca2+

binding [56,57]; however, at maximal [Ca2+]cyt, PLN dissociates from SERCA and does not affect Vmax [58–60], but
the mechanism behind this remains to be elucidated.

The inhibitory action of PLN on SERCA can be disrupted via phosphorylation of two sites within the cytosolic do-
main of PLN. These phosphorylation sites are targeted by two different kinases: Ser16 by cAMP dependent kinase A,
and Thr17 by Ca2+ calmodulin dependent kinase II (CAMKII) [46,61]. Upon phosphorylation of either of these sites,
PLN will dissociate from SERCA while remaining in the SR membrane either in its monomeric or homopentameric
form [61]. PLN phosphorylation acts as a mechanism for the cell to quickly alter the rate of Ca2+ sequestration. During
times where [Ca2+]cyt is elevated, CAMKII will detect these elevations and respond by phosphorylating PLN, thus re-
lieving its inhibitory effect on SERCA and allowing for faster calcium clearance [62]. PLN inhibition is also alleviated
by β-adrenergic stimulation through increasing the kinase activity of PKA [46,62–64]. This is especially important in
cardiac tissue when the work demand increases such as during exercise. Exercise elicits an increased oxygen demand
of the recruited skeletal muscles. In order to ensure adequate oxygen delivery to meet the demands of the recruited
muscles, both heart rate and cardiac contractility must increase to elevate cardiac output. With increases in the rate
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Figure 2. Regulation of SERCA by PLN and SLN

(A) A cartoon model showing a SERCA molecule with no protein inhibitors bound (left), PLN bound (middle), and SLN bound (right)

illustrates the physical and functional interaction between SERCA and its endogenous protein regulators. (B) A graphical summary

shows the independent effects of PLN and SLN on SERCA activity. Refer to the text for further details.

of cardiac cycling, the rate of Ca2+ removal from the cytosol must also increase to ensure adequate relaxation of the
myocardium during diastole [27]. In return, this would contribute to increased SR Ca2+ load and thus greater Ca2+

release and systolic force in subsequent beats [46,63]. The ability to modulate the inhibitory effect of PLN on SERCA
is an important mechanism to quickly alter the rate of calcium sequestration, which may be necessary depending on
the situational needs of the contractile tissue.

Sarcolipin
Another SERCA regulatory protein, which has garnered a lot of recent interest is sarcolipin (SLN). SLN is also a
transmembrane protein found with the SR membrane (Figure 2). Structurally, it contains an 8 amino acid cytoplas-
mic domain, a 19 amino acid transmembrane alpha helix, and a 4 amino acid luminal tail [57,65–67]. SLN shares
considerable homology with PLN within the transmembrane helix and thus associates with SERCA in a similar man-
ner [46,68]. In humans, SLN is most abundantly expressed in fast-twitch type IIA muscle fibers where it most com-
monly associates with SERCA1a, although a small percentage of slow-twitch type I fibers also co-express SLN and
SERCA1a [44]. Seemingly contradictory, muscles with the highest reported SLN expression in mice are the slower
oxidative muscles (i.e soleus, red gastrocnemius, and diaphragm) [49,69,70]. This is likely explained by the fact that
these slow oxidative mouse muscles contain a fiber type distribution in which 40–50% of fibers are type IIA [71].
Thus, like in human skeletal muscle, it appears SLN may be expressed within mouse type IIA fibers where it can
regulate SERCA1a; however, single fiber data from mice are required to confirm this. SLN is also highly expressed in
atrial cardiomyocytes where it regulates SERCA2a function, at least in mice [69,72].

Like PLN, SLN is an inhibitory regulator of SERCA, reducing the apparent affinity of cytosolic Ca2+ with SERCA.
Unlike PLN, SLN binding can reduce the maximal catalytic activity of SERCA [44,57]. SLN has also been identified for
its thermogenic properties [73]. SLN remains bound to SERCA during its catalytic cycle and interacts with one of the
SERCA-Ca2+ binding sites [74]. Consequently, SLN but not PLN can reduce the efficiency of Ca2+ transport [74–76].
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When this uncoupling of Ca2+ pumping occurs, more ATP must be consumed to pump the same quantity of Ca2+.
Research has shown that this innate uncoupling mechanism is involved in the maintenance of core body temperature
during cold exposure and energy balance during caloric surplus [73,75,77,78]. However, it should be noted that ther-
mogenesis is also regulated through Ca2+ cycling mechanisms in resting mammalian muscles that don’t express SLN
[79]. Additionally, the uncoupling mechanism elicited by SLN may also influence Ca2+ signaling as previous work
from our laboratory has shown that SLN expression can affect calcineurin activity in models of muscle overload,
disease and disuse [71,80–82]. Further evidence for the role of SLN in Ca2+ signaling has been shown by Maurya
and colleagues (2017), who found that changes in SLN expression can affect the activity of the transcriptional coacti-
vator, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1α), CAMKII, and mitochondrial
biogenesis pathways [83].

Other emerging SERCA regulators
Although PLN and SLN are the two most researched SERCA regulatory proteins, recent bioinformatics studies have
identified other proteins with a similar helical pattern, which could potentially also regulate SERCA. Of the proteins
identified, dwarf opening reading frame (DWORF) and myoregulin (MLN) appear to have gained the most interest
[84,85]. Unlike negative regulators such as PLN and SLN, DWORF is believed to be a positive regulator of SERCA.
By binding to SERCA, DWORF prevents the binding of inhibitory SERCA regulators such as PLN and SLN [45]. In
doing this, DWORF maintains the sensitivity of SERCA at low [ Ca2+]cyt. MLN, on the other hand, is believed to be
another inhibitory regulator of SERCA [43]. Interestingly, MLN also appears to have multiple sites, which could be
phosphorylated like that of PLN [43]. More studies are needed to fully understand the function of these proteins in
vivo.

Redox regulation of SERCA
Redox signaling plays an important role in the regulation of several of the major physiological systems of muscle
including the SR Ca2+ regulatory system [86]. SERCAs are redox-sensitive proteins that may be activated by low levels
of reactive oxygen (ROS) and nitrogen (RNS) species [87–89]. Physiologically, activation of SERCA2b in vascular
smooth muscle occurs through redox signaling where nitric oxide and superoxide anion, through the formation of
peroxynitrite, activate SERCA2b by reversible S-glutathiolation on Cys674 resulting in arterial relaxation [87]. The
same molecular mechanism is also involved in the activation of SERCA2a in cardiac myocytes by the nitric oxide
derivative nitroxyl, which may require an interaction with oxidized PLN [89]. Our work showing that glutathione
depletion and cellular oxidation increased SERCA2a content, and maximal Ca2+-ATPase activity in rat diaphragm
[88] supports the view that SERCA pump activity in skeletal muscle is also regulated through redox signaling.

Na+/Ca2+ exchanger
As mentioned, the NCX plays an important role in myocardial Ca2+ transport. Lying on the sarcolemma of cardiomy-
ocytes, NCX is responsible for controlling the exchange of 1 Ca2+ ion for every 3 Na+ ions across the membrane
[12,90–92]. The direction of this exchange can either be forward (Ca2+ out and Na+ in) or reverse (Ca2+ in and Na+

out) depending on the electrochemical gradient across the membrane [12,90–92]. When the membrane is depolar-
ized, initially the reverse mode is favored because the membrane potential is greater than the combined (Na+ and Ca2+

ions) equilibrium potential of NCX, but the amount of Ca2+ entry is <1 μM [12,92]. As the [Ca2+]cyt rises due to SR
Ca2+ release, the membrane potential effect becomes negligible, and the direction of the exchanger now changes to
the forward mode with Ca2+ being extruded from the cytosol [12,92]. Although small changes in the subsarcolemmal
[Na+] and [Ca2+] can impact the direction of the exchanger, under physiological conditions, the direction is largely
driven by the [Ca2+]cyt [92]. After the release of Ca2+ into the cytosol during a contraction, the flow of ions observed
in the NCX will be inward, which will result in the entry of Na+ and the extrusion of Ca2+ from the cell [12,91]. The
opposite will occur with a positive membrane potential or increased cytosolic Na+ levels [12,92]. Under physiological
conditions, NCX will be largely in its inward state [12]. Ion transport by NCX works in a similar stepwise fashion to
SERCA, with ion binding sites facing the cytoplasmic side in the E1 state and facing the extracellular side in the E2
state [93–96].

NCX is regulated by Na+, Ca2+, and H+. Regulation by Na+ is referred to as Na+- dependent inactivation and this
occurs in the presence of elevated intracellular Na+ levels [91,93,97]. High cytoplasmic Na+, such as during depolar-
ization of the cell, leads to Na+ ions binding to their site on NCX in the E1 state, which then switches to an inactivated
E1 state instead of cycling to an E2 state [93,95] This method of regulation is modulated by a part of the exchanger
within the large cytoplasmic loop domain known as the XIP region as certain mutations within this region have been
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shown to abolish Na+-dependent regulation [97–99]. Ca2+ ions, on the other hand, up-regulate NCX activity by in-
teracting with two other sites on the large cytoplasmic loop domain referred to as the Ca2+ binding domains 1 and 2
(CBD1 and CBD2) [91,100,101]. Although both CBD1 and CBD2 are involved in Ca2+-dependent activation, CBD1 is
the primary Ca2+ sensor due to its 7-fold higher affinity for Ca2+ compared with CBD2, binding up to 4 Ca2+ ions at a
range of 200 nM to 1 μM [101]. Upon a rise in cytosolic Ca2+ such as during E-C coupling, CBD1 and CBD2 change
conformation and undergo an electrostatic shift bringing them closer together [101]. This conformational change
allows the signal to be relayed via a small domain, called the α-catenin-like domain (CLD), to the transmembrane
domain to increase NCX activity [100,101]. CBD2 can bind up to two Ca2+ ions during times of very high [Ca2+]
to potentially help to overcome Na+-dependent inactivation by increasing the electrostatic potential [101]. Finally,
intracellular pH modulates activity of NCX by increasing or decreasing its activity if the pH is increased or decreased,
respectively [91,102–105]. When intracellular pH decreases, NCX inhibition occurs in two steps: (1) primary or fast
blockade that occurs with rising H+ levels and works independent of the [Na+]cyt levels and (2) secondary or slow
blockade that is dependent on [Na+]cyt levels, which enhance the affinity of NCX for H+ [102,103,105]. The mecha-
nism for pH modulation of NCX was previously thought as H+ competing with Ca2+ for sites at CBD1 [91]. However,
mutagenesis studies have identified histidine residues 124 and 165 as two important players which modulate NCX
function allosterically through H+ binding, which is distinct from regulation by Na+ or Ca2+ [104].

Within skeletal muscle, two isoforms of NCX are expressed, NCX1 and NCX3 [106], with the latter being the
predominant isoform [107]. Although NCX is expressed in skeletal muscle, it doesn’t appear to be directly involved
in E-C coupling [108]. The rate of Ca2+ transport by the skeletal muscle NCX has been reported to be ∼30 times
slower compared with cardiac muscle [109]. It has been postulated this transporter is more involved in regulation of
[Ca2+]cyt during repeated muscle contractions when [Ca2+]cyt is very high [109,110]. Furthermore, NCX3 knockout
mice display low levels of necrosis within the muscle fibers, suggesting that the NCX is important for maintenance of
Ca2+ homeostasis within skeletal myofibers [107].

Calcium buffering proteins
The presence of cytosolic Ca2+ buffering proteins can also influence the decay phase of Ca2+ transients in muscle.
Within the cytosol of myofibers, the most well documented Ca2+ buffering protein is parvalbumin (PV), which has
a role in lowering [Ca2+]cyt [23,111,112]. Within small mammalian animal models such as mice and rats, PV has
been found in neural tissue and type II muscle fibers [113]. In contrast, little or no PV is expressed in cardiac and
type I muscle fibers [111–113]. Furthermore, PV has not been detected in human skeletal muscle [114]. PV is a 12
kDa protein that binds Ca2+ at an optimal ratio of 2 mol Ca2+:1 mol PV [115,116]. The two high affinity binding
sites are occupied by Mg2+ at resting [Ca2+]cyt (<100 nM) [117]. The rate at which PV can act to sequester Ca2+ is
dependent on the rate of dissociation of Mg2+ from the binding sites [112,118]. Consequently, PV buffering does
not occur immediately following rises in [Ca2+]cyt, which is why it is often considered a slow Ca2+ buffer [117].
The binding kinetics of PV explain why its increased expression has been shown to reduce 12 relaxation time and
increase the rate of relaxation (−df /dt) without altering the single twitch contractile properties of skeletal muscle
[6,7,112,119,120]. However, during low frequency stimulation (30 and 50 Hz) of type I fibres, PV overexpression
attenuates force production [7]. Taken together, this research provides evidence that PV is a Ca2+ buffering protein,
which can increase rates of Ca2+ sequestration during E-C coupling.

Although the mitochondria are not traditionally known for Ca2+ buffering, there is evidence showing that Ca2+

uptake through the mitochondrial Ca2+ uniporter is important for the maintenance of myocyte homeostasis [121].
Although it’s fairly well established that mitochondrial Ca2+ uptake in cardiomyocytes does not alter [Ca2+]cyt tran-
sients or cardiac contractility, there is evidence that mitochondria can modulate [Ca2+]cyt in fast-twitch skeletal mus-
cle fibers under certain conditions [121], a view that is supported by recent evidence indicating that mitochondria in
fast-twitch mouse fibers have a high Ca2+-buffering capacity [122]. A recent paper by Butera and colleagues (2021)
highlighted the dynamic relationship between the mitochondria and PV regarding Ca2+ buffering [123]. Butera and
colleagues reported that when PV was overexpressed, mitochondrial volume and number decrease but when PV
was down-regulated, the mitochondria increased in size and quantity [123]. This alone may not indicate that mi-
tochondria are being up-regulated to buffer Ca2+ but rather mitochondrial biogenesis results from the activation of
Ca2+-dependent signaling pathways in the absence of PV. However, an interesting observation made by Butera and
collogues was that when PV was down-regulated there was a significantly greater proportion of mitochondria located
near Ca2+ release units suggesting mitochondria may have a larger role in Ca2+ buffering than originally thought. An-
other interesting consideration is that there is a grouping of mitochondria localized around the longitudinal SR, where
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SERCA is located [124]. If mitochondria do have a role in buffering Ca2+, then the location of the mitochondria may
have a role in altering Ca2+ concentrations in areas around SERCA [123,125].

Calcium transport in diseased muscle
Calcium related myopathies without muscle wasting
Among skeletal muscle myopathies, there is a grouping that involves prolonged contractions due to a reduced ability to
lower ICTs during the relaxation phase of E-C coupling. Most notably among this grouping of myopathies is Brody’s
disease and Brody’s syndrome, both of which involve reductions in SERCA1a activity [126]. Although similar in
name and presentation, Brody’s disease but not Brody’s syndrome involves a mutation in the ATP2A1 gene encoding
SERCA1a [127]. Even within the myopathies classified as Brody’s disease, there is a degree of heterogeneity in the
ATP2A1 mutations as they have been documented in the A-, P-, and N-domains as well as several others at various
points along the transmembrane helices [126]. Among the genetically unresolved cases of Brody’s syndrome, one
possibility is that mutations of a SERCA inhibitor (e.g., SLN, PLN, or MLN) could be causing reductions in SERCA
function [128], but none have been documented to date.

Although there are differences in the mutations leading to myopathy pathogenesis of Brody’s disease and Brody’s
syndrome, the symptoms of these diseases are similar in presentation. Research has shown that reductions in SERCA
activity appear to be specific to the SERCA1a isoform in type II muscle fibers [129]. As a result, prolonged contractions
with delays in relaxation become apparent during faster contractions, which require the activation of type II fibres.
Sustained contractions in this disease have been associated with increased plasma creatine kinase, cases of rhabdomy-
olysis and malignant hyperthermia-like episodes [126,130,131]. Despite these acute harmful effects brought on by the
reduced rate of skeletal muscle relaxation, there does not appear to be a muscle wasting aspect to these group of dis-
eases [132]. Although some reports have suggested atrophy, which is likely a result of the underutilization of the type
II fibres [126], there does not appear to be progressive wasting brought on by this disease.

Immunohistochemical analysis of muscle samples from Brody’s disease patients revealed a severe reduction in the
SERCA content of type II fibres while the SERCA content in type I fibres was normal [126]. Furthermore, immunoblot
quantification from whole muscle homogenates revealed an absolute reduction in SERCA1a content [126]. Within
human tissue it has been shown that type II fibres do express small amounts of the SERCA2a isoform [44,133]. This
may explain why Ca2+ concentrations are able to return to resting levels in type II fibres even when the SERCA1a
protein is either partially functioning or completely nonfunctional. However, since the endogenous expression of
SERCA2a in type II fibres is relatively low, in Brody’s disease a substantially smaller quantity of SERCA pumps con-
tributes to Ca2+ sequestration, thus resulting in a slower decay of the ICT.

Pan and colleagues attempted to create a murine model of Brody’s disease by knocking out the gene encoding
SERCA1 [134]. In creating this model, it was found that neonatal mice were born healthy but became cyanotic and
died shortly after birth [134]. It was hypothesized that the SERCA1 knockout mice pups were unable to properly
ventilate due to the relatively high proportion of type II fibers in mouse diaphragm resulting in a greater reliance on
SERCA1a for diaphragm relaxation compared with humans.

Myopathies involving elevations in resting calcium concentrations
Another grouping of muscle diseases is characterized by muscle wasting. These diseases share a commonality in that
elevations in resting Ca2+ concentrations appear to contribute to the pathogenesis, and in some cases, progression of
the disease phenotype. These diseases include Duchenne’s muscular dystrophy (DMD) and centronuclear myopathy
(CNM).

Muscular dystrophies are a heterogenous group of inherited disorders, which vary genetically and in clinical pre-
sentation [135–137]. These disorders involve increased muscle turnover resulting in progressive atrophy of the skeletal
muscles [137–139]. Among these diseases, DMD is considered the most common and the most severe [139]. DMD
is an X-linked recessive disease which results in atrophy of the limb, axial, and facial muscles. The life expectancy of
individuals with this disease is reduced by about 75% at which point death is usually caused by respiratory or cardiac
complications [139].

From a molecular standpoint, DMD arises from mutations in the DMD gene resulting in a deficiency in the dys-
trophin protein. Dystrophin is a rod-shaped cytoskeletal protein which forms a critical link between the submem-
brane cytoskeleton and proteins of the extracellular matrix. Importantly, dystrophin associates with proteins within
the sarcolemma, which are integrated in pathways associated with Ca2+ influx and ROS signaling. Muscular dys-
trophy affects fibres specialized for faster contractions, as the instability from the absence of dystrophin results in
greater myofiber damage [140]. The myofiber damage results in a continuous cycle of muscle turnover through the
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up-regulation of degeneration and regeneration pathways [141,142]. The increased muscle turnover subsequently
results in inflammation and the infiltration of collogen into the muscle making it more fibrotic [141,143,144].

There is still some ambiguity in how the deficiency of dystrophin results in the progression of DMD. Currently,
there are two leading theories as to how DMD progresses, both of which involve elevations in [Ca2+]cyt. The first
theory posits the lack of dystrophin results in transient tearing of the sarcolemma membrane during contractions.
The membrane damage could allow for an influx of extracellular Ca2+ into the myofiber [145–147]. A second theory
lies in dystrophin’s role as a scaffolding protein and its role in positioning membrane ion channels. In the absence
of dystrophin, these ion channels may function improperly and increase Ca2+ influx into the myofiber [145–147].
Prolonged elevations in [Ca2+]cyt can increase proteolytic activity and the production of ROS [82,148–150]. Further-
more, increased ROS can inactivate SERCA function which can further augment Ca2+ dysregulation [88,151–155].
Previous work by Goonasekera and colleagues (2011) has shown that elevations in [Ca2+]cyt alone are enough to
promote a shift toward a DMD like phenotype [156]. This was shown through preventing increases in [Ca2+]cyt by
overexpressing SERCA in dystrophic tissue, which ameliorated the pathology [156]. This work has provided strong
evidence for the role of Ca2+ in promoting the progression of DMD. Recently, the use of CDN1163, a pharmaceutical
SERCA activator, has been used as a therapeutic intervention for DMD through its ability to promote Ca2+ sequestra-
tion in the SR. Specifically, Nogami et al. (2021) administered CDN1163 to mdx mice, which reduced [Ca2+]cyt and
decreased muscular degeneration and fibrosis [157]. Using a different approach to restore SERCA function in DMD
models, Gehrig and colleagues (2012) demonstrated that both transgenic and pharmacological overexpression of the
chaperone protein, heat shock protein 72 (HSP72), could attenuate the progression of DMD [158]. HSP72 associates
with SERCA and acts to protect it against oxidative damage and inactivation [152,158,159].

CNM is a heterogeneous group of inherited neuromuscular diseases characterized by increased localization of cen-
tralized nuclei. Although variance exists among disease phenotypes, other common histological indicators include
an increased proportion of type I fibres, centralized aggregations of oxidative activity, muscle atrophy and weak-
ness [160]. The most severe cases of CNM arise in a X-linked inheritance pattern from a mutation in the MTM1
gene. MTM1 encodes for myotubularin, which functions to regulate PI(3)P, endocytosis and endolysosomal func-
tion [161–163]. Milder cases of CNM have been reported in individuals with mutations in DNM2, which encodes
dynamin 2, and BIN1, which encodes amphiphysin-2 [163]. MTM1, DNM2, and BIN1 are all involved with mem-
brane trafficking suggesting they all work through the same pathogenic pathway [161–166]. Interestingly, Ca2+ dys-
regulation is also a common feature within each of these genetic variations of CNM [163,167,168]. Recently, mutations
in RYR1 and TTN, the genes encoding skeletal muscle RyR and the cytoskeletal protein titin, respectively, have also
been implicated in the development of a CNM phenotype providing greater evidence for the involvement of Ca2+ in
CNM pathogenesis [169,170]. RyR1-related CNM differs from other forms of CNM as there appears to be no direct
links to defective membrane trafficking [163]. Mutations to TTN which cause CNM are relatively heterogenous but
most appear to involve C-terminus truncations that are associated with a reduction in calpain-3 and nebulin-2, two
proteins which interact with the C-terminal region, which may cause irregularities in Ca2+ release [163,169,171].

While trying to characterize the role of PLN in SERCA regulation in skeletal muscle, Song and colleagues (2004)
discovered that PLN overexpression specifically in type I muscle fibres results in muscle disease [172], which was later
recognized as a CNM-like phenotype [173]. Fajardo et al. (2015) determined that mice with targeted overexpression
of PLN in type I fibres displayed an increased centralization of nuclei and oxidative activity as well as type I fibre
hypotrophy at 1 month of age [173]. Furthermore, a fibre type shift toward type I fibres was evident by 4–6 months
[173]. Interestingly, because the Pln transgene is attached to the β-MHC promoter in this model, the shift to type I
fibres leads to greater expression of PLN causing greater disease severity. In this model, there is also atrophy of type
I fibres while there appears to be a compensatory hypertrophy of type II fibres [173]. Through histological analy-
sis, it was suggested by Fajardo and colleagues that similarities in oxidative staining and fibrosis make PLN-related
CNM resemble a phenotype which appears more closely related to TTN- and RyR-CNM [173]. Furthermore, Fajardo
and colleagues reported a significant 53% reduction in SERCA activity and increases in both total and monomeric
PLN content in muscle samples from three human CNM patients compared with five healthy subjects. Overall, this
work has shown that overexpressing a SERCA inhibitor and severely impairing SR Ca2+ transport can cause CNM.
Therefore, future studies should assess whether targeting SERCA function is a viable therapeutic strategy for this
disease.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

9

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/42/12/BSR
20211997/940704/bsr-2021-1997c.pdf by guest on 18 April 2024



Bioscience Reports (2022) 42 BSR20211997
https://doi.org/10.1042/BSR20211997

Dysregulation of Ca2+ transport in heart disease
Abnormal Ca2+ loading in heart failure
Heart failure (HF) can present with either a reduced (HFrEF) or preserved (HFpEF) ejection fraction [174,175].
HFrEF involves the inability of the LV to generate sufficient force to pump out enough blood due to cardiomyocyte loss
and dysfunction (e.g., following a myocardial infarction) [174,176]. This leads to eccentric remodeling whereby the
existing myocytes stretch and become thinner, alongside an increase in fibrosis in the extracellular space [174]. HFpEF
involves the inability of the LV to sufficiently relax and allow for filling due to the enlargement of cardiomyocytes
that is caused by an increase in afterload (e.g., hypertension) [174,176]. This leads to concentric remodeling where
the walls of the LV thicken and elevate filling pressures [174]. Overall, in both cases, the LV walls enlarge causing
dysfunction in the chamber [174–176].

It is widely observed from electrophysiological studies that myocytes from failing hearts have abnormal Ca2+ tran-
sients that are smaller in amplitude and longer in duration which result in abnormal force production [177–181]. It
is well established that cardiomyocytes from nonfailing hearts display a positive force–frequency relationship with
increasing frequencies of stimulation causing increases in systolic force [182–184]. However, in myocytes from fail-
ing hearts, this is only true at lower frequencies as force decreases at higher frequencies of stimulation (i.e., negative
force–frequency relationship) and accordingly, the peak [Ca2+]cyt is decreased in these cells [181,183–185]. In con-
trast, diastolic force increases with increasing frequency at all stimulation frequencies in the cells from failing hearts
and this is associated with an increase in diastolic [Ca2+]cyt [181,186].

While decreases in Ca2+ release with HF could be due to defective coupling between the RyR and DHPR, reduced SR
Ca2+ content could also contribute. This was assessed in one study using a canine model of HF by assessing the CICR
gain, which is the amount of Ca2+ released from the SR for a given level of current density from the DHPR channel
and ε, which is the effectiveness of coupling between DHPR activation and SR Ca2+ release [178]. The CICR gain was
lower in the failing cardiomyocytes along with lower SR Ca2+ content compared with the healthy cardiomyocytes, but
no difference was observed for ε between the two groups. This indicates that in this model of HF it was the reduced
SR Ca2+ content that led to reduced Ca2+ release in the failing cardiomyocytes and not reduced ε. Furthermore, after
bathing the failing cardiomyocytes in a high Ca2+ solution (5 mmol/L) to bring the SR Ca2+ content back to levels
observed in their healthy counterparts, CICR gain was recovered to levels seen in the healthy cells. This is further
supported by another study which showed that despite smaller and longer Ca2+ transients, RyR content and activity
was intact in failing canine and human hearts [179]. Nonetheless, it should be noted that studies using other models
of HF have found ineffective coupling to contribute to the pathology [187–189].

As previously mentioned, SR Ca2+ uptake by SERCA is the primary pathway involved in lowering [Ca2+]cyt and in-
ducing relaxation of the myocardium during diastole. Several studies have shown that SERCA Ca2+ uptake is reduced
in failing hearts from both human and animal models [177,179,181,185,190,191]. In theory, reduced SERCA activity
could be due to either decreased SERCA content or increased PLN content leading to greater inhibition of SERCA. In-
terestingly, reductions in both SERCA and PLN content are consistently observed in HF [179,185,190,192,193], which
translates to either unchanged or decreased SERCA:PLN ratios (i.e., greater inhibition of SERCA by PLN). Another
reason behind the lower Ca2+ uptake in HF could be decreased phosphorylation of PLN leading to increased in-
hibition of SERCA. Although results have varied across models of HF, there is good evidence to suggest that PLN
phosphorylation is probably reduced [194–196]. This may be surprising given that CAMKII expression and activity
have been found to be increased in HF [197]; however, given that PLN phosphorylation status is dependent on a
balance of kinase and phosphatase activity, this can be explained by increased protein phosphatase 1 (PP1) activity
[198,199]. With regards to other studies which show contrasting results, the stage in the progression of HF at which
phosphorylation of PLN was assessed can impact the results [194,195]. Regardless of changes in the levels of the
aforementioned proteins observed across different models, Ca2+ uptake into the SR is reduced.

NCX, being the second major contributor in the myocardium to the transport of Ca2+ out of the cytosol, plays
a compensatory role in HF. In the face of decreased SERCA content, NCX content, and accordingly its activity, is
found to be increased in HF [192,200,201]. A study in failing canine cardiomyocytes found that while SERCA levels
decreased by approximately 28%, NCX levels increased by 104% [192]. In order to assess the contribution of SERCA
and NCX to Ca2+ removal during relaxation, the authors first inhibited SERCA and found the time it takes to reach
50% of maximal force during relaxation was significantly greater (i.e., slower relaxation) in the nonfailing hearts com-
pared with the failing hearts indicating that SERCA has a greater contribution to relaxation in these cells. They then
inhibited NCX by placing the cells in a Na+-free solution, which increased the time to 50% maximal force during
relaxation in both sets of cardiomyocytes but only up to 30% in normal cells and up to 97% in failing cells, indicating
that NCX contributes more to relaxation in the failing cells. More recently, a study using a guinea pig HF model found
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that while the contribution to Ca2+ removal by SERCA decreased by 28% that of NCX increased by 63% [202]. Al-
though this compensation of increased NCX content helps to remove [Ca2+]cyt, it can actually increase the probability
of arrhythmogenic events. In failing hearts, with increasing frequency of stimulation, the intracellular Na+ ([Na+]cyt)
levels rise [186,203], due to increased activity of the Na+/H+ exchanger on the sarcolemma [204] and reduced Na+/K+

ATPase activity [202] causing increased reverse-mode NCX activity [186,205]. Under β-adrenergic stimulation, the
rise in NCX-reverse current would increase [Ca2+]cyt and SERCA uptake of Ca2+ into the SR would also increase
leading to SR Ca2+ overload [186,205]. Therefore, the SR Ca2+ overload, alongside an increased membrane potential
due to reduced inward rectifier K+ channel current, would increase the susceptibility to arrhythmias [186,205].

Abnormalities in Ca2+ handling in HF are not isolated to cardiac muscle but have similarly been found in skele-
tal muscle. Several animal studies have shown abnormalities in Ca2+ handling in skeletal muscle with HF, including
reduced SERCA1 and 2 content [206], lower Ca2+ uptake [207], and lower Ca2+ release [208], which impairs muscle
force generation capacity and increases fatiguability [208–210]. Middlekauff and colleagues (2012) sought to examine
if such skeletal muscle Ca2+ handling abnormalities also occurred in humans with HF and whether oxidative stress
may be involved [211]. Analyses of vastus lateralis biopsy samples revealed lower DHPR and SERCA2a content
alongside lower phosphorylated PLN in advanced HF patients compared with healthy controls; however, there were
no differences in markers of oxidative stress [211]. In cardiac muscle, chronic augmentation of sympathetic nerve
activity leads to increased CAMKII expression and activity resulting in a phenomenon known as excitation tran-
scription coupling whereby CAMKII acts as a long-term regulator of hypertrophic genes and Ca2+ handling proteins
[212,213]. Thus, Middlekauf and colleagues postulated, because skeletal muscle is also subject to elevated sympathetic
activity, that excitation-transcription coupling alongside increased PP1 activity may also be at play in this tissue caus-
ing the Ca2+ handling abnormalities observed. Therefore, the Ca2+ dysregulation seen in both tissues are mirroring
each other likely due to the same mechanism.

Altered redox regulation of SERCA in disease
As mentioned earlier, SERCAs are redox-sensitive proteins that are activated by low levels of ROS and RNS, but they
are also highly susceptible to oxidative damage and inactivation by high levels of ROS and RNS (i.e., oxidative stress)
[153,154,214–216]. Cohen and colleagues have shown that in disease, irreversible oxidation of key thiols, specifically
cysteine-674, prevents activation of SERCAs through redox signaling mechanisms [87,217,218]. Several studies have
also noted increased oxidation and nitration of SERCA in aged skeletal muscle [155,214,219], which we have shown
results in the loss of redox control of SERCA activity and expression [220]. However, our work showing that several
SERCA-binding proteins, including heat shock protein 70, PLN, and SLN, can protect SERCA structure and function
during cellular stress [152,159,221], suggests that these SERCA-binding proteins may play a crucial role in protecting
cellular Ca2+ homeostasis and preserving cardiac and skeletal muscle function under conditions of chronic oxidative
stress and disease.

Conclusion
Maintenance of Ca2+ homeostasis is essential for healthy muscle. Within skeletal myofibers and cardiomyocytes, tran-
sient increases in [Ca2+]cyt during E-C coupling must be rapidly lowered to re-establish resting concentrations and
induce muscle relaxation, which is primarily accomplished by SERCA-mediated Ca2+ transport into the SR. During
short contractions of fast-twitch rodent and amphibian myofibers, the cytosolic Ca2+ buffer PV also contributes to
muscle relaxation by rapidly lowering [Ca2+]cyt. In the heart, Ca2+ extrusion from cardiomyocytes through the NCX
contributes significantly to ventricular relaxation, and the PMCA and MCU also contribute to a very minor extent.
Impairments in Ca2+ transport and dysfunctional Ca2+ homeostasis has consistently been shown to be involved with
the pathogenesis and/or the progression of multiple myopathies within skeletal muscle and in HF. A better under-
standing of the function and regulation of muscle Ca2+ transport proteins can allow for greater insights into skeletal
and cardiac muscle physiology and disease. Furthermore, this body of work can lead to novel approaches in the treat-
ment of diseases involving Ca2+ dysregulation.
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