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Currently, the benefits of immune checkpoint inhibitor (ICI) therapy prediction via emerging
biomarkers have been identified, and the association between genomic mutation signa-
tures (GMS) and immunotherapy benefits has been widely recognized as well. However,
the evidence about non-small cell lung cancer (NSCLC) remains limited. We analyzed 310
immunotherapy patients with NSCLC from the Memorial Sloan Kettering Cancer Center
(MSKCC) cohort. Lasso Cox regression was used to construct a GMS, and the prognos-
tic value of GMS could be able to verify in the Rizvi cohort (N=240) and Hellmann cohort
(N=75). We further conducted immunotherapy-related characteristics analysis in The Can-
cer Genome Atlas (TCGA) cohort (N=1052). A total of seven genes (ZFHX3, NTRK3, EPHA7,
MGA, STK11, EPHA5, TP53) were identified for GMS model construction. Compared with
GMS-high patients, patients with GMS-low had longer overall survival (OS; P<0.001) in the
MSKCC cohort and progression-free survival (PFS; P<0.001) in the validation cohort. Mul-
tivariate Cox analysis revealed that GMS was an independent predictive factor for NSCLC
patients in both the MSKCC and validation cohort. Meanwhile, we found that GMS-low pa-
tients reflected enhanced antitumor immunity in TCGA cohort. The results indicated that
GMS had not only potential predictive value for the benefit of immunotherapy but also may
serve as a potential biomarker to guide clinical ICI treatment decisions for NSCLC.

Introduction
Global cancer data for 2020 has shown that lung cancer remained the malignant tumor with the highest
mortality rate (18%) worldwide as well as the incidence rate (11.4%) ranked only second to female breast
cancer (11.7%) [1]. Approximately 80–85% of those cases are currently classified as non-small cell lung
cancer (NSCLC), of which 5-year survival rates were less than 15–20% [2]. Two of the main dominant his-
tological phenotypes of NSCLC include lung adenocarcinoma (LUAD; 50%) and lung squamous cell carci-
noma (LUSC; 40%) [3]. Recently, immune checkpoint inhibitors (ICIs) have been applied to NSCLC treat-
ment in order to transform the therapeutic landscape for the condition [4]. In fact, substantial advances
in clinical treatment have not provided the equivalent benefit of ICIs among the majority of patients, and
the results of the recent clinical trial emphasized the necessity of effective selection for biomarker-based
patients [5]. Therefore, it is particularly important to identify and develop potential predictive biomarkers
that can be used to predict the efficacy of ICI in dominant populations.

To date, increasing numbers of biomarkers have been confirmed to predict the benefits of immunother-
apy. As predictive biomarkers for the ICIs, tumor mutation burden (TMB) and programmed death ligand 1
(PD-L1) expression have been prospectively verified in the randomized controlled trials (RCTs) of NSCLC
[6,7]. Nevertheless, TMB and PD-L1 are not beneficial for all NSCLC patients, and it is still required to
explore novel biomarkers to maximize clinical benefits [8,9]. At present, a growing body of studies has
demonstrated that genomic mutation signatures (GMS) have great potential in predicting tumor prog-
nosis. For example, Jiao et al. established a six-gene-based signature (including genes RNF43, CREBBP,
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Figure 1. The flowchart of the study design

CDKN2A, TP53, SPEN, and NOTCH3), which was not only a powerful predictive factor of immunotherapy effi-
cacy for gastrointestinal cancer but also may be regarded as the potential biomarker to guide clinical treatment [10].
Similarly, Bai et al. developed another eight-gene-based prognostic model (HGF, KRAS, EGFR, PTPRD, STK11,
KMT2C, SMAD4, and TP53) to predict the response of nonsquamous NSCLC to PD-1 inhibitors [11]. In addition,
Pan et al. also constructed a mutation classifier (TP53, PIK3CA, and ATM) to predict the benefits of ICI treatment
in bladder cancer patients [12]. Therefore, we can deeply explore the genomic data and identify novel GMSs, so as to
guide prognosis stratification and personalized treatments of patients.

In the present study, we integrated the immunotherapy cohort of NSCLC to develop and validate a novel GMS to
predict immunotherapy responsiveness. Additionally, we further conducted immunotherapy-related characteristics
analysis in The Cancer Genome Atlas (TCGA) cohort as well. Collectively, our results suggested the seven-gene sig-
nature could be served as a powerful predictive indicator of immunotherapy and may guide clinical ICI treatment
decisions as a potential biomarker in NSCLC.

Materials and methods
Study design and samples
In the present study, a three-step approach was (discovery cohort, validation cohort, and TCGA dataset) applied
for developing and validating a GMS for the predictive ability of immunotherapy among patients with NSCLC. The
flow chart of the study design was illustrated in Figure 1. In order to evaluate the relationship between gene mu-
tation and the efficacy of ICI, we obtained the clinical and genomic data of advanced cancer patients who have
been treated with ICI in the Memorial Sloan Kettering Cancer Center (MSKCC) cohort (http://www.cbioportal.org/)
[13]. A total of 310 NSCLC patients were identified as the discovery cohort, including 266 with LUAD and 44
with LUSC. Then, we adopted the clinical cohorts, which were treated by ICIs in two published cohorts during
the subsequent validation phase. The cohort of 75 patients with advanced NSCLC who received combined im-
munotherapy was collected from the Hellmann et al.’s study [14]. The cohort of 240 patients with advanced NSCLC
treated with anti-PD-1 or anti-PD-L1 therapy was obtained from Rizvi et al.’s study [15]. The mutation and clini-
cal data of each sample in the discovery and validation cohorts were collected from cBioPortal and previous stud-
ies [13–15]. In addition, the TCGA cohort was used to explore whether GMS can be considered as a useful indi-
cator for tumor immune microenvironment characteristics. The data of TCGA-LUAD and TCGA-LUSC were ob-
tained from TCGA (https://portal.gdc.can/cer.gov/). The corresponding clinical data were acquired from UCSC Xena
(http://xena.ucsc.edu/). Patients who were involved in the three cohorts with incomplete clinical information and
mutation data would be excluded.

Clinical outcomes
The clinical outcomes of the present study mainly included progression-free survival (PFS), objective response rate
(ORR), overall survival (OS), and durable clinical benefit (DCB). PFS was assessed from the date of initiation of im-
munotherapy to the time of progress or death due to any causes. ORR was determined based on Response Evaluation
Criteria in Solid Tumors (RECIST) version 1.1 [16]. OS refers to the time from random grouping to death, which was
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caused by any reasons. Complete response (CR), partial response (PR), or stable disease (SD) lasting more than 24
weeks was recognized as a durable clinical benefit (DCB); SD or progressive disease (PD) lasting less than 24 weeks
was assumed as no durable benefits (NDB) [17]. Patients who did not develop symptoms and were censored before
24 weeks of follow-up should be defined as not evaluated (NE).

Construction of the GMS
First, univariate Cox regression analyses were performed on the relationship between prognosis-related gene muta-
tions (mutation frequency > 5%) and the survival of 310 patients in two cohorts. Then, we conducted a least absolute
shrinkage and selection operator (LASSO) Cox regression analysis on genes with a P-value less than 0.1 determined
by univariate Cox regression [10]. The multivariate Cox regression analysis was used to create the optimal signature.
We used the Survminer R package to generate the optimal cutoff value to divide the patients into the GMS-low group
and GMS-high group. The calculation formula of risk score showed as follows:

GMS score = (β1×mutation status of Gene1) + (β2×mutation status of Gene2) + . . . + (βn × mutation status of
Genen). Gene mutation status (1 or 0) was coded by mutant and wild-type genes. β was the regression coefficient
generated in the multivariate Cox regression analysis.

Immunotherapy-related characteristics analysis
As a representative of the expression in tumor-specific neoantigen, TMB may trigger the immune response. TMB was
determined as the total number of nonsynonymous somatic mutations per megabase (Mb) in the genome [18]. For
WES data in TCGA dataset, 38 Mb was used as the assessed exon size [19]. For samples in both of MSKCC cohort
and validation cohort, TMB data were derived from the Memorial Sloan Kettering Integrated Mutation Profiling of
Actionable Cancer Targets (MSK-IMPACT).

We characterized tumor immune activation according to studies of immune-related analysis that were previously
published, including cytolytic activity (CYT) score [20], inflammation signature score [21], immunologic constant
of rejection (ICR) score [22], IFN-γ signaling score [23], antigen processing machinery (APM) score [24], CD8+T
effector score [25], and the activity of 13 immune-related pathways [26]. These indicators were confirmed to correlate
with the efficacy of immunotherapy. The CYT score was determined based on granzyme A (GZMA) and perforin 1
(PRF1) expression [27]. The method of single-sample gene set enrichment analysis (ssGSEA) in the GSVA R pack-
age was used to quantify the above indicators [28]. The IFN-γ signaling score was performed via the gene sets of
KEYNOTE-012 [29] and POPLAR [30] in ICIs-treated clinical trials. In addition, we also applied the ssGSEA for
calculating the infiltration scores of 16 immune cells to estimate the abundance of tumor-infiltrating lymphocytes
[28].

Statistical analysis
Statistical analyses were performed using R v. 4.1.1, GraphPad Prism (V.8.0.2), and SPSS V.26.0 (SPSS). Cox regression
analysis was performed to establish the GMS. The optimal cut-off value of GMS was conducted by the Survminer R
package. The ORR and DCB in different subgroups were analyzed by the χ2 test or Fisher’s exact test. Kaplan–Meier
method and log-rank test were applied to calculate PFS and OS. The Man–Whitney U test or Kruskal–Wallis test
was used to compare differences between two independent subgroups. All reported P-values less than 0.05 were
considered statistically significant.

Results
Construction of the GMS
Our study developed a predictive model named GMS based on MSKCC cohort, which included 310 lung cancer
patients receiving ICI treatment (MSKCC-LUAD cohort, N=266; MSKCC-LUSC, N=44). The top 5% mutation fre-
quency and pattern of mutations among patients with LUAD and LUSC from the MSKCC cohort were presented in
Figure 2. First, a univariate Cox regression model was performed to select prognosis-related gene mutation (cases
with mutation frequency > 5%). The genes with a P-value less than 0.1 in univariate Cox analyses were introduced
into LASSO Cox regression (Figure 3A,B). After that, these candidate mutation genes were calculated by a multivari-
ate Cox regression model to predict the OS of the MSKCC training cohort. Finally, totally of seven genes (ZFHX3,
NTRK3, EPHA7, MGA, STK11, EPHA5, TP53) were identified to form the optimal model. Based on the mutation
status of the seven genes (1 or 0) weighted by their regression coefficient, the GMS risk model was calculated for
each patient (Table 1). GMS score = (0.652 × TP53) – (1.052 × ZFHX3) – (1.111 × NTRK3) – (0.974 × EPHA7)
– (0.629 × MGA) + (0.654 × STK11) – (0.664 × EPHA5). In the calculation formula, the mutant genes were coded
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Figure 2. Oncoplot of the mutated genes

Assessment of the frequency and pattern of mutations in patients with NSCLC from the MSKCC cohort. The mutation genes of

310 patients with NSCLC in this cohort were analyzed. Genes were listed by mutation frequency > 5%.

Table 1 Multivariable Cox regression analysis of candidate mutation genes in the MSKCC cohort

Variable B HR 95% CI P-value

ZFHX3 −1.052 0.349 0.152 to 0.802 0.013

NTRK3 −1.111 0.329 0.132 to 0.822 0.017

EPHA7 −0.974 0.377 0.138 to 1.030 0.057

MGA −0.629 0.533 0.256 to 1.110 0.092

STK11 0.654 1.924 1.345 to 2.752 <0.001

EPHA5 −0.664 0.515 0.276 to 0.962 0.037

TP53 0.652 1.919 1.391 to 2.647 <0.001

Abbreviations: B, regression coefficient; CI, confidence interval; HR, hazard ratio.

as 1 and the wild-type genes were coded as 0. The patients were divided into the GMS-high group and GMS-low
group by optimal cutoff value 1, which was calculated by the Survminer R package. Compared with the GMS-high
group, patients in the GMS-low group (P<0.001) had longer OS (Figure 3C). In order to appraise the sensitivity and
specificity of predictions that identified GMS, receiver operating characteristic (ROC) curves were plotted as well as
area under the curve (AUC) values were calculated. The ROC curve results illustrated that GMS performed better
predictor ability (AUC = 0.667) compared with TMB (AUC = 0.479) in the MSKCC cohort (Figure 3D). In addi-
tion, GMS was considered as an independent prognostic factor in the MSKCC cohort. Table 2 provided the clinical
characteristics between GMS-low and GMS-high patients of the MSKCC cohort. After multivariate adjustment of
clinicopathological factors, GMS, TMB, and drug-type remained the powerful and independent prognostic factors
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Figure 3. Construction of the GMS

(A) The LASSO regression was performed for variable selection. (B) LASSO coefficient profiles of the nine candidate genes. (C)

Kaplan–Meier curves for the OS of patients in the GMS-high group and GMS-low group in the MSKCC cohort. (D) The ROC curve

measuring the predictive value of GMS and TMB in the MSKCC cohort. (E) Multivariate Cox analysis for OS in the MSKCC cohort.
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Table 2 Clinical characteristics between GMS-low and GMS-high patients of the MSKCC cohort

Characteristics Classification GMS-low GMS-high χ2 P-value

Age 0.291 0.590

≥60 94 130

<60 39 47

Sex 0.700 0.403

Male 59 87

Female 74 90

Drug type 3.490 0.062

PD-1/PD-L1 122 171

Combo 11 6

Cancer type 0.381 0.573

LUAD 116 150

LUSC 17 27

Abbreviations: LUAD, lung adenocarcinoma, LUSC, lung squamous cell carcinoma.

(GMS: HR 0.50, 0.37–0.69, P<0.001; TMB: HR 2.29, 1.32–3.98, P=0.003; Drug-type: HR 2.62, 1.21–5.69, P=0.015)
for OS (Figure 3E).

Validation of the predictive value of GMS
In order to further validate the prognostic ability of the GMS classifier, we integrated two previously published inde-
pendent cohorts of NSCLC patients received ICIs treatment (Rizvi et al. cohort with 240 patients and Hellman et al.
cohort with 75 patients). The patients in the validation cohort were divided into the GMS-high group and GMS-low
group base on the optimal cutoff value. Compared with patients in GMS-high group, PFS was detected among patients
of GMS-low group (P<0.001) (Figure 4A). The proportion of objective response (CR/PR) in GMS-low patients was
over double than that in GMS-high patients (45% vs. 20%, P=0.002) (Figure 4B). The rate of DCB in GMS-low pa-
tients was significantly higher than that in GMS-high patients (65.0% vs. 29.1%, P<0.001) (Figure 4C). Furthermore,
ROC analysis of the validation cohort indicated that GMS (AUC = 0.619) exhibited better predictive value compared
with TMB (AUC = 0.336) and PD-L1 (AUC = 0.350) (Figure 4D). The clinical distribution characteristics between
GMS-low and GMS-high patients in the Rizvi and Hellman cohorts were listed in Table 3. After multivariate Cox
regression excluded other confounding factors, GMS and Smoke (GMS: HR 0.40, 0.21–0.78; P=0.007; Smoke: HR
1.74, 1.07–2.82, P=0.026) were independent predictors of PFS (Figure 4E). Overall, GMS can be used as a powerful
predictor of the outcome of immunotherapy for NSCLC.

Comparison of the immune activation characteristics of GMS in TCGA
cohort
According to the above observations, we assumed that GMS would be an indicator of tumor immune microen-
vironment characteristics for NSCLC patients. For subsequent analysis, we combined TCGA-LUAD (N=561) and
TCGA-LUSC (N=491) cohorts. The TCGA cohort was divided into GMS-high and GMS-low based on the GMS risk
model. As for OS analysis, Kaplan–Meier survival curves showed no significant differences were identified between
GMS-low patients and GMS-high patients (P=0.20) in TCGA cohort (Figure 5A). Tumors with GMS-low showed re-
markably more nonsynonymous mutations than those with GMS-high (P<0.001) (Figure 5B). The CYT score calcu-
lated by the ssGSEA method of the expression of GZMA and PRF1 was also higher among GMS-low patients (P=0.03)
(Figure 5C). Using the ssGSEA methodology, we further evaluated the enrichment scores of 16 immune cells and the
activity of 13 immune-related pathways between the GMS-high and GMS-low groups in TCGA cohort. In TCGA
cohort, the immune infiltration level of the GMS-high group was commonly lower than that of the GMS-low group,
especially B cells (P=0.042), CD8 + T cells (P=0.010), and NK cells (P<0.001). Moreover, induced dendritic cells
(iDCs) have higher expression in the GMS-high group (P=0.037) (Figure 5D). In addition, four immune pathways
showed lower activity in the GMS-high group compared with the GMS-low group in TCGA cohort, including CYT
(P=0.030), Inflammation-promoting (P=0.008), MHC class I (P=0.016), and T-cell coinhibition (P=0.020) (Figure
5E). As for tumor immune activation, unlike GMS-high group we noticed that GMS-low group showed higher IFN-γ
signaling score (KEYNOTE012, P=0.041; POPLAR, P=0.021), ICR score (P=0.036), inflammation signature score
(P=0.020), APM score (P=0.015), and CD8+T-effector score (P=0.013) (Figure 5F).
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Figure 4. Validation of the predictive value of GMS

(A) Kaplan–Meier curves for the PFS of patients in the GMS-high group and GMS-low group in the Rizvi and Hellman cohorts. (B)

The proportion of ORR for patients with GMS-low and GMS-high groups in the Rizvi and Hellman cohorts. (C) The proportion of

DCB for patients with GMS-low and GMS-high groups in the Rizvi and Hellman cohorts. (D) ROC curves measuring the predictive

value of GMS, TMB, and PD-L1 in the Rizvi and Hellman cohorts. (E) Multivariate Cox analysis for PFS in the Rizvi and Hellman

cohorts.
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Figure 5. Comparison of the activation characteristics of GMS in TCGA cohort

(A) Kaplan–Meier curves for the OS of patients in the GMS-high group and GMS-low group in the TCGA cohort. (B) Comparison

of nonsynonymous mutations between the GMS-low and GMS-high groups in the TCGA cohort. (C) Comparison of cytolytic score

between the GMS-low and GMS-high groups in the TCGA cohort. (D) Comparison of the enrichment scores of 16 types of im-

mune cells between the GMS-low group (yellow box) and GMS-high group (blue box) in the TCGA cohort. (E) Comparison of the

enrichment scores of 13 immune-related pathways between the GMS-low group (yellow box) and GMS-high group (blue box) in

the TCGA cohort. P-values were showed as: ***P<0.001, **P<0.01, *P<0.05. (F) Heatmap of immune-related signatures between

the GMS-low and GMS-high groups in the TCGA cohort.
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Table 3 Clinical distribution characteristics between GMS-low and GMS-high patients in the Rizvi and Hellman cohorts

Characteristics Classification GMS-low GMS-high χ2 P-value

Age 0.110 0.740

≥60 26 186

<60 14 89

Sex 0.324 0.569

Male 18 137

Female 22 138

Smoke 0.635 0.425

Ever 34 219

Never 6 56

PD-(L)1 3.268 0.195

Positive 16 73

Negative 8 59

NE 16 143

Best overall response 12.434 0.002

CR/PR 18 55

SD/PD 21 214

NE 1 6

Durable clinical benefit 21.111 <0.001

DCB 26 80

NDB 12 184

NE 2 11

Abbreviations: CR, complete response, DCB, durable clinical benefit, NDB, no durable benefit, NE, not evaluable, PD, progressive disease, PD-(L)1,
programmed cell death-1 or programmed death-ligand 1, PR, partial response, SD, stable disease.

Discussion
Predictive biomarkers may provide a cost-effective method to identify potential responds to immunotherapy and
offer an accurate guide for patients receiving ICI therapy. In this multicohort analysis, we systematically gathered and
integrated clinical and genomic data, so that could estimate the connection between genomic signatures and clinical
response among patients from NSCLC who had been treated with ICI. We developed and validated a prognostic
model based on seven gene mutations in order to predict the survival benefits of patients receiving ICI treatment.
According to the present study, GMS divided patients into two different subgroups, with the significant OS and PFS
advantage in the GMS-low group. Moreover, the patients with NSCLC in GMS-low group had a better prognosis in
the ICI treatment cohort than those in the GMS-high group, and they were independent prognostic factors.

In particular, we utilized the TCGA cohort to characterize tumor immune activation. We found that the GMS-low
group can be considered as better immunogenicity, as indicated by higher TMB and an immune-inflammatory phe-
notype, such as increased CD8+ T-cell infiltration. When we used the ssGSEA method to calculate the overall immune
cell infiltration level of cancer, GMS-low had significantly higher immune scores than GMS-high, which also con-
firmed that the GMS-low had stronger immune activity. In addition, the tumor microenvironment (TME) is closely
associated with ICI efficacy among NSCLC patients. As the central effector cells in the TME, several studies have
suggested that highly infiltrated CD8+ T cells were associated with the beneficial prognosis for most tumors, includ-
ing NSCLC [31]. Peripheral immune cells also play an important role in the antitumor immune response. Increased
peripheral CD8+ CD28+ T cells correlated with favorable survival and better treatment response for patients with
NSCLC [32–34]. Studies have indicated that high levels of tumor-infiltrated and peripheral Tregs were related to un-
favorable prognosis in NSCLC compared with normal levels [35–37]. Thus, higher TMB, B cells, CD8+ T cells, and
NK cells, among others, may be the reason that ICI was more effective in patients with GMS-low than in those with
GMS-high.

At present, some biomarkers have been found to predict treatment outcomes. MSI analysis could be an appropriate
biomarker, while the low incidence of MSI-H in lung cancer might limit its clinical application in this population [38].
Emerging studies indicated that gene mutations including ARID1A, TP53, PBRM1, KEAP1, STK11, NOTCH, and
JAK may have different effects for ICI treatment [32–36]. Nevertheless, a single gene mutation may not be adequate to
transform the ICI treatment landscape and probably is not a sufficient comprehensive biomarker. For example, TP53
mutations were associated with improved PD-L1 expression and promoted CD8+ T-cell infiltration, but the single
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mutation failed to distinguish sensitive patients with LUAD-receiving immunotherapy. In contrast, the TP53/KRAS
comutation combination exhibited a stronger improvement in PD-L1 expression and enhanced tumor immunogenic-
ity compared with the KRAS or TP53 single mutation [39], highlighting the importance of a model that would com-
bine the different genes. We have consequently included most of the possible determinant genes to identify a novel
stable GMS to guide patient stratification and personalized treatment.

Currently, PD-L1 and TMB were confirmed to be the primary biomarkers for predicting clinical efficacy of immune
checkpoint inhibitors in NSCLC. The ROC curves indicated that the GMS classifier performed better than both TMB
and PD-L1. In addition, as PD-L1 and TMB are continuous variables, there is no clear threshold to define whether a
response occurs or not. And both biomarkers vary considerably between detection platforms and methods [40,41]. In
the present study, seven genes were constructed to form a signature based on mutation data. Nevertheless, risk-scoring
formulas and thresholds for mutation-based gene sets can be verified with various methods of tumor analysis, for
instance, DNA-sequencing and single nucleotide polymorphism microarray analyses. In this way, mutation-based
gene sets are independent from different technical sources, even if various platforms are applied in different centers
[27]. Therefore, it is worthwhile to consider a prospective trial to incorporate GMS as a biomarker.

Previous studies have demonstrated the immunological function and prognostic value of seven genes in GMS
classifiers for immune therapy. A number of specific genetic variations, for instance, TP53 and STK11, have been
proved to create an influence on the infiltration and function of immune cells and the clinical outcomes of ICI ther-
apy [42,43]. As previously reported, the mutation in the DDR pathway can increase the immunogenicity of tumors
by accumulating incorrect DNA damage response and promote ICI efficacy [44,45]. There is a possibility that this
mechanism contributes to the increased effectiveness of ICIs in patients with ZFHX3 mutations [46]. Moreover, the
research indicated that NTRK3 has been proven to be a prognostic biomarker related to TMB and can contribute to
the development of bladder cancer immunotherapy [47]. EPHA5 mutation may be used as a biomarker to predict the
immune response of patients with LUAD by providing insight into genome-wide mutational burden [48]. Besides,
EPHA7 mutations have been demonstrated to be predictive biomarkers for immune checkpoint blockades in several
cancer types [49]. MAG has also been proved to be an individual indicator affecting the prognosis of liver cancer,
which can be used to guide the effective prognosis and treatment with liver cancer patients [50]. In our study, we
integrated genomic mutations associated with ICIs prognosis in NSCLC into a risk model. Therefore, GMS offers a
crucial promise in predicting immunotherapy efficacy, and nearly all genes play a key role in regulating the tumor
immune microenvironment. The GMS-low can be regarded as an immune inflammatory phenotype, with the activity
of immune pathway, higher TMB, and effective immune cell infiltration. Our findings suggested that the GMS may
offer critical important insights into the immunological characteristics of NSCLC.

There are several limitations of the present study. First of all, the present study is a retrospective research based on
multiple public databases, and the problem of inadequate and limited available data is inherent. The limited size of
patients involved in the study may limit application of the conclusions. For example, the sample size for squamous
lung cancer was restricted due to the availability of samples in the MSKCC cohort; in the validation cohort, PD-L1
could not be evaluable in some patients due to missing data. Second, our analysis only discussed two of the most
important NSCLC subtypes, LUSC, and LUAD, and remaining subtypes were not involved. Finally, our results need
to be further verified in future prospective trials and validated through laboratory or clinical trials.

Conclusion
Ultimately, we explored and validated a novel seven-gene GMS model, which was correlated with better ICI treatment
in patients with NSCLC. Therefore, this signature may be used as one of the predictive biomarkers for ICIs. Further-
more, the signature provides a cost-effective approach and a research framework for the construction and evaluation
of predictive biomarkers based on immunotherapy in other tumor types. However, the GMS should be validated in
future prospective trials and the mechanisms explored in further molecular studies.
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