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Entamoeba histolytica (E. histolytica) is an anaerobic parasite that causes Amoebiasis in
the intestine or extraintestinal, with immunology, genetics, and environmental variables all
playing a part in the disease’s development, but its molecular mechanism is unknown. One
of the primary obstacles in understanding the etiology of Amoebiasis will be identifying the
genetics profiling that controls the Amoebiasis network. By examining the gene expres-
sion profile of Amoebiasis and comparing it with healthy controls, we could identify differ-
entially expressed genes (DEGs). DEGs were used to build the Amoebiasis protein inter-
action network and calculated its network topological properties. We discovered nine key
hub genes (KHGs): JUN, PTGS2, FCGR3A, MNDA, CYBB, EGR1, CCL2, TLR8, and LRRK2
genes. The genes JUN and EGR1 were transcriptional factors (TFs) and up-regulated, oth-
ers down-regulated. hsa-miR-155-5p, hsa-miR-101-3p, hsa-miR-124-3p, hsa-miR-26b-5p,
and hsa-miR-16-5p are also among the essential miRNAs that have been demonstrated to
be targeted by KHGs. These KHGs were primarily enriched in the IL-17 signaling pathway,
TNF signaling pathway, NOD-like receptor signaling pathway, and Toll-like receptor signaling
pathway. miRNAs were grouped in various pathways, focusing on the TGF-β signaling path-
way, human immunodeficiency virus 1 infection, insulin signaling pathway, signaling path-
ways regulating pluripotency of stem cells, etc. Amoebiasis KHGs (JUN, PTGS2, CCL2, and
MNDA) and their associated miRNAs are the primary targets for therapeutic methods and
possible biomarkers. Furthermore, we identified drugs for genes JUN, PTGS2, FCGR3A,
CCL2, and LRRK2. KHGs, on the other hand, required experimental validation to prove their
efficacy.

Introduction
Entamoeba histolytica (E. histolytica) is an anaerobic parasite that causes Amoebiasis in the intestine
or extraintestinal [1,2]. Amoebiasis is projected to affect 50 million people worldwide yearly, resulting in
55,000 fatalities [3]. Entamoeba histolytica resides mainly in the large intestine and causes no symptoms.
It has a biphasic life cycle, with a latent cyst stage resistant to the environment and transmits the infection.
The other type of proliferative trophozoite is motile and produces illness [4]. Infectious cysts spread by
the feces-to-mouth pathway, excysting in the terminal ileum and releasing invasive trophozoites [5].
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Figure 1. Schematic diagram of the workflow

Detailed workflow of methods implemented in Amoebiasis infection-associated PPI network study.

The pathogenicity of this anaerobic parasite depends on its ability to cling to the intestinal epithelium and degrade
extracellular matrix proteins, causing tissue lesions that lead to abscesses and a host acute inflammatory response
[6–8]. The mechanisms of pathogenicity, virulence factors, metabolism, and the mounted host immunological re-
sponse have all been widely explored. However, complex host–parasite interaction during distinct stages of the disease
remains a significant bottleneck for developing effective therapeutics and diagnostics [9].

To kill the host intestinal mucosa and induce sickness, E. histolytica uses a variety of ways [10]. The attachment
of trophozoites to host mucous and epithelial cells in the colon is thought to be mediated by multisubunit amebic
GaINAc lectin after excystation within the small intestinal lumen. Trophozoites also secrete a number of cysteine
proteases that break down mucin and the extracellular matrix [11,12]. Contact-dependent death of resident host cells
is still a mystery. Host cells appear to break the cell membrane due to fast fluctuations in intracellular calcium levels,
which leads to host cell alterations that resemble apoptosis, such as membrane blebbing, DNA digestion, and caspase
activation [13]. Finally, E. histolytica trophozoites phagocytize the host’s nucleated and red blood cells. Virulence is
significantly associated with the ability to phagocytize host cells [14].

Amoebiasis is being treated with metronidazole as a first-line medication. Metronidazole resistance has been linked
to higher levels of iron-containing superoxide dismutase and peroxiredoxin and lower levels of ferredoxin and flavin
reductase [15]. The reduced expression of drug targets such as methionine γ-lyase has been associated with trifluoro
methionine resistance [16,17].
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Figure 2. Volcano plot of the down-regulated and up-regulated DEGs

The volcano plot shows the down-regulated and up-regulated DEGs of Amoebiasis infected and healthy cases. The x-axis repre-

sents the log2(FC) and the y-axis represents −log10 (P-values).
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Human resistance or susceptibility to E. histolytica infection has been studied, but the results are contradictory.
The application of whole blood transcriptional profiling in humans has recently led to a better knowledge of the
host response to infectious disease and the identification of blood signatures and possible biomarkers for diagnosis,
prognosis, and treatment monitoring. The study of the host transcriptome has been widely used to investigate the
intricate interactions between humans and microorganisms [18,19].

This technique successfully discovered neutrophil-driven interferon (INF)-inducible blood transcriptional signa-
ture for active Tuberculosis that involved both INF- and type I IFN-α/β signaling, which was later verified in multiple
countries [20]. This neutrophil-driven interferon signature was found in active disease but not a latent infection or
healthy controls. While patients with the autoimmune disease systemic lupus erythematosus had an IFN-inducible
signature, variances in signatures separated the two profiles. INF-inducible gene expression is extensively defined
by viral and bacterial infections such as melioidosis. Whole blood signatures distinguish between bacterial and viral
illnesses and different viral infections [21]. Blood transcriptional patterns that can discriminate between rapid and
slow disease progression have been established in HIV [22]. Other signs identify pulmonary from extrapulmonary
tuberculosis and pulmonary tuberculosis from pulmonary sarcoidosis, pneumonia, and lung tumors. As a result, tran-
scriptional fingerprints that can track treatment effectiveness are an essential weapon in the fight against infectious
illnesses. A study from two South African cohorts studied longitudinally shows that the transcriptional signature of
active tuberculosis disease quickly reduces with successful therapy [23].

The human host response to protozoan diseases such as plasmodium species-caused malaria [24,25] and Try-
panosoma cruzi-causes Chagas disease has been studied using whole blood transcriptional profiling [26]. In animal
models and human investigations of leishmaniases, expression profiling has also been used. Whole blood transcrip-
tomics was utilized to examine expression profiles in patients with active visceral leishmaniasis caused by Leishmania
infantum, asymptomatic infected individuals, VL patients in remission, and controls [27].

We investigated differentially expressed host genes better to understand the immunologic aspects of E. histolytica
infection and discover possible treatment targets that could distinguish diseased from non-diseased patients. The
relevance of taking a systematic approach to dealing with this underlying complexity can be seen in the interconnected
and intrinsically complex biochemical network of disease states. A comprehensive analysis of insight derived from
various levels in the omics chain can cumulatively elucidate the variations that are efficiently interpreted from the
genome and how it influences its concomitant at the molecular level, thus providing an extensive and integrated
perspective on the stacked changes that occur upon infection, as well as on the ensuing therapeutic intercession.

The disease’s etiology is imprecise due to a lack of an excellent quick diagnosis system and our reliance on the
existing standard single-gene screening pattern. Human antibodies have a hard time entering the cell since E. his-
tolytica is an intracellular infection. Nonetheless, the cell-mediated immune response plays a critical role in pathogen
containment and the progression of infection to active illness. Construction of a gene interaction network of differen-
tially expressed genes (DEGs) involved in the immune response to Amoebiasis and screening to look for therapeutic
targets (gene expression biomarkers) can play a significant role in determining the fate of infection by developing a
method of discovering new effective drugs and the earliest diagnosis in susceptibility to Amoebiasis disease to reduce
the burden of suffering, among other things.

This study performed a meta-analysis by comparing gene expression profiling of active E. histolytica infected data
with data from healthy individuals and identified disease-specific DEGs, stipulating a salient molecular network and
revealing the host consequences of infection in this population. To further our research, we integrated curated and
empirically validated connections in humans to develop protein–protein (or, more specifically, gene–gene) interaction
networks. The centralities of the networks in this network were also measured, and the genes in the network were
ranked according to their centralities [28]. A gene-transcription factors (TFs) regulation network comprising key hub
genes (KHGs) was also evaluated to identify the relationships between TFs and KHGs. The findings of this study are
intended to improve our understanding of the genes or proteins involved in the establishment and development of
Amoebiasis, allowing for more effective treatment options. This investigation will reveal novel insights into the host
immunological systems involved in E. histolytica infection and new genes that may be used to distinguish active
Amoebiasis patients from those who do not have the illness.

Materials and methods
The detailed workflow is as shown in Figure 1.
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Figure 3. PPI network of DEG

Up- and down-regulated genes are represented as yellow and blue colors, respectively.

Table 1 GSE datasets used in the present study

S.No. GSE Series ID Samples Platforms Methods References

1 GSE128194 03HC,03EH GPL16791 Illumina [29]

2 GSE23750 08HC,08EH GPL6244 Affymetrix [30]

EH, Amoebiasis (E. histolytica); HC, healthy control.

Preprocessing and acquisition of datasets
Two separate RNA-Seq datasets, GSE128194 and GSE23750, were downloaded from the NCBI GEO repository
database (https://www.ncbi.nlm.nih.gov/geo/) to evaluate the human gene expression profiling in active (E. histolyt-
ica infected) and healthy cases. Table 1 shows the datasets in detail. GEO datasets of active Amoebiasis and healthy
controls were used to recruit participants for this investigation. We didn’t include any samples treated with a drug or
were linked to another disease. R was used to preprocess the sample data, normalize it, and remove non-expressed
probes/genes.
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Figure 4. GO analysis of down-regulated DEGs

The GO of DEGs. The x-axis represents the gene ratio. The color of the dots represents the −log10(P) and the size of the dots

represents the gene count. (A) Biological process and (B) molecular function.
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Data analysis and visualization of DEGs
RStudio (version 1.3.1093) [31] and R Version 3.4.4 [32] were used to perform all data analysis. To avoid incon-
sistencies, the Bioconductor software Lumi [33] was used to read raw Illumina GSE series expression data and per-
form background data correction and quantile standardization. For background data correction and normalization of
Affymetrix GSE series samples, we used the robust multi-array average (RMA) [34] technique using the affy-package
[35] of R. In this investigation. We used the LIMMA [36] package to analyze data and quantify DEGs by measur-
ing gene expression values (DEGs). It estimates f-test and t-test (simple and moderate) using linear modeling (LM)
and empirical Bayes (EM) methods and lessens the standard errors to provide stable and reproducible results [37].
DEGs analysis was performed for comparison between control and clinical groups. R package ggplot2(3.1.2) [38]
was used for data visualization. The threshold values for differential expression were considered at least a log2(fold
change, FC) compared with healthy controls. The threshold for determining the fold change for each gene was set to
Benjamini–Hochberg adjusted P-value (Padj) ≤ 0.05 and P-value ≤ 0.05.

Probe IDs conversion, network construction, and visualization
The probe IDs of the gene expression profiles were also converted to their appropriate gene symbols using the g:
Profiler online server (http://biit.cs.ut.ee/gprofiler/convert) [39]. We also used the STRING v11 (Search Tool for the
Retrieval of Interacting Genes/Proteins) database (https://string-db.org/) [40] to build a protein–protein interaction
(PPI) network of DEGs (up- and down-regulated) in humans, retaining curated and experimentally validated inter-
actions. In Cytoscape-3.7.1, a network was displayed [41].

Functional analysis/GO enrichment
To produce a list of biologically significant DEGs, the DAVID 6.8 Web server (https://david.ncifcrf.gov/) [42] is used.
It is an open bioinformatics resource that can be accessed via a web browser and provides investigators with a compre-
hensive collection of functional annotation tools to help them comprehend the biological meaning of a considerable
number of genes. DAVID tools can (1) identify enriched biological themes, such as gene ontology (GO) terms, (2)
discover enriched functional-related gene groups, (3) visualize genes on BioCarta and KEGG pathway maps, and (4)
display related many-genes-to-many-terms in a 2D view and search for other functionally related genes, not in the
list for any given gene list.

Identify key hub genes
A systematic analysis is required to gain maximal insights from a biological network that has been constructed as
described. Identifying the KHGs (molecular regulators) is a primary goal in omics data analysis. Finding KHGs
in DEGs network (GIN) using topological network properties defines different measures of a node’s connectivity.
These topological properties include degree and centrality measures such as closeness centrality, eigenvector central-
ity, and betweenness centrality. Nodes having high betweenness centrality known as bottlenecks have been shown
to be predictive of gene essentiality. These statistical properties were estimated using the Network Analyzer plug-in
Cytoscape-3.7.1.

TFs are critical trans-acting factors in transcriptional regulation. Understanding the regulation mechanism in hu-
man illness requires elucidating the TF-target interaction. TRRUST (v2.0) server (https://www.grnpedia.org/trrust/)
[43], a manually curated database of human transcriptional regulatory networks containing 8444 TF-target regulatory
interactions of 800 individuals, was utilized to evaluate all of our KHGs’ major TFs.

Results
Analysis and results
Differential expression analysis (volcano plot for all samples are shown in (Figure 2) revealed 314 DEGs, with 196
down-regulated and 118 up-regulated in a high throughput sequencing of Amoebiasis using a 3D model of the human
intestine series GSE128194 of expression profiling by an array with the threshold cut-offs log2 |FC| > 1.5, P-value
< 0.05 and Padj ≤ 0.05. The GSE23750 series expression profiling by the array for differential expression was used
to access gene differences after E. histolytica infection. The threshold cut-off P-value < 0.001, Padj ≤ 0.05 with log2
|FC| ≥ 1 uncover 56 up-regulated and 92 down-regulated genes.

Further, a total of 193 up-regulated and 262 down-regulated genes with cut-off threshold values log2 |FC| ≥ 1,
P-value ≤ 0.05, Padj ≤ 0.5 were identified in both datasets. Moreover, using the server (http://biit.cs.ut.ee/gprofiler/
convert), g: Profiler online server, all probe IDs of the genes were transformed into their corresponding gene symbols.
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And unique gene symbols were identified among all sets of expressed genes, as listed in Supplementary files (S1, S2,
S3, S4). Next, PPI networks were constructed from a string-db database of DEGs (Figure 3).

Annotation of DEGs’ functions
To better understand the biological activities of DEGs, we used a GO enrichment analysis. The KEGG pathway and
Figures 5 and 6 depict the considerable enrichment of down-regulated and up-regulated DEGs.

Biological processes were overrepresented among the commonly down-regulated DEGs (BP), including inflam-
matory response, neutrophil degranulation, immune response, innate immune response, cell chemotaxis, cell surface
receptor signaling pathway, defense response, positive regulation of cytosolic calcium ion concentration, positive
regulation of tumor necrosis factor production, cytokine-mediated signaling pathway, antimicrobial humoral im-
mune response mediated by antimicrobial peptide, chemotaxis, positive regulation of interleukin-1β production,
chemokine-mediated signaling pathway, response to lipopolysaccharide, response to the virus, positive regulation
of fever generation, extracellular matrix organization, neutrophil chemotaxis, and positive regulation of monocyte
chemotaxis (Figure 4A).

The MF of the down-regulated gene was primarily enriched in prostaglandin E receptor activity,
carbohydrate-binding, serine-type endopeptidase inhibitor activity, IgG binding, RAGE receptor binding, RNA
polymerase II core promoter proximal region sequence-specific DNA binding, oligosaccharide binding, scavenger
receptor activity, chemokine activity, C-C chemokine receptor activity, C-C chemokine binding, RNA polymerase
II TF activity, sequence-specific DNA binding, CCR10 chemokine receptor binding, heparin-binding, metalloen-
dopeptidase activity, steroid sulfotransferase activity, Toll-like receptor 4 binding, transmembrane signaling receptor
activity, epidermal growth factor receptor binding, and UDP-glycosyltransferase activity (Figure 4B). The changes
in cellular components (CC) of DEGs that were down-regulated mainly enriched in plasma membrane, integral
component of plasma membrane, extracellular space, extracellular region, integral component of membrane,
extracellular matrix, external side of plasma membrane, specific granule membrane, secretory granule membrane,
extracellular exosome, ficolin-1-rich granule membrane, plateletα granule lumen, endocytic vesicle membrane,
tertiary granule membrane, endoplasmic reticulum membrane, mast cell granule, receptor complex, glutamatergic
synapse (Figure 5A).

The down-regulated DEGs were mainly enriched, according to biological pathway analysis in Herpes simplex
virus 1 infection, complement and coagulation cascades, Leishmaniasis, chemical carcinogenesis – DNA adducts,
metabolism of xenobiotics by cytochrome P450, steroid hormone biosynthesis, Staphylococcus aureus infection,
hematopoietic cell lineage, viral protein interaction with cytokine and cytokine receptor, Coronavirus disease –
COVID-19, neutrophil extracellular trap formation, phagosome, IL-17 signaling pathway, chemokine signaling path-
way, ascorbate and aldarate metabolism, retinol metabolism, drug metabolism – cytochrome P450, pentose and glu-
curonate interconversions, human cytomegalovirus infection, and pertussis (Figure 5B).

Up-regulated DEGs were enriched in BP, including skeletal muscle cell differentiation, cellular response to
corticotropin-releasing hormone stimulus, negative regulation of apoptotic process, fat cell differentiation, reg-
ulation of heart contraction, positive regulation of apoptotic process, response to xenobiotic stimulus, positive
regulation of transcription from RNA polymerase II promoter, response to hypoxia, chemotaxis, spliceosomal
tri-snRNP complex assembly, response to drug, negative regulation of transcription from RNA polymerase II pro-
moter, positive regulation of endothelial cell proliferation, cellular response to hormone stimulus, peripheral ner-
vous system development, negative regulation of apoptotic signaling pathway, cellular response to vascular en-
dothelial growth factor stimulus, regulation of gene expression, and muscle organ development (Figure 6A). The
molecular function of up-regulated DEGs was transcriptional activator activity, RNA polymerase II transcription
regulatory region sequence-specific binding, glucocorticoid receptor binding, protein binding, sequence-specific
double-stranded DNA binding, glucuronosyltransferase activity, TF binding, protein homodimerization activity,
UDP-glycosyltransferase activity, DNA binding, growth factor activity, alkaline phosphatase activity, GTPase activity,
RNA polymerase II TF activity, ligand-activated sequence-specific DNA binding, RNA polymerase II core promoter
proximal region sequence-specific DNA binding, sequence-specific DNA binding, pre-mRNA intronic binding, tran-
scription regulatory region sequence-specific DNA binding, isopeptidase activity, efflux transmembrane transporter
activity, U6 snRNA binding, etc. (Figure 6B).

Changes in cellular components of up-regulated DEGs were mainly vesicle phagocytic vesicle membrane, ex-
tracellular space, extracellular exosome, proton-transporting V-type ATPase, V0 domain, proteinaceous extra-
cellular matrix, lysosomal membrane, apical junction complex, mitochondrial intermembrane space, vacuolar
proton-transporting V-type ATPase complex, cytosol, photoreceptor outer segment membrane, nucleus, microvil-
lus membrane, etc. (Figure 7A).
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Figure 5. GO analysis of down-regulated DEGs

(A) Cellular component and (B) KEGG pathways
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Figure 6. GO analysis of up-regulated DEG sets

The x-axis represents the gene ratio. The color of the dots represents the −log10(P-value), and the size of the dots represents the

gene count. (A) Biological process and (B) molecular function.
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Figure 7. GO analysis of up-regulated DEG sets

The x-axis represents the gene ratio. The color of the dots represents the −log10(P-value) and the size of the dots represents the

gene count. (A) Cellular component and (B) KEGG pathways.
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Table 2 Genes inferred from DEG sets’ gene interaction networks

S.No. Degree [P(k)]
Betweenness centrality
[CB (k)]

Closeness centrality [CC
(k)]

Eigenvector centrality [CE
(k)]

1 JUN PTGS2 JUN PTGS2

2 PTGS2 JUN PTGS2 JUN

3 FCGR3A LRRK2 CYBB LRRK4

4 FCGR3B CYBB CXCY12 CCL2

5 CXCL12 CYP1A1 LRRK2 MYB

6 SELL EGR1 CTGF CYP1A1

7 CYBB S100A9 FCGR3A EGR1

8 MNDA ENO2 CCL2 CXCR2

9 EGR1 NF1 SERPINE1 NF1

10 CCL2 CNR1 EGR1 SIGLEC1

11 TLR8 TLR8 HBEGF ADH4

12 CD163 MYB CD163 CX3CL1

13 CTGF GNB3 TLR8 ENO2

14 SERPINE1 CCNA2 CXCL2 S100A9

15 CXCL2 CSF3R FCGR3B CNR1

16 SIGLEC1 GIG2J CX3CL1 PTGER2

17 LRRK2 CR1 S100A8 GST7

18 CX3CR1 RPS5 SELL MNDA

19 CX2CL1 MNDA MMP1 GIG25

20 FCGR1A FCGR3A NMDA FCGR3A

And inferred as KHGs.

Biological pathway analysis revealed the up-regulated DEGs were mainly enriched in Bile secretion, C-type lectin
receptor signaling pathway, retinol metabolism, chemical carcinogenesis-DNA adducts, epithelial cell signaling in
Helicobacter pylori infection, human T-cell leukemia virus 1 infection, IL-17 signaling pathway, steroid hormone
biosynthesis, TNF signaling pathway, ascorbate and aldarate metabolism, metabolism of xenobiotics by cytochrome
P450, pentose and glucuronate interconversions, estrogen signaling pathway, chemical carcinogenesis-receptor acti-
vation, GnRH signaling pathway, biosynthesis of cofactors, porphyrin metabolism, cytokine–cytokine receptor inter-
action, circadian entrainment, aldosterone synthesis and secretion, etc (Figure 7B).

Identifying important key hub genes through network analysis
To choose the most central nodes inside the network, centrality analyses each node based on degree, betweenness,
closeness, and eigenvector. It was used to identify KHGs and bottleneck genes in scale-free biological networks based
on network topological properties. A node with a more excellent centrality value can assist in identifying a biological
entity that plays the most significant part in the activities of the biological network. So, to enlist inferred genes in this
network, we chose the top 20 ranking genes based on degree, betweenness, closeness, and eigenvector centralities as
listed in Table 2, and applying CytoHubba, we enlisted top 20 ranking genes based on MCC, DMNC MNC, and EPC
properties as listed in Table 3, then looked for common genes in at least three properties among the top 20 rankings
across all evaluated centralities, which we regarded as KHGs. JUN, PTGS2, FCGR3A, MNDA, CYBB, EGR1, CCL2,
TLR8, and JLRRK2 were frequent and assumed KHGs.

These KHGs were enriched in pathways related to hsa05140:Leishmaniasis, hsa04933:AGE-RAGE signaling
pathway in diabetic complications, hsa05171:COVID-19, hsa04657:IL-17 signaling pathway, hsa04668:TNF sig-
naling pathway, hsa04621:NOD-like receptor signaling pathway, hsa04613:Neutrophil extracellular trap formation,
hsa05417:Lipid and atherosclerosis, hsa05022:Pathways of neurodegeneration – multiple diseases, hsa04912:GnRH
signaling pathway, has05323:Rheumatoid arthritis, hsa05142:Chagas disease, hsa04625:C-type lectin receptor signal-
ing pathway, hsa04620:Toll-like receptor signaling pathway (Figure 8). The gene enrichment analysis found that most
genes are involved in critical biological processes such as apoptotic process, innate immunity response to inflamma-
tory, cell proliferation, etc. Further research on these inferred genes could lead to insights into Amoebiasis infection
and prevention processes.
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Table 3 Genes inferred from DEG sets’ gene interaction networks based on MCC, DMNC, MNC, and EPC

S.No. MCC DMNC MNC EPC

1 JUN NR4A3 JUN FCGR3A

2 EGR1 EGR3 FCGR3A CXCL12

3 ATF3 NR4A1 FCGR3B CCL2

4 FOSB S100A9 CXCL12 PTGS2

5 NR4A1 FOSB PTGS2 JUN

6 EGR2 CCL19 CYBB SELL

7 EGR3 NR4A2 SELL CYBB

8 FCGR3A CX3CL1 MNDA FCGR3B

9 FCGR3B HIST1H3C CCL2 TLR8

10 NR2A2 FCGR1B TLR8 CD163

11 NR4A3 IER2 CD163 MNDA

12 TLR8 EGR2 EGR1 CX3CR1

13 CYBB FCGR1A CTGF CXCL2

14 FCGR1A MMP10 SERPINE1 CX3CL1

15 CCL2 SAMD9L CXCL2 SIGLEC1

16 SIGLEC1 FPR1 FCGR1A EGR1

17 CD163 SERPINB2 CX3CR1 FCGR1A

18 SELL TR1M22 MMP1 HBEGF

19 S100A9 CMPK2 CX3CL1 CTGF

20 CXCL12 ATF3 FPR1 SERPINE1

Abbreviations: DMNC, density of maximum neighborhood component; EPC, edge percolated component; MCC, maximal clique centrality; MNC, max-
imum neighborhood component.

Screening for transcription factors
We have identified two TFs, viz JUN and EGR1, among the nine KHGs (JUN, PTGS2, FCGR3A, MNDA, CYBB,
EGR1, CCL2, TLR8, and LRRK2). Genes JUN and EGR1 have 150; 88 target genes and 15; 13 regulators, respectively.
Genes PTGS2, CYBB, CCL2, and MNDA, have 43, 9, 19, and 2 regulators, respectively (Table 4).

Drugs for key hub genes
We identified approved drugs from DGIdb (https://www.dgidb.org/) [44]. DGIdb is a web-based database of
drug–gene interactions and druggable genes. We get drugs against five KHGs (JUN, PTGS2, FCGR3A, CCL2, and
LRRK2) as listed in Table 5.

Amoebiasis infection revealed miRNAs that target DEG key hub genes
With the help of MIENTURNET [45], we could isolate the targets of KHG–miRNA. JUN, PTGS2, CCL2, and
MNDA are the four KHGs having the highest interactions with miRNAs. The networks of interactions between
KHGs and miRNAs were built (Figure 9A). hsa-miR-155-5p, hsa-miR-101-3p, hsa-miR-124-3p, hsa-miR-26b-5p,
and hsa-miR-16-5p are among the important miRNAs shown to be targeted by KHGs. In Amoebiasis infection, the
enrichment of the five differentially expressed miRNAs detected using KHGs were substantially linked with differ-
ently expressed miRNAs (P = 0.05 and FDR = 0.1). The differentially expressed miRNAs’ possible function was dis-
covered using disease ontology, WikiPathways, Reactome, and KEGG pathway analysis. These miRNAs were shown
to be grouped in a variety of pathways, with a focus on long-term potentiation, renal cell carcinoma, prolactin sig-
naling pathway, pancreatic secretion, leukocyte transendothelial migration, neurotrophin signaling pathway, platelet
activation, Cushing syndrome, JAK-STAT signaling pathway, chemokine signaling pathway, focal adhesion, Rap1
signaling pathway, lipid and atherosclerosis, cAMP signaling pathway, Ras signaling pathway, MAPK signaling path-
way, insulin signaling pathway, cell cycle, signaling pathways regulating pluripotency of stem cells, hepatocellular
carcinoma, human immunodeficiency virus 1 infection, TGF-β signaling pathway, insulin signaling pathway, au-
tophagy – animal, signaling pathways regulating pluripotency of stem cells, Spinocerebellar ataxia, mTOR signaling
pathway, Hippo signaling pathway, transcriptional misregulation in cancer, Huntington disease, amyotrophic lateral
sclerosis, Alzheimer’s disease, and pathways of neurodegeneration – multiple diseases (Figures 9B and 10). WikiPath-
ways analysis discovered possible function as endoderm differentiation, mesodermal commitment pathway, bone
morphogenic protein (BMP) signalling and regulation, development of pulmonary dendritic cells and macrophage
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Figure 8. KEGG pathways analysis for KHGs

The color of the dots represents the −log10(P-value), the size of the dots represents the gene count, and the x-axis represents the

gene ratio.

subsets, BMP2-WNT4-FOXO1 pathway in human primary endometrial stromal cell differentiation, interactome of
polycomb repressive complex 2 (PRC2), regulation of Wnt/B-catenin signaling by small molecule compounds, BMP
signaling pathway in eyelid development, signaling of hepatocyte growth factor receptor, angiogenesis, nanoparticle
triggered autophagic cell death, differentiation of white and brown adipocyte, common pathways underlying drug
addiction, IL-4 signaling pathway, and target of rapamycin (TOR) signaling. Reactome pathways analysis implicated
MET activates RAP1 and RAC1, GRB2:SOS provides linkage to MAPK signaling for integrins, p130Cas linkage to
MAPK signaling for integrins, Rap1 signaling, Chk1/Chk2(Cds1) mediated inactivation of Cyclin B: Cdk1 co . . . ,
Integrin αIIb β3 signaling, integrin signaling, signaling by BMP, Polo-like kinase mediated events, RUNX2 reg-
ulates bone development, signaling by high-kinase activity BRAF mutants, platelet aggregation (plug formation),
MAP2K and MAPK activation, signaling by moderate kinase activity BRAF mutants, and paradoxical activation of
RAF signaling by kinase. Disease childhood electroclinical syndrome, childhood absence epilepsy, tethered spinal
cord syndrome, conjunctival disease, aortic valve stenosis, spinal cord disease, heart valve disease, pulmonary hy-
pertension, congenital heart disease, papillary thyroid carcinoma, intellectual disability, thyroid carcinoma, epilepsy
syndrome, thyroid cancer, specific developmental disorder, liver cirrhosis, pancreatic cancer, autonomic nervous sys-
tem neoplasm, neuroblastoma, peripheral nervous system neoplasm, adenoma, brain disease, developmental disorder
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Table 4 Transcriptional regulatory relationships unraveled by sentence-based text mining-targets and regulators

S.No. Gene name Target genes Regulators (TFs that regulate)

1 JUN ABCB1, ACTA1, ALOX12, APOC3, APOM, APP, AR, ATF3,
BATF3, BCL2L1, BECN1, BEX2, BRCA, CA2, CCK, CCL2, CCL5,
CCND1, CD82, CDK5R1, CDKN1A, CREM, CSF1, CSF2, CSTA,
CTGF, CTSL, CXCL8, CYP11A1, CYP19A1, CYP1A2, CYP2J2,
DCN, DDIT3, DDX21, EDN1, EGFR, ELN, ETS1, ETS2, EZH2,
EZR, F3, FA, FASLG, FGF7, VEGFD, FOSL1, GCLC, GJA1,
GSTP1, HEY1, IBSP, IFNB1, IFNG, IL12A, IL12B, IL1A, IL1B, IL2,
IL23A, IL24, IL3, IL5RA, IL6, ITGAX, ITGB8, KRT16, LBP, LDHA,
LGALS3, LOR, MAP3K1, MAPK8, MAT2A, MEF2D, MELTF,
MGMT, MGP, MMP1, MMP12, MMP13, MMP2, MMP20, MMP3,
MMP7, MMP9, MSR1, MYB, MYC, NAMPT, NEFL, NEIL1,
NFKB2, NGF, NOS2, NOS3, NOX5, NPY, NQO1, NTS, OPRM1,
OXTR, PCK2, PDHA1, PDK1, PENK, PGR, PLAT, PLAU, PLAUR,
POLD2, PPARA, PPARD, PTGS2, PTN, RARA, RARB, RARG,
RELB, REN, RHOB, RUNX2, SLC19A1, SMAD7, SMN1, SOD2,
SOX7, SPI1, SPRR1B, SPRR3, STAR, STMN1, SYK, TERT, TFF1,
TIMP2, TNC, TNF, TNFRSF10A, TNFRSF1B, TP53, TP73, TXN,
UGT2B15, VCAM1, VDR, VEGFA

ABL1, AR, ARNT, ATF2, CREB1, CTNNB1, ESR1, ESR2,
GLI1, GLI2, HDAC3, HDAC4, HSF1, MEF2A, MEF2C,
MEF2D, NFIC, NFRKB, PARP1, PITX1, RUNX1, SMAD3,
SMAD4, TCF4, TNFAIP3, WT1, ZNF382, ZNF383

2 PTGS2 PTGS2 is not a TF. APC, AR, ATF2, ATF4, CDX1, CDX2, CEBPB, CEBPD,
CREB1, CREBBP, CTNNB1, DR1, EGR1, EGR2,
ELF3ENO1, EP300, ETV4, FOS, HDAC1, HDAC4,
HMGA1, ING4, JUN, JUNB, JUND, NFIL3, NFKB1,
NR0B2, PGR, PPARA, PPARG, PPARG, RELA,
SETBP1, SP1, STAT1, STAT2, STAT3, STAT6, TCF7L2,
TFAP2A, USF1, USF2

3 MNDA MNDA is not a TF. SP1, SPI1

4 FCGR3A FCGR3A is not a TF. Not Available

5 CYBB CYBB is not a TF. CUX1, ELF1, EP300, GATA1, GATA2, IRF1, IRF8,
SATB1, SPI1

6 EGR1 ABCB1, ACE, ACHE, AKR1B1, ALOX5, AR, ATF3, BCAR1,
CACNA1H, CCND1, CCND2, CD28, CDK5R1, CDKN1A, CHGA,
CXCL8, CYP2B6, DMRT1, EAPP, EGFR, EP300, FAP, FAS,
FASLG, FCER2, FGF2, FLT1, FN1, GDF15, GDNF, GGPS1, HIF1A,
HPSE, HSD11B2, HYAL1, IFNG, IGF2, IL2, IL2RB, IL3, IL6,
IMPDH2, KLK3, LDLR, LHB, LMTK2, LTB, MMP14, MYB, NAB2,
NFKB1, PCSK2, PDGFB, PDGFC, PLAU, PLAUR, POR, PPARG,
PSEN2, PTEN, PTEN, PTGES, PTGS2, PTP4A1, RBL2, SLC4A2,
SLC9A3, SOD1, SOX18, SPRY1, STIM1, STMN1, SYN1, SYN2,
TBXA2R, TCF4, TFPI2, TGFBR2, TH, TMPO, TNF, TNFSF10,
TOE1, TP53, TP73, UBE2S, VEGFA, WNT4

ATF5, BRCA1, ETS1, ETS2, FOXO1, HDAC1, MAML1,
NFKB1, NKX2-3, RBMX, RELA, SP1, TP53

7 CCL2 CCL2 is not a TF. APEX1, ATF4, CEBPA, HDAC2, IRF3, JUN, NFAT5,
NFIC, NFKB1, NR1I2, PREB, REL, RELA, SP1, SPI1,
STAT1, STAT2, STAT3, XBP1

8 TLR8 Not available Not available

9 LRRK2 Not available Not available

Table 5 Drugs for identified KHGs

S.No. KHGs Drugs

1 JUN SERTRALINE, MECHLORETHAMINE HYDROCHLORIDE, TROPISETRON, BUPROPION HYDROCHLORIDE, AZELASTINE
HYDROCHLORIDE, CUPRIC CHLORIDE, CIPROFIBRATE, FENOFIBRATE, VINBLASTINE SULFATE, ATOMOXETINE
HYDROCHLORIDE, CINNARIZINE, COLCHICINE, DIPHENHYDRAMINE HYDROCHLORIDE, QUINAPRIL HYDROCHLORIDE,
CLOFIBRATE, TRIFLUPROMAZINE HYDROCHLORIDE, GEMFIBROZIL, CLOTRIMAZOLE, VINORELBINE TARTRATE,
METHIMAZOLE

2 PTGS2 IBUPROFEN, FLURBIPROFEN, BALSALAZIDE DISODIUM, KETOROLAC TROMETHAMINE, HYDROXYCHLOROQUINE,
FENOPROFEN CALCIUM, AMINOSALICYLATE POTASSIUM, PIROXICAM, BISMUTH SUBSALICYLATE, CYCLOSPORINE,
DICLOFENAC, NEPAFENAC, IBUPROFEN LYSINE, NAPROXEN SODIUM, DICLOFENAC POTASSIUM, ACETAMINOPHEN,
DICLOFENAC SODIUM, INDOMETHACIN, DICLOFENAC EPOLAMINE, PARECOXIB, KETOROLAC, NIMESULIDE,
DIFLUNISAL, BALSALAZIDE, THALIDOMIDE, OXALIPLATIN, OXAPROZIN POTASSIUM, MESALAMINE, SALSALATE,
KETOPROFEN, NABUMETONE, FENBUFEN, CARPROFEN, SULINDAC, NAPROXEN, FENOPROFEN, MEFENAMIC ACID,
AMINOSALICYLATE SODIUM, SULFASALAZINE, ETORICOXIB, TOLMETIN, OLSALAZINE SODIUM, DEXIBUPROFEN,
RALOXIFENE, TOLMETIN SODIUM, MELOXICAM, TENOXICAM, ETODOLAC, ASPIRIN, CAPECITABINE, ATENOLOL,
OXAPROZIN

3 FCGR3A PENICILLIN G POTASSIUM, ADALIMUMAB, SODIUM CHLORIDE, CETUXIMAB, PREDNISOLONE, FENTANYL,
CYCLOSPORINE, INDOMETHACIN, TOCILIZUMAB, THALIDOMIDE, EPOETIN ALFA, DOXORUBICIN, LACTULOSE,
TRASTUZUMAB, CIMETIDINE, INFLIXIMAB, ETANERCEPT, RITUXIMAB

4 CCL2 RISPERIDONE

5 LRRK2 VANDETANIB, PALBOCICLIB
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Figure 9. Visualization of miRNAs-gene regulatory network and KEGG pathway analysis

(A) A miRNA–gene regulatory network contains the KHGs (JUN, PTGS2, CCL2, and MNDA). Green ellipse shape and yellow dia-

monds represent genes and miRNAs, respectively. (B) The dot plot represents the KEGG pathway analysis of miRNAs. The x-axis

represents the miRNAs, and the y-axis represents the KEGG pathways. The color of the dots represents the adjusted P-value (FDR),

and the size of the dots represents the gene ratio.

of mental health, non-small cell lung carcinoma, cell-type benign neoplasm, and others were discovered by miRNA
ontology study (Figure 10).

Discussion
Investigating transcriptional changes in E. histolytica infected cells (Amoebiasis) yields fresh insights into the in-
fection’s host response. Despite significant advancements, the specific molecular pathways of Amoebiasis and its de-
velopment remain unknown. As a result, it’s critical to research the mechanism to pinpoint molecular targets for
diagnosis and treatment. The search for DEGs has intensified in recent decades, and differential expression of DEGs
has become extensively distributed.

This work extracted raw gene expression data from four GSE series from the GEO dataset, yielding 451 specific
DEGs, including 193 up-regulated and 258 down-regulated genes that met the P-value and folded change cut-off
criteria. The KEGG pathways results show that the down-regulated DEGs mainly were linked with Pertussis, IL-17
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Figure 10. MIENTURNET network analysis of hub genes and differentially expressed miRNAs

Dot plot of functional enrichments analysis of target miRNAs resulting from enrichment analysis. The x-axis represents the miRNAs,

and the y-axis represents reactome and disease ontology analysis.

signaling pathway, chemokine signaling pathway, drug metabolism-cytochrome P450, drug metabolism-cytochrome
P450, Human cytomegalovirus infection, viral protein interaction with cytokine and cytokine receptor, chemical
carcinogenesis-DNA adducts, Leishmaniasis, complement and coagulation cascades, Herpes simplex virus 1 in-
fection, and steroid hormone biosynthesis. In comparison, the up-regulated DEGs were enriched in human T-cell
leukemia virus 1 infection, epithelial cell signaling in H. pylori infection, retinol metabolism, C-type lectin receptor
estrogen signaling pathway, TNF signaling pathway, porphyrin metabolism, biosynthesis of cofactors, GnRH sig-
naling pathway, and cytokine–cytokine receptor interaction. These findings are also helpful in studying molecular
relationships in Amoebiasis.

Furthermore, the Amoebiasis network was constructed from up- and down-regulated genes (DEGs).
JUN, PTGS2, MNDA, FCGR3A, CYBB, EGR1, CCL2, TLR8, and LRRK2 were the most influential KHGs of the E.

histolytica infection in our study. The differential expression of four biomarkers (JUN, PTGS2, CCL2, and MNDA),
which are known to be direct targets of the E. histolytica genome, was verified by protein interaction network analysis

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

17

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/42/10/BSR
20220191/938549/bsr-2022-0191.pdf by guest on 23 April 2024



Bioscience Reports (2022) 42 BSR20220191
https://doi.org/10.1042/BSR20220191

of E. histolytica infected DEGs. The most likely disease target genes, these critical KHGs, serve as the backbone of
network activities and regulators.

The JUN gene was up-regulated when E. histolytica infection patients were compared with healthy controls. The
gene JUN is a TF that recognizes and binds to the AP-1 consensus motif 5′-TGA [GC]TCA-3′ [46]. JUN forms an
AP-1 transcription complex by heterodimerizing with FOS family proteins, boosting its DNA binding activity to
the AP-1 consensus sequence 5′-TGA [GC]TCA-3′ and transcriptional activity. Binding to the AP-1 promoter site
of FASLG/CD95L and promoting its transcription in response to activation of the TCR/CD3 signaling pathway, to-
gether with FOSB, plays a role in activation-induced cell death of T cells [47]. When HIPK3 phosphorylates JUN, it
promotes the activity of NR5A1, resulting in enhanced steroidogenic gene production in response to cAMP signaling
pathway stimulation [48]. JUN is involved in the transcriptional activation of USP28 in colorectal cancer (CRC) cells
by activated KRAS. In CRC cells, JUN interacts with the promoter of USP28 [49].

PTGS2 gene represents prostaglandin-endoperoxide synthase 2. The primary enzyme in prostaglandin formation,
prostaglandin-endoperoxide synthase (PTGS), commonly known as cyclooxygenase, is a dioxygenase and peroxidase.
PTGS is divided into two isozymes: constitutive PTGS1 and inducible PTGS2 [50], which regulate the expression and
tissue distribution differently [51]. This gene encodes inducible isozyme. It’s triggered by certain stimuli, implying
that it’s in charge of prostanoid production, which is implicated in inflammation and mitogenesis [52]. In the produc-
tion route of prostanoids, a class of C20 oxylipins generated primarily from arachidonate, dual cyclooxygenase, and
peroxidase play a vital role in the inflammatory response [53]. During both sterile and viral inflammation, it produces
resolution phase interaction products (resolvins) [54]. Fc-binding subunit that forms functional signaling complexes
with CD247 and FCER1G adapters. Following antigen–IgG complex contact, phosphorylation of immunoreceptor
tyrosine-based activation motif (ITAM)-containing adapters occurs, followed by activation of phosphatidylinosi-
tol 3-kinase signaling and persistent intracellular calcium increase, which leads to NK cell activation [55]. In the
absence of receptor phosphorylation, ITAM-dependent signaling activates phosphatidylinositol 3-kinase signaling,
which leads to cell degranulation [56]. In contrast, in the presence of receptor phosphorylation, it mainly activates
phosphatidylinositol 3-kinase signaling, which leads to cell degranulation [57].

Myeloid cell nuclear differentiation antigen (MNDA) gene acts as a transcriptional activator/repressor in the
myeloid lineage and plays a role in the granulocyte/monocyte cell-specific response to interferon. It stimulates the
DNA binding of the transcriptional repressor protein YY1. MNDA is a protein-coding gene that is found in myeloid
cells. Nodal marginal zone lymphoma and Parkinson’s disease 4, autosomal dominant, is two diseases linked to
MNDA. NF-κB signaling and the innate immune system are two of its linked pathways.

FCGR3A is the receptor for immunoglobulin γ’s invariable Fc segment (IgG). Antibody-dependent cellular cy-
totoxicity is triggered by the binding of clustered antigen–IgG complexes exhibited on cell surfaces (ADCC). In the
absence of an antigenic trigger, it does not bind free monomeric IgG, preventing incorrect effector cell activation [58].
This protein mediates IgG effector actions on natural killer (NK) cells. Binds antigen–IgG complexes formed during
infection and activates cytokine production and degranulation in NK cells, limiting viral load and propagation. It is
involved in developing memory-like adaptive NK cells capable of producing large amounts of IFNG and removing
virus-infected cells efficiently via ADCC [59,60].

The CYBB gene directs the production of a protein called cytochrome b-245, β chain. This protein is a component
of a group of proteins that make up the NADPH oxidase enzyme complex, which is vital for the immune system. The
α (CYBA) and β (CYBB) chains make up cytochrome b (-245). It’s thought to be a vital component of the phagocyte’s
microbicidal oxidase system. One of five biochemical deficiencies linked to chronic granulomatous illness has been
identified: CYBB deficiency (CGD) [61]. The activity of phagocyte NADPH oxidase is reduced in this disease, which
allows neutrophils to phagocytize germs but not destroy them in the phagocytic vacuoles. The failure to transfer
activated oxygen into the phagocytic vacuole results from the cell’s incapacity to boost its respiration [62].

The CCL2 gene (C-C motif chemokine ligand 2) codes for a protein. Neural tube defects and human immunod-
eficiency virus type 1 are two diseases linked to CCL2. Folate metabolism and the TGF-β pathway are connected
processes [63,64]. Protein kinase activity and heparin-binding are examples of GO annotations for this gene. It binds
to CCR2 and activates it, resulting in a robust chemotactic response and calcium ion mobilization within the cell
[65]. It may be engaged in the recruitment of monocytes into the artery wall during the atherosclerosis disease pro-
cess [66]. On the q-arm of chromosome 17, this gene is one of the numerous cytokine genes. Chemokines are a kind
of released protein that has a role in immune regulation and inflammation. Based on the arrangement of N-terminal
cysteine residues in the mature peptide, the superfamily is classified into four subfamilies. This chemokine belongs to
the CC subfamily, defined by two cysteine residues located next to each other. Monocytes and basophils respond to
this cytokine, whereas neutrophils and eosinophils do not. Psoriasis, rheumatoid arthritis, and atherosclerosis have
been linked to monocytic infiltrates. It attaches to the CCR2 and CCR4 chemokine receptors.
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TLR8 gene produces a Toll-like receptor (TLR) protein, which is involved in pathogen identification and innate
immune activation. TLRs exhibit structural and functional commonalities from drosophila to humans. They identify
pathogen-associated molecular patterns on infectious pathogens and mediate the generation of cytokines needed for
successful immunity development. The expression patterns of the various TLRs are distinct. This gene is found on
chromosome X near another family member, TLR7, and is primarily expressed in lung and peripheral blood leuko-
cytes. TLR8 (Toll-like receptor-8) is a gene that codes for a protein. TLR8 is linked to immunodeficiency 98 and
other diseases. Anemia, autoimmune hemolytic, autoinflammation, X-linked TRAF6-mediated NF-kB, and MAP
kinase up-regulation in response to TLR7/8 or 9 activations is related mechanisms. Controls the host’s immunolog-
ical response against diseases by recognizing RNA degradation products unique to bacteria, which are processed by
RNASET2 [67]. When it binds to agonists, it dimerizes, bringing the TIR domains of the two molecules into close
contact, resulting in the homotypic recruitment of TIR-containing downstream adapter MYD88 [68]. The Myddo-
some signaling complex, which includes IRAK4, IRAK1, TRAF6, and TRAF3, then activates downstream TFs NF-kB
and IRF7, producing proinflammatory cytokines and interferons, respectively [69].

The LRRK2 gene encodes a protein featuring an ankyrin repeat region, a leucine-rich repeat (LRR) domain, a ki-
nase domain, a DFG-like motif, RAS, and GTPase, an MLK-like domain, and a WD40 domain. It belongs to the LRR
kinase family. The protein is primarily found in the cytoplasm, although it can also be found in the mitochondrial
outer membrane. Parkinson’s disease has been linked to mutations in this gene-8. ncRNAs engaged in Wnt signal-
ing in hepatocellular carcinoma and the MAPK signaling pathway are two of the associated pathways [70]. Protein
homodimerization and transferase activity, which transfer phosphorus-containing groups, are two GO annotations
associated with this gene.

EGR1 codes for a zinc-finger protein that belongs to the EGR family of C2H2-type zinc-finger proteins. It’s a
transcriptional regulator that’s found in the nucleus. Differentiation and mitogenesis are dependent on the products
of the target genes it activates [71]. Studies identified this gene as a cancer suppressor gene [72,73]. These genes are
also involved in several other life-threatening diseases, including various types of cancer, Alzheimer’s, etc.

MiRNAs regulate the expression of host genetic components required by parasites. miRNAs appear to have a
post-transcriptional influence on gene expression, affecting various biological activities, including disease devel-
opment and progression. miRNAs are also involved in regulating parasite-host interactions [74,75]. This investi-
gation discovered that various host miRNAs target hsa-miR-155-5p E. histolytica-infected KHGs. hsa-miR-155-5p,
hsa-miR-101-3p, hsa-miR-124-3p, hsa-miR-26b-5, and hsa-miR-16-5p are among the important miRNAs shown to
be targeted by (JUN, PTGS2, CCL2, and MNDA) KHGs. As a result, differential expression and network analy-
ses were used to examine the gene expression profile after E. histolytica infection. miRNAs hsa-miR-155-5p, hsa
-miR-101-3p, hsa-miR-124-3p, hsa-miR-26b-5p, and hsa-miR-16-5p present us a narrow window of novel thera-
peutic opportunity to target genes in E. histolytica infection. KEGG pathway enrichment depicted that miRNAs
hsa-miR-155-5p, hsa-miR-101-3p, and hsa-miR-26b-5p are clustered in long-term potentiation, renal cell carci-
noma, prolactin signaling pathway, pancreatic secretion, leukocyte transendothelial migration, insulin signaling path-
way TGF-β signaling pathway, human immunodeficiency virus 1 infection, Signaling pathways regulating pluripo-
tency of stem cells, etc. (Figure 9B). Reactome enrichment depicted that miRNAs-miR-101-3p1, hsa-miR-124-3p.1,
hsa-miR-124-3p.2, hsa-miR-155-5p, and hsa-miR-26b-5p are clustered in transcriptional regulation by RUNX2, sig-
naling by TGF-β family members, RUNX2 regulates bone development, signaling by BMP, Rho GTPase cycle, sig-
naling by Rho GTPases, RHO GTPase effectors, Rho GTPase cycle, MET activates RAP1 and RAC1, etc. (Figure 10).
MiRNAs hsa-miR-101-3p.1, hsa-miR-155-5p, and hsa-miR-26b-5p have also been grouped in pulmonary hyperten-
sion, heart valve disease, aortic valve disease, spinal cord disease, aortic valve stenosis, tethered spinal cord syndrome,
epilepsy syndrome, papillary thyroid carcinoma, conjunctival disease, electroclinical syndrome, and other disorders,
according to miRNA ontology studies (Figure 10).

The transcriptional and post-transcriptional regulation of gene function is equally important. As a result, we inves-
tigated the miRNA-KHGs and TF-KHGs networks to understand better the regulatory behavior of the KHGs found.
Gene transcription is regulated by TFs, which can be coordinated through genes with related activities. miRNA, on the
other hand, are potent post-transcriptional regulators of transcript levels; however, it should be noted that other less
potent and less well-defined groups of non-coding RNAs also affect transcript levels post-transcriptionally. Thus, we
employed miRNA and TF targets among the KHGs involved in Amoebiasis to determine their targets. This research
found some TFs with the most substantial ties to KHGs.

Our findings revealed that these TFs formed a linked regulatory network with KHGs, implying that dynamic
changes in these TFs’ activities appear in Amoebiasis and may play a key role in regulating the gene function and
expression of KHGs linked to the appearance and progression of Amoebiasis.
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According to this study, as a result, the discovered few KHGs may operate as therapeutic targets for Amoebiasis
in the future. There are some drawbacks, such as the small sample size. Furthermore, due to a lack of experimental
investigations and validations, we may be unable to dig deeper into how KHG–miRNA networks affect Amoebiasis
diagnosis and therapy. Despite these constraints, this analysis may deliver more accurate results based on the inte-
grated bioinformatics analysis than single dataset studies.

Conclusions
We used an integrated analysis based on four microarray gene expression profiles of Amoebiasis and healthy con-
trols to identify DEGs and their biological functions and a pathways enrichment analysis. The topological features
of the gene interaction network were studied, and significant Amoebiasis KHGs were discovered. We also built a
network of miRNA–KHGs and TF–KHGs. The significance of KHGs was revealed in our study. Next, we identified
approved drugs against these KHGs. As a result, given the preventative effect of immune response on the emergence
of Amoebiasis, these genes are expected to play a substantial role.

Limitation of study
However, the sample size is limited, and more research is needed to confirm the expression and function of the KHGs
found in Amoebiasis. Furthermore, lncRNA analysis is missing in this analysis. LncRNAs have been implicated in
various functions, including controlling intestinal epithelial cell death, lipid metabolism, and cell–cell interactions,
increasing inflammation, and regulating T-cell function. LncRNAs are linked to the normal development and patho-
genesis of a variety of disorders [76–78]. As a result, lncRNAs play a crucial role in organisms’ growth, development,
aging, and death [79]. Therefore, further study is needed using other mathematical techniques, e.g., Petri Nets, and
Graph Theory [80–85], to explore the critical role of lncRNAs in intestinal disorder and their potential roles as a
therapy.

Statistical packages and software tools used in this study
R version 4.1.2 (2021-11-01) was used.
LIMMA package was used to analyze data and quantify DEGs.
Cytoscape 3.8.2 was used for network data visualization.
Cytoscape plugin CytoNCA was used for centrality measurement.
Cytoscape plugin CytoHubba was used for MCC, DMNC, MNC, and EPC properties.
Server (http://biit.cs.ut.ee/gprofiler/convert) was used for probe ID conversion.
TRRUST (v2.0) server (https://www.grnpedia.org/trrust/) was used for elucidating the TF–target interaction.
DAVID 6.8 Web server (https://david.ncifcrf.gov/) used for GO-enrichment.
STRING v11 database (https://string-db.org/) was used to construct a PPI network.
MIENTURNET(http://userver.bio.uniroma1.it/apps/mienturnet/) server was used to isolate the targets of
KHG–miRNA.
DGIdb (https://www.dgidb.org/) web-based database of drug–gene interactions was used for drug identification.
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