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Carbohydrate metabolism in heart failure shares similarities to that following hypoxic expo-
sure, and is thought to maintain energy homoeostasis in the face of reduced O2 availability.
As part of these in vivo adaptations during sustained hypoxia, the heart up-regulates and
maintains a high glycolytic flux, but the underlying mechanism is still elusive. We followed the
cardiac glycolytic responses to a chronic hypoxic (CH) intervention using [5-3H]-glucose la-
belling in combination with detailed and extensive enzymatic and metabolomic approaches
to provide evidence of the underlying mechanism that allows heart survivability. Following
3 weeks of in vivo hypoxia (11% oxygen), murine hearts were isolated and perfused in a
retrograde mode with function measured via an intraventricular balloon and glycolytic flux
quantified using [5-3H]-glucose labelling. At the end of perfusion, hearts were flash-frozen
and central carbon intermediates determined via liquid chromatography tandem mass spec-
trometry (LC-MS/MS). The maximal activity of glycolytic enzymes considered rate-limiting
was assessed enzymatically, and protein abundance was determined using Western blot-
ting. Relative to normoxic hearts, CH increased ex vivo cardiac glycolytic flux 1.7-fold with
no effect on cardiac function. CH up-regulated cardiac pyruvate kinase (PK) flux 3.1-fold and
cardiac pyruvate kinase muscle isoenzyme M2 (PKM2) protein content 1.4-fold compared
with normoxic hearts. CH also augmented cardiac pentose phosphate pathway (PPP) flux,
reflected by higher ribose-5-phosphate (R5P) content. These findings support an increase
in the covalent (protein expression) and allosteric (flux) control of PKM2 as being central to
the sustained up-regulation of the glycolytic flux in the chronically hypoxic heart.

Introduction
The metabolic profile of carbohydrate metabolism in myocardium in heart failure shares many similari-
ties with that during sustained hypoxic exposure [1,2]. Maintaining energy homoeostasis during hypoxia
requires extensive metabolic reprogramming aimed at supporting ATP provision in the face of reduced
O2 availability [3]. Metabolic reprogramming following short-term (24–96 h) in vitro hypoxia, which
comprises the majority of information available in the literature, involves up-regulation of enzymes that
accelerate the glycolytic flux [4–6], down-regulation of β-oxidation medium- and long-chain dehydro-
genases, and electron transport chain components to suppress oxidative phosphorylation [7,8]. These
events are regulated by the oxygen-sensing transcription factor hypoxia-inducible factor (HIF)-1α [8,9].
However, the adaptations identified during sustained hypoxia in the intact heart, cover a particular set of
enzymes including hexokinase (HK), lactate dehydrogenase and pyruvate kinase (PK) [10–12], and are
considered to be part of the process of maintaining energy homoeostasis. Therefore, it is remains to be
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fully established how mammalian heart maintains up-regulated cardiac glycolytic flux during prolonged in vivo
hypoxia.

Glycolytic flux is classically considered to be regulated by four rate-limiting enzymes, HK, phosphofructokinase
(PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and PK [13–15]. Although HK and PFK use two
molecules of ATP at the beginning of the pathway, phosphoglycerate kinase (PGK) and PK result in the formation of
four ATP molecules for each molecule of glucose degraded to pyruvate [15]. In an attempt to assess the physiological
importance of individual glycolytic steps, Tanner et al. [16] sequentially and transiently overexpressed in a cell line
human isoenzymes catalysing every glycolytic step from glucose uptake to lactate ion export and identified glucose
uptake, fructose-1,6-bisphosphate (FBP) production and lactate ion export as key glycolytic flux controlling steps. In
cardiac muscle exposed to in vivo hypoxia, some [10,11,17], although not all [18], have demonstrated up-regulated
glucose uptake capacity in conjunction with increased HK activity. So far, therefore, the mechanisms that up-regulate
the glycolytic flux in cardiac muscle during hypoxia are still controversial.

PK catalyses the last step of glycolysis, i.e. the conversion of phosphoenolpyruvate (PEP) into pyruvate. Due to its
broad allosteric regulation, PK has been suggested to be an important regulator of glycolytic flux in cancer, failing
heart and kidney disease [19–22]. Of the four existing PK protein isoforms, each one with different kinetic properties,
adult PK muscle isoenzyme 1 (PKM1) and foetal PK muscle isoenzyme 2 (PKM2) have the highest and mutually ex-
clusive expression in multiple mammalian tissues [23]. PKM2 is predominantly expressed in embryonic cardiac and
skeletal muscle and becomes progressively replaced by PKM1 during post-natal developmental, which is consistent
with increased tissue oxygen availability [20]. Considering that PKM1 and PKM2 differ in 22 amino acid residues,
they exhibit significantly distinct biochemical properties. Although PKM2 displays lower activity than PKM1, which
is constitutively the active form [19], PKM2 is controlled by a wide variety of regulatory mechanisms including al-
losteric activation by amino acid serine and FBP, and inhibition by post-translational phosphorylation and acetylation
[24–27]. Additional in vitro studies have confirmed that PKM1 and PKM2 expressions appear to be collectively sub-
jected to multiple controlling factors, including transcriptional repression [28], alternative splicing [20] and hypoxia
[22,29]. However, little is known about the mechanisms regulating cardiac PK activity and protein isoform levels
during prolonged in vivo hypoxia.

Against the background of the above, we hypothesised that underlying mechanisms by which cardiac muscle
up-regulates glycolytic flux in vivo during chronic hypoxia are intimately linked to the role of PK. To test our hypoth-
esis, a comprehensive profile of metabolic adaptation to chronic hypoxia following the exposure of mice to 3 weeks of
physiological hypoxia versus normoxia was acquired. This included enzymatic and wide range metabolomic profiling
(glycolytic, tricarboxylic acid cycle and pentose phosphate pathway (PPP)) to fingerprint each intermediate step of
glycolysis in the heart.

Methods
Animals
Eight-week-old male CD1 mice were purchased from a commercial breeder (Harlan, United Kingdom). All proce-
dures were approved by and performed in accordance with the Home Office guidelines under The Animals (Scientific
Procedures) Act, 1986, and the University of Nottingham guidelines.

Chronic hypoxic housing
The effects of chronic in vivo hypoxia on murine cardiac function and metabolism were investigated in mice ran-
domly assigned to either normoxic (n=8) or hypoxic housing (n=10). The mice were housed (four mice/cage) in a
hypoxic chamber for 3 weeks that began with a 7-day acclimatisation period involving gradual reduction in chamber
oxygen from 21 to 11% to produce graded physiological hypoxia as previously described in detail [30,31]. Chamber
oxygen level was then maintained at 11% for 2–3 weeks. Chronic hypoxic (CH) housing was performed in a sealed
plastic glass-fronted chamber (Medical Engineering Unit, Nottingham, U.K.). Hypoxia in the chamber was achieved
by removal of O2 content of incoming air via a hypoxic generator (Hypoxico, U.S.A.). Control (21% O2) and chroni-
cally hypoxic animals were housed in the same room ensuring exposure of animals to the same temperature, humidity
and 12-h light/dark cycle conditions. Standard chow diet and water were provided ad libitum throughout experiment.
Following CH housing, all animals were exposed to room air for 1 h, to exclude effects of short-term reoxygenation
on cardiac function.
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Isolated heart perfusion
All animals were anaesthetized with a terminal dose of sodium pentobarbitone (60 mg/kg of body weight i.p).Hearts
were excised and arrested in ice-cold Krebs–Henseleit (KH) buffer containing (in mM) 118 NaCl, 4.7 KCl, 1.2 MgSO4,
2.0 CaCl2, 0.5 Na2EDTA, 11 glucose, 25 NaHCO3 and 1.2 KH2PO4. A blood sample was taken from the thoraic cavity
to determine haemoglobin content (Haemocue AB, Ängelholm, Sweden). Hearts were then perfused in Langendorff
mode under constant pressure (80 mmHg) with recirculating KH buffer containing 0.4 mM palmitate pre-bound
to albumin (3%). Up to four hearts per day were perfused beginning in the morning (8.00 a.m.). Normoxic and
hypoxic hearts were perfused randomly. The buffer was continually gassed with a mix of 95% O2 and 5% CO2, with
the temperature maintained at 37◦C. Cardiac function was measured continuously using polyethene balloon placed
within the lumen of left ventricle inflated to 4–8 mmHg, determining left ventricular (LV) developed pressure (DP)
and heart rate (HR). The rate pressure product (RPP) was calculated as a product of HR and DP. Following 30-min
perfusion, hearts were freeze-clamped using Wollenberger clamps pre-chilled in liquid nitrogen and subsequently
stored at −80◦C until analysis.

Measurements of cardiac glycolytic flux
Cardiac glycolytic flux in control and hypoxic animals was determined as previously described [30]. Briefly, 30 μCi
of [5-3H]-glucose (PerkinElmer) was added to KH buffer before perfusion. Aliquots of recirculating buffer were col-
lected at 5-min intervals during the perfusion protocol, and 3H2O content used to calculate glycolytic flux following
Dowex anion separation (1 × 4-200, anion exchange resin, Sigma, St. Louis U.S.A.). Cardiac lactate efflux was de-
termined spectrophotometrically using a lactate dehydrogenase coupled enzyme assay of timed buffer collections as
previously described [31].

Liquid chromatography–mass spectrometry
Frozen hearts were freeze-dried and powdered, and metabolites extracted as previously described [32]. Briefly, −20◦C
acetonitrile/methanol/water (40:40:20 v/v/v) solution was added to the powdered tissue and incubated at −20◦C for
15 min with occasional vortexing. The sample was centrifuged at 13000 rpm for 5 min at 4◦C and the supernatant
collected. The residual pellet was re-extracted twice on ice, and all three supernatants were pooled. The pooled su-
pernatants were then dried under nitrogen gas, and the pellet was resuspended in HPLC water and stored at −80◦C
until analysis. To determine specific compound-dependent mass spectrometry parent ion (m/z) and daughter ion
parameters, single analyte standards, at a concentration of ∼50 μM, dissolved in 50% (v/v) acetonitrile 0.1% (v/v)
NH4OH, were (syringe) infused at a flow rate of 5 μl/min and analysed in negative ion (ESI-) and full-scan mode
(Supplementary Table S1). Triple quadrupole (Quattro Ultima; Waters) instrument parameters were optimised for
precursor ions and collision energies were optimised for product (quantifier and validator) ions. Various instrumen-
tal settings were optimised to maximise the signal with the final parameters being: capillary voltage (kV) 3.2, cone
60 (arbitrary units), Hex1 40 (arbitrary units), source temperature 120◦C, desolvation temperature 250◦C. An au-
tosampler (Waters 2700 Sample Manager, Waters, U.S.A.) binary gradient (Jasco PU2085) was chromatographed in
reversed-phase mode using a 2.1 × 100 mm, 3.5 μm C18 column (XBrigde, Waters, U.S.A.) at room temperature
with eluent A containing 10 mM tributylamine, 15 mM acetic acid and 3% (v/v) acetonitrile and eluent B being 100%
acetonitrile. The mobile phase was infused at a rate of 0.2 ml/min. The gradient used was 0 min, 3% B; 0–25 min,
20% B; 25–26 min, 100% B; 26–30 min, 0% B; 30–60 min, 0% B. To minimise technical and biological variability, the
samples were thawed 10–15 min before analysis and run sequentially. Retention times and transitions were analysed
via multiple reaction monitoring (MRM) using MassLynx software (MassLynx, V4.0 SP4, Waters, U.S.A.). Data were
quantified from the external standard curve being analysed together with samples.

Enzyme activities
Enzymatic activities were determined in frozen heart tissues: HK, PFK, GAPDH and PK activities were determined
using previously established methods [33–36]. Total and compartmental muscle lysate protein concentrations were
measured using a Bradford assay, with enzyme activity expressed as U/mg of protein.

Western blotting
An aliquot of the heart muscle was homogenised in ice-cold 50 mM Tris-HCl, pH 7.5, buffer containing 1 mM EDTA,
1 mM EGTA, 1% IGEPAL, 0.1% β-mercaptoethanol and 10 μl/ml of protease inhibitor cocktail (Sigma, St. Louis,
U.S.A.). Tissue lysate was centrifuged at 13000×g for 10 min at 4◦C, and the supernatant was stored at −80◦C. Nuclear
proteins were extracted from the pellet formed following centrifugation. Specifically, the pellet was resuspended in
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Figure 1. Effect of chronic in vivo hypoxia on cardiac morphology, blood haemoglobin levels and isolated ex vivo cardiac

function

Body weight (A), heart weight/body weight ratio (B), blood haemoglobin (C), LVDP (D), HR (E) and rate pressure product (F). Values

are expressed as mean +− SEM (n=8–10).

200 μl of 20 mM HEPES buffer, pH 8.0, containing 25% glycerol, 500 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA and
left on ice for 60 min. The lysate was spun at 3000×g for 5 min and the supernatant collected. Homogenate protein
content was determined using the bicinchoninic acid assay (Pierce, U.S.A.). Protein samples were run a 12% Bis-Tris
acrylamide gel for 2 h at constant 100 V and transferred on a polyvinylidenedifluoride membrane (PVDF) for 2 h at
constant 250 mA in an ice-chilled transfer tank. The membrane was blocked and incubated overnight at 4◦C with
rabbit anti-PKM1 antibody (1:10000, Sigma), rabbit anti-PKM2 antibody (1:1000, Cell Signaling, #D78A4), rabbit
anti-CUGBP1 (1:3000, Abcam, U.K., #ab129115), rabbit anti-PDK1 (1:100000, Cell Signaling, #3820), rabbit anti-Sp3
(1:500, Santa Cruz, #sc-644) and rabbit anti-actin antibody (1:50000, Sigma, #A2066). Membranes were then washed
and incubated with goat anti-rabbit HRP–conjugated secondary antibody (R&D Systems). After washing membranes
were incubated with enhanced chemiluminescence (ECL) detection solution (Amersham, U.K.) and exposed to X-ray
film (Kodak, U.K.).

Statistical analysis
Distribution of the data in each group was determined using Kolmogorov–Smirnov and Shapiro–Wilk tests. Inde-
pendent Student’s t test or Mann–Whitney tests were used to test for mean differences between groups for normally
and non-normally distributed data, respectively. Two-way ANOVAs with Bonferroni’s post-hoc tests were used to
test for mean differences between groups. Statistical significance was set at P≤0.05 for all analyses with the results
presented as individual values and mean +− standard error of mean (SEM).

Results
There were no differences in body weight (Figure 1A) and cardiac hypertrophy between normoxic and hypoxic groups
(Figure 1B), consistent with our previous work using the current CH protocol [2,30]. Sustained in vivo hypoxia
increased blood haemoglobin in comparison to normoxic mice (Figure 1C, P<0.0001) without affecting the function
of the perfused heart (Figure 1D–F).
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Figure 2. Chronic in vivo hypoxia increased cardiac glycolytic flux

Glycolytic flux (A), lactate efflux (B), lactate content (C), lactate/pyruvate ratio (D) and AMP/ATP ratio (E). Values are expressed as

mean +− SEM (n=8–10).

Next, we evaluated how sustained in vivo hypoxia modified cardiac glycolysis in isolated beating hearts using
[5-3H]-glucose (Figure 2). While we found no differences in the net cardiac lactate efflux and tissue lactate content
between normoxic and hypoxic hearts, chronic hypoxia resulted in 1.7-fold higher cardiac glycolytic flux relative to
normoxic hearts (Figure 2A, P=0.028). The lactate/pyruvate ratio, an indicator of cytosolic NAD+/NADH ratio, was
reduced in chronically hypoxic hearts relative to the normoxic group (Figure 2D, P=0.024).

To explore how chronic in vivo hypoxia modulated the cardiac central carbon intermediate metabolism, we utilised
tandem mass spectrometry (liquid chromatography tandem mass spectrometry (LC-MS/MS)) to detect and quantify
glycolytic, TCA cycle and PPP metabolites (Figure 3). LC-MS/MS analysis showed that pyruvate content in chronically
hypoxic hearts was 31% higher than in the normoxic group (P=0.016). Additionally, pyruvate/PEP ratio, a validated
marker of PK activity [37], in the hypoxic hearts was 3.1-fold higher than in normoxic hearts (P=0.008). Levels of
PPP ribose-5-phosphate (R5P) in chronically hypoxic hearts were 42% higher than in normoxic groups (P=0.032).
Additionally, NADPH levels in hypoxic hearts were 36% lower than in normoxic group (P=0.037).

To investigate the mechanistic basis for increased glycolytic flux in chronically hypoxic hearts, enzymatic activities
of four key rate-limiting enzymes were determined (Figure 4). There were no differences for cardiac HK, PFK and
GAPDH activities between normoxic and hypoxic hearts (Figure 4A–C). Cardiac PK activity in chronically hypoxic
hearts tended to be higher than in normoxic group (Figure 4D, 39%, P=0.058).

Next, we determined if increased cardiac PK activity could be accounted for by differential PK protein isoform
expression (Figure 5). As shown by Western blot analysis, no differences between normoxic and hypoxic hearts were
found for PKM1 protein expression (Figure 5A). In contrast, PKM2 protein levels in the chronically hypoxic hearts
were significantly greater than in normoxic hearts (1.4-fold; Figure 5B, P=0.027). Furthermore, the PKM2/PKM1
ratio in chronically hypoxic hearts was significantly greater compared with normoxic hearts (1.6-folds; Figure 5C,
P=0.021).

To further explore how chronic in vivo hypoxia might increase PKM2 protein levels, we measured its three dif-
ferent potential upstream regulators, PDK1 (HIF-1α signalling), alternative splicing (CUGBP1) and transcriptional
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Figure 3. Chronic in vivo hypoxia altered cardiac central carbon metabolism

Cardiac LC/MS/MS analysis of intermediate metabolites following chronic hypoxia. Abbreviations: ALAT, alanine aminotransferase;

Aldo, aldolase; Cit, citrate; DHAP, dihydroxyacetone phosphate; F6P, fructose-6-phosphate; Fum, fumarate; G3P, glyceralde-

hyde-3-phosphate; G6P, glucose-6-phosphate; G6PDH, glucose-6-phosphate dehydrogenase; G6PI, glucose-6-phosphate iso-

merase; LDH, lactate dehydrogenase; Mal, malate; MPC, mitochondrial pyruvate carrier; Oxa, oxaloacetate; PDC, pyruvate dehy-

drogenase complex; PGM, phosphoglyceromutase; Pyr, pyruvate; RPI, ribose phosphate isomerase; Ru5P, ribulose-5-phosphate;

Suc, succinate; TA, transaldolase; TK, transketolase; αKG, α-ketoglutarate; 1,3PG, 1,3-phosphoglycerate; 2PG, 2-phosphoglyc-

erate; 3PG; 3-phosphoglycerate; 6PG, 6-phosphogluconate; 6PGDH, 6-phosphogluconate dehydrogenase; 6PGL, 6-phosphoglu-

conolactone. Normoxia: open bars, Hypoxia: filled bars. Values are expressed as mean +− SEM (n=6–10).

repressor (Sp3) (Figure 6). There were no differences between normoxic and hypoxic hearts for any of measured
proteins.

Discussion
Sustained in vivo hypoxia increased cardiac PKM2 protein content and
flux
Here, we demonstrate that in vivo extended hypoxia selectively increases the PK enzymatic activity and flux, as well
as the pyruvate/PEP ratio. This indicates that the metabolic responses to chronic hypoxia in mammalian heart appear
to be related to the adaptive responses of this glycolytic enzyme.
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p=0.058

(A) (B) (C) (D)

Figure 4. Effects of chronic hypoxia on isolated heart enzyme activity

Myocardial activity of HK (A), PFK (B), GAPDH (C) and PK (D). Values are expressed as mean +− SEM (n=6–10).

p=0.045

p=0.021

(A) (B) (C)

Figure 5. Sustained in vivo hypoxia up-regulated cardiac PKM2 expression

Western blot analysis of PKM1 (A), PKM2 (B) and the ratio of PKM2 to PKM1 (C). C, control; H, hypoxia. Values are expressed as

mean +− SEM (n=7–10).

(A) (B) (C)

Figure 6. Potential upstream regulators of PKM2 protein were unaltered

Western blot analysis of cardiac pyruvate dehydrogenase kinase [PDK1 (A)], CUG binding protein 1 [CUGBP1 (B)] and Sp3 (C)

proteins following CH exposure. C, control; H, hypoxia. Values are expressed as mean +− SEM (n=8–10).
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Previous in vitro studies exploring how hypoxia modulates glycolytic capacity have provided conflicting findings.
For instance, activities of all glycolytic enzymes in L8 muscle cells, except for HK, were increased following 96-h
in vitro hypoxia (4–10% O2) [4]. Examining the effects of 4-week hypoxia on glycolytic enzyme activity, Martinez
et al. reported increased HK, triosephosphate isomerase (TPI) and PK activities in killifish heart [38]. Furthermore,
following a 28-day hypoxic exposure, activities of five glycolytic enzymes (HK, Aldolase, GAPDH, PGK and PK) were
increased in guinea pig left ventricle [12], suggesting interspecies and or temporal differences in hypoxia-induced
modification of glycolysis. Enolase activity, the enzymatic step used in the present study to assess glycolytic rate, is
not seen to be elevated in myocardium [12]. Whilst the pattern of enzyme up-regulation on exposure to hypoxia does
vary between studies, a common finding is that PK activity is increased, and warranted further investigation in the
current study.

Alternative splicing of exons 9 and 10 of the PKM gene generates two PKM1 or PKM2 isoforms, respectively
[20]. Relative to PKM1, PKM2 is a less-active isoform, although it exhibits complex regulatory circuits and exists
in a dynamic dimer–tetramer form [24,27,37,40]. LC-MS/MS analysis in the present study revealed that tissue FBP
concentration was not different between groups, indicating that FBP-induced allosteric activation was unlikely to ac-
count for increased cardiac PK flux. In contrast, analysis of the left ventricle PK protein isoform content revealed that
PKM2, but not PKM1, protein, was significantly increased in chronically hypoxic hearts, suggesting that sustained in
vivo hypoxia regulates cardiac PK flux through increased PKM2 protein. This finding extends understanding of the
previously reported increased PKM2 expression following acute hypoxia in isolated cardiomyocytes [22], rat H9C2
cells [29] and myocardial infarction [39,41]. In support of its central role in metabolic reprogramming, re-expression
of PKM2 has been proposed to regulate the ‘Pasteur effect’ [27,42]. For example, increased PKM2 activity in HeLa
and H1299 oncogenic cells has been associated with increased lactate production [19,40]. Conversely, overexpression
of PKM2 in C2C12 cells increased glucose consumption without affecting lactate production [20], indicating that
PKM2 may play a tissue-specific role in the regulation of energy metabolism.

Hypoxia up-regulated cardiac PPP flux
Present detailed metabolomic analysis of the heart showed increased R5P content indicative of up-regulated PPP
flux, consistent with previous studies [43,44], implying that glycolytically derived carbon backbone was shifted away
from upper glycolysis towards PPP, and returned to lower glycolysis via transketolase (TK) and transaldolase (TA)
reactions. Although it is incompletely understood how hypoxia remodelled central carbon metabolism in the heart,
reduced levels of cardiac NADPH and lactate/pyruvate ratio suggest disrupted redox balance, previously shown to
modulate carbon flux in cells exposed to hydrogen peroxide [45]. The fate of accumulated pyruvate in the present
study, however, remains unclear. Given the antioxidant properties of pyruvate [46,47], it could be argued, however,
that hypoxia-induced cardiac pyruvate accumulation serves as a protective mechanism against oxidative stress to
regulate PKM2 activity [2,24,48]. Beyond its role in the control of the glycolytic flux, some [49], but not all [50],
authors suggested that PKM2 can also act as a transcriptional factor (protein kinase) to regulate gene expression.
However, further studies are necessary to explore the transcriptional role of the PKM2 in the chronically hypoxic
hearts.

Regulation of hypoxia-induced PKM2 expression
Hypoxic regulation of cardiac PKM2 expression is not well understood. Following short-term hypoxia of isolated
rat cardiomyocytes, HIF-1α signalling has been shown to regulate PKM2 expression [22]. There are other known
regulators of PKM2 expression. Overexpression of CUGBP1 in skeletal muscle has been shown to increase PKM2
protein, whereas Sp3-mediated transcriptional depression has been implicated in the regulation of PK expression
during short-term hypoxia in C2C12 cells [20,28]. Our data suggest that in vivo sustained hypoxia does not seem
to affect HIF-1α signalling, at least in that we find unaltered cardiac PDK1 levels, which is consistent with previous
reports on the transient nature of HIF-1α up-regulation during prolonged hypoxic exposure [51–53]. Also, cardiac
CUGBP1 levels did not change after in vivo hypoxia, suggesting that, while CUGBP1 may acutely regulate skele-
tal muscle PKM2 expression [20], this mechanism might not operate in chronically hypoxic hearts. Similarly, we
also found that our in vivo chronic hypoxia does not change the steady-state levels of cardiac Sp3 protein, unlike
short-term in vitro hypoxic exposure [28]. Therefore, our results seem to indicate that HIF-1α, CUGBP1 or Sp3
signalling were not involved in the increased expression of cardiac PKM2 protein during chronic hypoxia.

8 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Conclusions
In summary, the findings of the present study indicate that cardiac glycolytic flux during sustained in vivo hypoxia
appears to be maintained via translational up-regulation of a single rate-limiting enzyme – PKM2. Furthermore,
cardiac glycolytic flux during prolonged hypoxia is, at least, partly driven by the up-regulation of the flux through the
PKM2. In the light of pre-clinical findings showing increased PKM2 expression in the failing heart, further research
is warranted to explore its activators as regulators of cardiac function and metabolism.
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