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In the present study, we explored the clinical and immunological characteristics of 575 uter-
ine corpus endometrial carcinoma (UCEC) samples obtained from The Cancer Genome Atlas
(TCGA) using the ESTIMATE and CIBERSORT algorithms. First, Kaplan–Meier and univari-
ate Cox regression analyses indicated that the immune cell score was a prognostic factor
for overall survival (OS) and recurrence-free survival (RFS). Multivariate Cox regression anal-
ysis further revealed that the immune cell score was an independent prognostic factor for
UCEC patients. Second, we investigated the correlation between the infiltration levels of 22
types of immune cells and the immune score. Survival analysis based on the 22 immune
cell types showed that higher levels of regulatory T cell, activated NK cell, and follicular
helper T-cell infiltration were associated with longer OS, while higher levels of CD8+ T cell
and naive B-cell infiltration were associated with longer RFS. Next, we performed differen-
tial expression and prognosis analyses on 1534 immune-related genes and selected five
from 14 candidate genes to construct a prognostic prediction model. The area under the
receiver-operating characteristic (ROC) curve (AUC) for 3- and 5-year survival were 0.711
and 0.728, respectively. Further validation using a stage I–II subgroup showed similar results,
presenting AUC values for 3- and five-year survival of 0.677 and 0.692, respectively. Taken
together, the present study provides not only a deeper understanding of the relationship
between UCEC and the immune landscape but also guidance for the future development of
UCEC immunotherapy.

Introduction
Uterine corpus endometrial carcinoma (UCEC) is the seventh most commonly diagnosed cancer in
women worldwide [1]. Approximately 75% of patients with endometrial cancer are diagnosed at an early
stage, and local lesions can, to a large extent, be cured by surgery. Nevertheless, in some cases, radiation
therapy is still needed after surgery. The 5-year overall survival (OS) rate in early-stage UCEC ranges from
74 to 91%. Chemotherapy and hormone therapy are viable treatment options for patients with metastasis
or recurrence; however, not all patients benefit from these. For advanced stage III or IV disease, the 5-year
OS rates are 57–66% and 20–26%, respectively [2]. Tumor cell growth requires the establishment of an im-
munosuppressive environment, such as the down-regulation of the expression of HLA-class I molecules
and up-regulation of immunosuppressive factors, including PD1, PD-L1, TIM3, LAG3, and TIGIT, result-
ing in the absence of an effective immune system response [3–5]. In addition, several studies have shown
that immune cell infiltration is significantly associated with prognosis in some tumors [6–9] and may be
a promising source of new diagnostic and prognostic biomarkers.

In the present study, we systematically evaluated the prognostic value of immune cell infiltration and
immune-related genes in UCEC. We first used the ESTIMATE algorithm to assess the impact of the
immune score on clinical features and prognosis of UCEC. Subsequently, we utilized the CIBERSORT
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Figure 1. The immune score was significantly associated with UCEC prognosis

(A) Kaplan–Meier curves for overall survival (OS) between the high and the low immune scores. (B) Kaplan–Meier curves for recur-

rence-free survival (RFS) between the high and the low immune scores. (C) The correlation between clinical stages and immune

scores. (D) The correlation between clinical grades and immune scores. (E) The correlation between patients’ age and immune

scores. (F) Kaplan–Meier curves for OS between the high and the low immune scores at stages I and II. (G) Kaplan–Meier curves

for RFS between the high and the low immune scores at stages I and II.

algorithm to evaluate 22 types of tumor-infiltrating immune cells, and further revealed a correlation between immune
score and tumor-infiltrating immune cells. Following this, we explored the prognostic value of these cells. We also
identified several immune-related genes involved in tumor development that could affect prognosis, and established
a predictive model with five immune-related genes to assess disease prognosis and patient survival. This is the first
and most comprehensive study concerning the clinical, molecular, and immunological characteristics of UCEC. We
believe that this report will improve the understanding of the immune landscape in UCEC.

Results
The immune score was significantly associated with UCEC prognosis
In the present study, we used the expression data and clinical information for 536 UCEC patients obtained from
The Cancer Genome Atlas (TCGA) database. Based on the ESTIMATE algorithm, we calculated the immune score
for each sample and used the median score as a cut-off to classify all patients into high-score and low-score groups.
Kaplan–Meier survival curves indicated that patients with a high immune score had a better OS and recurrence-free
survival (RFS) than those with a low immune score (Figure 1A,B). Importantly, univariate and multivariate Cox
regression analysis based on TCGA dataset demonstrated that immune score was an independent prognostic factor
in UCEC patients (Table 1). Our results further showed that there was no significant correlation between immune
score and important clinical variables (Figure 1C–E), further supporting that the immune score was an independent
prognostic factor.
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Table 1 Univariate and multivariate regression analyses for predicting overall survival and recurrence-free survival of UCEC

OS RFS
Characteristic P HR P HR

Univariate analysis

Immunescore 0.0050 0.9998 0.0427 0.9998

Stage <0.0001 1.8162 0.0036 1.9880

Grade 0.0493 3.9844 0.3162 1.1707

Age 0.0141 1.3621 0.2790 1.3040

Multivariate analysis

Immunescore 0.0145 0.9998 0.0672 0.9998

Stage <0.0001 4.7557 0.0133 2.0678

Grade 0.3962 1.1486 0.4838 1.1199

Age 0.2338 0.6645 0.5417 0.8301

Abbreviations: OS, overall survival; RFS, recurrence-free survival.

The immune score was significantly associated with prognosis for
patients with early-stage UCEC
Based on the International Federation of Gynecology and Obstetrics (FIGO) staging system, stage I and II UCECs
are considered to be early-stage diseases. After surgery and adjuvant radiotherapy/chemotherapy, patients usually
achieve relatively good outcomes [10–12]. In contrast, Stage III and IV UCECs are generally considered to be ad-
vanced diseases, and the OS is low even with multidimensional, high-intensity treatment. Considering the clinical
importance of early UCEC diagnosis, we evaluated the prognostic value of the immune score for patients with stage
I and II UCEC. The results showed that the immune score was also an important prognostic factor for OS (Figure
1F,G).

The correlation between immune-infiltrating cells and the immune score
in UCEC
Next, we used the CIBERSORT algorithm to estimate the proportions of 22 types of immune cells in UCEC (Figure
2A), and then evaluated the relationship between the immune score and the infiltration level of 22 immune cell types.
The results showed that the immune score was positively correlated with CD8+ T cells, activated memory CD4+ T
cells, and M1 macrophages, and negatively correlated with activated dendritic cells, M2 macrophages, resting memory
CD4+ T cells, and naive B cells (Figure 2B).

The prognostic value of tumor-infiltrating immune cells in UCEC
Given the importance of the immune score for OS and RFS, we evaluated the association between immune cell pro-
portions determined with CIBERSORT and OS/RFS using Kaplan–Meier survival curves. We found that higher levels
of regulatory T cells, activated NK cells, and follicular helper T cells were associated with better OS, and higher levels
of CD8+ T cells and naive B cells were associated with better RFS (Figure 2C).

The identification of differentially expressed immune- and
prognosis-related genes
A total of 1534 genes downloaded from the ImmPort database were included in a differential gene expression analysis
between 541 primary tumor samples and 35 normal samples (log FC >1 or log FC <−1). A total of 186 differentially
expressed genes (DEGs) were identified, including 75 that were up-regulated and 111 that were down-regulated. Kyoto
Encyclopedia of Genes and Genomes (KEGG) annotation analysis showed that the DEGs were mostly enriched in
the cytokine–cytokine receptor interaction, Rap1, and PI3K/AKT signaling pathways (Figure 3A). These 186 DEGs
were further included in a univariate Cox regression analysis. Combined with differential gene expression analysis,
we identified five upregulated genes that were related to worse OS and nine downregulated genes that were related to
better OS (Table 2).
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Figure 2. The correlation between immune-infiltrating cells and the immune score in UCEC and their prognostic value

(A) The proportions of 22 types of tumor-infiltrating immune cells in uterine corpus endometrial carcinoma (UCEC). (B) Correlation

between tumor-infiltrating immune cells and the immune score (|Cor >0.3|). (C) Kaplan–Meier curves for overall survival (OS) and

recurrence-free survival (RFS) between high and low levels of immune cell infiltration.

The construction of an immune-related five-gene signature
Based on a multivariate Cox regression analysis of 14 important genes, we constructed a prognostic five-gene ex-
pression signature that included RAC3, SST, EDN2, CTF1, and PGR (Figure 3B). The risk score was calculated as
follows: risk score = 0.2186 × RAC3 + 0.0647 × SST + 0.1640 × EDN2 – 0.3327 × CTF1 – 0.1880 × PGR. Patients
were divided into high-risk and low-risk groups using the median risk score as a cut-off. Survival analysis based on
the risk score could clearly discriminate the high-risk group from low-risk group (P<0.001). The AUC values for 3-
and 5-year survival were 0.711 and 0.726, respectively (Figure 3C).

Given the importance of early treatment for a positive prognosis of UCEC, we selected the stage I–II subgroup to
further validate the model and obtained similar results (P=0.008). The AUC values for 3- and 5-year survival in the
model were 0.677 and 0.692, respectively (Figure 3D).
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Figure 3. The construction of an immune-related five-gene signature

(A) Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis of 186 differentially expressed immune-related genes.

(B) Cox multivariate regression analysis of an immune-related five-gene signature for overall survival (OS). (C) Kaplan–Meier curves

and Receiver–operating characteristic (ROC) curves for OS between high- and low-risk groups. (D) Kaplan–Meier curves and Re-

ceiver–operating characteristic (ROC) curves for OS between high- and low-risk groups for the stage I–II subgroups.

Discussion
The past two decades have seen substantial progress in our understanding of human immune function. In particular,
the identification of PD1 receptor inhibitors, followed by the identification of immune checkpoint blockers and im-
mune checkpoint agonists, has led to a “golden age” of immunotherapy [13–15]. Furthermore, the importance of the
function of immune cells in the tumor microenvironment (TME) has been increasingly recognized. It is now known
that some TME-infiltrating immune cells play a role in tumor immune escape [16–18]. Therefore, in our study, we
first used TCGA dataset to reveal the clinical features and immune landscape of UCEC.

We first assessed the prognostic value of the immune score and found that immune cell infiltrate levels in the
TME were significantly associated with patient survival. We further analyzed the correlation between 22 immune
cell types and the immune score and found that CD8+ T cells had the highest correlation with the immune score,
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Table 2 General characteristics of differentially expressed immune-related genes which were significantly correlated with
prognosis

Gene HR Z-value P-value logFC FDR

GDF7 0.651 -2.451 0.014 -1.506 <0.001

TNFSF12 0.712 -2.705 0.007 -1.674 <0.001

CTF1 0.756 -2.702 0.007 -1.333 <0.001

PGR 0.774 -4.669 0.000 -2.380 <0.001

ESR1 0.793 -4.424 0.000 -1.130 <0.001

ADCYAP1R1 0.795 -3.303 0.001 -1.240 <0.001

PTGER2 0.807 -1.999 0.046 -1.403 <0.001

NDP 0.813 -2.819 0.005 -2.115 <0.001

PTGDS 0.893 -2.074 0.038 -2.079 <0.001

SST 1.125 3.992 0.000 1.610 0.004

EDN2 1.160 2.226 0.026 1.519 <0.001

IL1RN 1.186 2.213 0.027 1.561 <0.001

RAC3 1.333 3.192 0.001 2.454 <0.001

GPI 1.424 2.453 0.014 1.253 <0.001

indicating that they may play a key role in the UCEC microenvironment. Subsequently, we comprehensively analyzed
the prognostic value of the 22 UCEC-infiltrating immune cell types and established that CD8+ T cell infiltration
was closely associated with RFS, and that the high- and low-infiltration groups showed considerable stratification
with regard to OS. This indicated that CD8+ T cells play a tumor-suppressive role, which is consistent with several
previously reported findings [19–21]. NK cells are innate immune cells that not only have a strong lysis effect on
abnormal or tumor cells but also act as regulators of the immune system. NK cells are associated with a good prognosis
in several cancers, such as osteosarcoma [22] and gastric cancer [23]. Similarly, our results showed that NK cells are
associated with longer OS in UCEC.

Regulatory T cells (Tregs) represent a class of lymphocytes functioning as host’s homeostasis by preventing the
immune system activation toward self or harmless antigens [24]. The infiltration of Tregs in the tumor microenvi-
ronment suppresses the immune response against tumor-associated antigens, thus promoting tumor progression in
non-small cell lung carcinoma (NSLC) [25], breast carcinoma [26] and melanoma, and are associated with a worse
prognosis. In the tumor microenvironment, the release of cytokines and chemokines by dysplastic cells and tumor
stroma infiltrating cells promote the accumulation of Tregs, thereby suppressing the anti-tumor activity mediated
by NK cells and CD8+ T cells, finally accelerating tumor progression [27]. However, in sporadic colorectal cancer
(CRC), Tregs infiltration plays dual roles on tumor progression and prognosis. The accumulation of Tregs among
tumor infiltrating lymphocytes have been correlated with tumor stage and shorter disease-free survival, due to Tregs
suppressive function against anti-tumor activity mediated by TAA-specific CD8+ cytotoxic cells [28]. In contrast,
high number of Tregs in CRC stroma was associated with reduced tumor growth, indicating a better prognosis [29],
because of Tregs suppressive function against pro-tumorigenic inflammation evoked by bacterial antigens influx in
the tumor stroma. Interestingly, we found that regulatory T cells were beneficial for survival, which suggests that
these cells may mediate different physiological functions in different tumor types. These discordant functions might
stem from the heterogeneity of cells expressing FoxP3, their phenotypic plasticity and the role played by the unique
bacteria-induced inflammatory microenvironment [28].

In addition, we also found that follicular helper T cells were associated with better outcomes. Follicular helper T
cells promote the development of B-cell extracellular foci and germinal center antibody responses, which are essential
for B-cell affinity maturation and the maintenance of humoral memory. Follicular helper T cells were also shown
to prolong survival and reduce immunosuppression in squamous cell lung carcinoma [30]. Especially, according to
previous studies, naive B cells are closely related to the severity of cancer, which fits the results of our study that the
immune score was negatively correlated with naive B cells and naive B cells were associated with better RFS [31].

Next, we tested the expression and prognostic value of 1534 immune-related genes, and identified 14 DEGs that
were closely associated with better OS. Based on Cox regression analysis, we selected five key genes—RAC3, SST,
EDN2, CTF1, and PGR—to construct a prognostic prediction model. RAC3 is considered to function as an onco-
gene and was originally found to be highly expressed in breast cancer [32]. Subsequent studies showed that RAC3 was
involved in the regulation of the cell cycle, cell proliferation [33,34], apoptosis, the inhibition of autophagy [35,36],
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cell migration, and epithelial–mesenchymal transition (EMT) [37,38], all of which are closely related to tumor devel-
opment. The SST (somatostatin) protein functions as a tumor suppressor in various tumor types through binding to
somatostatin receptors [39,40]. Studies have shown that EDN2 is highly expressed in clear cell renal cell carcinoma,
cervical cancer, and breast cancer [41–43]. Contradictory results have been reported for the role of EDN2 in cancer.
Interestingly, high EDN2 expression appears to be associated with both better survival in renal cell carcinoma patients
and the promotion of the invasive abilities of breast cancer cells. Our results support its status as an oncogene. CTF1
induces the expression of IL-6 in epithelial cells, endothelial cells, and monocytes, thereby exerting anti-inflammatory,
proinflammatory, and cytoprotective effects [44]. Currently, research into this molecule is less involved in the field of
tumors. Therefore, the anticancer effect of CTF1 identified in our study suggests that this molecule may have a role
in the field of cancer treatment. The progesterone receptor (PGR) is widely documented as playing a role in various
gynecological tumors. Single-nucleotide polymorphisms (SNPs) in the PGR gene have been associated with a risk
of UCEC [45]. Here, we explored the relationship between PGR transcript levels and endometrial cancer, and found
that elevated PGR expression was associated with better prognosis in UCEC patients. Further studies on PGR protein
levels and the mechanisms underlying PGR effects in UCEC are required in the future.

Our data were obtained from TCGA database and comprised a large patient sample and diverse data types. Nev-
ertheless, this was still a retrospective study, and prospective studies are needed to validate these results.

Taken together, our analysis of immune infiltration and immune-related genes provides not only a deeper under-
standing of the relationship between UCEC and the immune landscape but also guidance for the future development
of UCEC immunotherapy.

Materials and methods
Data mining from TCGA dataset
Expression and clinical data for 575 UCEC samples, including age, grade, stage, and prognostic information, were
extracted from TCGA Genome Data Analysis Center (https://cancergenome.nih.gov). The samples comprised 541
primary tumor samples and 35 normal samples. Of the 575 samples, 536 contained complete survival data. A set of
1534 immune-related genes were downloaded from the ImmPort database (https://immport.niaid.nih.gov).

Evaluation of tumor-infiltrating immune cells using ESTIMATE and
CIBERSORT algorithms
To estimate the immune cell landscape in each tumor, endometrial cancer data from TCGA database were analyzed
using the ESTIMATE and CIBERSORT algorithms. ESTIMATE analyzes tumor expression data to predict the tumor
stromal score [46]. The stromal score measures interstitial cell infiltration. CIBERSORT was used in combination
with the LM22 signature matrix to quantify the relative levels of 22 immune cell types in complex gene expression
mixtures, including resting memory CD4+ T cells, naive CD4+ T cells, CD8+ T cells, follicular helper T cells, gamma
delta T cells, activated memory CD4+ T cells, regulatory T cells, memory B cells, naive B cells, activated dendritic
cells, resting dendritic cells, eosinophils, macrophages (M0–M2), activated mast cells, resting mast cells, monocytes,
activated NK cells, resting NK cells, neutrophils, and plasma cells. Only patients with CIBERSORT-derived P-values
<0.05 were included in this analysis [47].

Statistical analysis
Survival curves were estimated using the Kaplan–Meier method and compared using the log-rank test. Cox regression
analysis was used to identify independent prognostic factors and establish predictive models. The ROC curve was used
to further assess the accuracy of the model predictions. Statistical analyses were performed using SPSS version 21.0
(SPSS, Chicago, IL, U.S.A.) and R software version 3.5.2. For all statistical analyses, P-values <0.05 were considered
significant.

Data Availability
All supporting data are included within the main article and its supplementary files.
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