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Tumor mutation burden (TMB) was a promising marker for immunotherapy. We aimed to
investigate the prognostic role of TMB and its relationship with immune cells infiltration in
gastric cancer (GC). We analyzed the mutation landscape of all GC cases and TMB of each
GC patient was calculated and patients were divided into TMB-high and TMB-low group.
Differentially expressed genes (DEGs) between the two groups were identified and pathway
analysis was performed. The immune cells infiltration in each GC patient was evaluated
and Kaplan–Meier analysis was performed to investigate the prognostic role of immune
cells infiltration. At last, hub immune genes were identified and a TMB prognostic risk score
(TMBPRS) was constructed to predict the survival outcome of GC patients. The relationships
between mutants of hub immune genes and immune infiltration level in GC was investigated.
We found higher TMB was correlated with better survival outcome and female patients, pa-
tients with T1-2 and N0 had higher TMB score. Altogether 816 DEGs were harvested and
pathway analysis demonstrated that patients in TMB-high group were associated with neu-
roactive ligand–receptor interaction, cAMP signaling pathway, calcium signaling pathway.
The infiltration of activated CD4+ memory T cells, follicular helper T cells, resting NK cells,
M0 and M1 macrophages and neutrophils in TMB-high group were higher compared than
that in TMB-low group and high macrophage infiltration was correlated with inferior survival
outcome of GC patients. Lastly, the TMBPRS was constructed and GC patients with high
TMBPRS had poor prognosis.

Background
According to the statistics in 2018, over 1 million newly diagnosed cases and almost 800000 cancer-related
deaths have made gastric cancer (GC) one of the most intractable diseases worldwide. Overall, GC is
ranked third in terms of incidence and fifth in terms of mortality [1]. The only curative measure for GC
patients is surgery [2]. However, most of the cases are diagnosed in advanced stage making complete re-
section impossible [3]. The prognosis of GC patients is also partially decided by whether lymph nodes
were involved [4]. Chemotherapy before or after surgery was proved to increase the benefit of patients.
Besides, monoclonal drugs target human epidermal growth factor receptor 2 (HER2) and vascular en-
dothelial growth factor receptor 2 (VEGFR2) have also been applied in the clinical practice [5].

Recently, immunotherapy emerged as a rising star in the cancer treatment. The measures consist mainly
of immune checkpoint inhibitors (ICIs), cancer vaccines, adoptive T-cell transfer therapy and cytokine
therapy [6,7]. Major breakthrough was accomplished by immunotherapy so far. A phase 2 trial revealed
that nivolumab (anti-PD-1 monoclonal antibody (mAb)) plus ipilimumab (anti-CTLA-4 mAb) could
benefit the patients of malignant pleural mesothelioma [8]. The combination of nivolumab and ipili-
mumab therapy showed promising result in metastatic melanoma patients, especially in patients with
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negative expression of PD-L1 [9]. Chimeric antigen receptor (CAR) T cells therapy significantly changed the land-
scape of lymphoma therapy, improving the remission rate of lymphoma patients [10,11]. In addition, CAR-T therapy
also offered potential benefit to pancreatic cancer patients [12]. A randomized clinical trial demonstrated that cancer
vaccine in combination with docetaxel could remarkably enhance the progression-free survival of metastatic breast
cancer patients [13].

It is worth noting that immunotherapy has also been playing a more and more important role in GC treatment.
ATTRACTION-2 study revealed that patients with unresectable or recurrent GC treated with anti-PD-1 mAbs
showed an objective response rate (ORR) of 11.2% [14]. Due to the extraordinary result brought by anti-PD-1
mAbs, this measure was incorporated into the third-line treatment for advanced GC in the Japanese guideline.
CheckMate-032 study demonstrated that Ipilimumab (anti-CTLA-4 mAbs) plus nivolumab group (anti-PD-1 mAbs)
showed a higher ORR than nivolumab alone group [15]. Although immunotherapy is a promising solution for GC
patients, the response rate is still limited and novel biomarkers are urgently needed to identify the suitable subgroup
of patients.

Tumor mutation burden (TMB) is defined as the non-synonymous somatic mutation number per megabase in can-
cer cells [16,17]. Several retrospective and prospective studies demonstrated that TMB could be a promising predictive
biomarker for immunotherapy especially for ICIs efficacy. Researchers found that high frequency of non-synonymous
mutation was associated with higher response rate in both melanoma and non-small cell lung cancer patients treated
with ICIs [18,19]. A pan-cancer analysis showed that TMB was indeed correlated with ICIs treatment response rate
[20]. Ten different cancers treated with ICIs were incorporated into the KEYNOTE-158 study and the study re-
sult revealed that high TMB was associated with improved ORR and progression-free survival [16]. A phase 2 trial
(NCT02915432) also demonstrated that GC patients with high TMB gained significantly longer survival advantage
than those with low TMB [21]. Therefore, it is worth understanding the TMB status of GC and its relevance with
immune cells infiltration.

With the development of bioinformatics, many resources on TMB and immune microenvironment status were
available on multiple databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
database. However, few researches investigate the relationship between them. Therefore, the present study was per-
formed to evaluate the prognostic value of TMB and its association with immune cells infiltration in GC patients.

Methods
Transcriptome and somatic mutation data acquisition
We obtained transcriptome and somatic mutation data from Genomic Data Commons Data Portal of TCGA database
(https://portal.gdc.cancer.gov/). Transcriptome profiles of all GC samples and relative adjacent gastric mucosa sam-
ples were downloaded in HTSeq-FPKM format. Somatic mutation data were downloaded in ‘Masked Somatic Mu-
tation’ and processed by VarScan software. The ‘Maftools’ R package [22] was applied to visualize the mutation genes
and classification and type of the mutation. The clinical characteristics of GC patients, which including age, gender,
AJCC-TNM stage, pathologic stage, tumor grade and living status, were also downloaded from TCGA database.

TMB scores calculation and prognostic analysis
TMB was defined as the total count of somatic mutation of genes which including base substitutions, insertions
and deletions. In this research, TMB scores were defined as total number of somatic mutation variants/length of
exons. We calculated the TMB scores (mutation frequency) by perl scripts based on JAVA8 platform. The TMB-high
and TMB-low groups were defined by median TMB scores. The TMB scores and clinical characteristics of each GC
patients were merged by R software. We used Kaplan–Meier analysis to measure the length of survival time and
P-value was calculated through log-rank test. The correlation between TMB level and clinical characteristics was
analyzed by Wilcoxon’s rank-sum test.

Identification of differentially expressed genes and pathway enrichment
analysis
GC patients were divided by TMB-high and TMB-low group according to the measures as we previously described.
Differentially expressed genes (DEGs) were identified by ‘limma’ package and false discovery rate was set as 0.05.
Heatmap of DEGs was created by ‘pheatmap’ package. The ‘org.Hs.eg.db’ package was utilized to annotate the DEGs.
The Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed
by ‘clusterProfiler’, ‘enrichplot’, ‘ggplot2’ and both filters of P-value and q-value were set as 0.05. Gene Set Enrichment
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Analysis (GSEA) was performed by the software downloaded from its official website (https://www.gsea-msigdb.org/
gsea) and ‘c2.cp.kegg.v6.2.symbols.gmt gene sets’ was selected as gene set database.

CIBERSORT algorithm
CIBERSORT is an analytical algorithm developed to detect the abundances of cell types in a mixed cell population,
using gene expression data [23]. Firstly, we prepared the data with ‘limma’ R package. Then we used CIBERSORT
algorithm to analyze the immune cell composition in GC patients and visualization was performed by barplot. The
violin plot was utilized to visualize the distribution of immune cell and Wilcoxon’s rank-sum test was used to evaluate
the immune cells infiltration between different TMB groups.

Identification of differentially expressed immune-related genes
We downloaded immune-related gene list from immport database (https://www.immport.org/shared/genelists) and
altogether 2498 genes were obtained. Intersection of DEGs and immune genes was visualized by ‘VennDiagram’
package.

Establishment of TMB prognostic risk score of differentially expressed
immune-related genes
We merged differentially expressed immune-related genes with corresponding survival data and univariate Cox re-
gression analysis was performed to find out the prognostic genes. Multivariate Cox regression analysis was performed
to identify the independent risk gene. The TMB prognostic risk score (TMBPRS) was calculated with TMBPRS = (χi
× EXPi) and χi was the coefficient derived from the multivariate Cox regression analysis. GC patients were divided
into high-risk group and low-risk group with threshold of median risk score. Kaplan–Meier analysis was performed
to assess the survival status between the two groups. Receiver Operating Characteristic (ROC) curve was generated
to evaluate the predictive value of TMBPRS.

Timer database
The ‘SCNA’ module of Timer database (https://cistrome.shinyapps.io/timer/) was designed to compare different im-
mune cells infiltration with different copy number variation (CNV) of a given gene. We used this module to detect
the immune cells infiltration with different CNV of the TMB-related immune genes. Box plots were drawn to visual-
ize the distribution of immune cell subset with different CNV and two-sided Wilcoxon’s rank-sum test was used to
calculate the P-value between normal and each mutation group. We also utilized ‘Survival’ module to compare the
survival status for immune infiltrates with Kaplan–Meier plots. P-value was calculated through log-rank test.

Statistical analysis
The normalization of data and differential analysis was performed by ‘limma’ R package. Cox regression analysis and
Kaplan–Meier analysis was performed by ‘survival’ R package. Wilcoxon’s rank-sum test is a nonparametric test and
is used to detect the difference between two groups. All statistical analysis was carried out in R software (Version
3.6.3). P-value <0.05 was considered as statistically significant.

Results
Overview of the mutation status of GC patients
We obtained the somatic mutation data of GC patients from TCGA and chose the data processed by VarScan software.
The ‘Maftools’ R package was utilized to visualize the landscape of mutation data of GC. According to variant classi-
fication, missense mutation, frameshift deletion and nonsense mutation were the first three mutations (Figure 1A).
Single nucleotide polymorphism was the most common mutation type, followed by deletion and insertion (Figure
1B). Among the single nucleotide variants (SNVs) class, C>T was the most common mutation (Figure 1C). We also
countered the number of mutations in each sample and the summary of mutation was visualized in box plot (Figure
1D,E). Top ten mutated genes in GC were also demonstrated in percentage form, including TTN (48%), MUC16
(31%), TP53 (44%), LRP1B (24%), ARID1A (25%), SYNE1 (22%), FAT4 (19%), CSMD3 (18%), FLG (19%) and PCLO
(17%). Mutation of each gene in different samples is shown in waterfall plot (Figure 1G). Besides, genes mutated in
more than 30 samples were shown by Genecloud plot (Supplementary Figure S1). The correlation of mutated genes
is shown in Figure 2 and deep green squares indicate co-occurrence while brown squares indicate mutually exclusive.
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Figure 1. Summary of mutation landscape of GC samples from TCGA database

(A–C) Mutation types based on different categories, where missense mutation was the most frequent component and SNP was

the most common mutation type and C>T was the most common type of SNV. (D,E) TMB of each GC sample and its classification

and the median variants number was 89. (F) Top ten mutated genes in GC samples and TTN, MUC16 and TP53 were the top

three mutated genes. (G) Waterfall plot of mutation profiles of each gene in each sample. The legend at the bottom described the

mutation types. The plot above the legends showed the mutation burden of each sample.
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Figure 2. Pair of mutually exclusive or co-occurring mutated genes

Pairwise Fisher’s Exact test was used to detect the statistical difference.

Assessment of TMB level and prognostic analysis
We calculated the TMB score of each GC sample by perl script. All GC samples were divided into TMB-high and
TMB-low group according to median TMB score. Kaplan–Meier analysis was performed to evaluate the survival
status between different groups. We found that high TMB score was correlated with better survival outcome (Figure
3A). We matched TMB status with clinicopathological characteristics (Table 1) of GC patients and found that GC
patients with age > 65 years had higher TMB score. Besides, female patients and patients with T1-2 and N0 had
higher TMB score than the others (Figure 3B,C,E,F). There was no difference between TMB score and tumor grade
and AJCC-M stage (Figure 3D,G).

Comparison of DEGs between TMB-high and TMB-low group and
pathway analysis
As we previously described, GC patients were divided into two groups. We compared the DEGs by using ‘limma’
package with |Fold Change| >1 and 816 DEGs were harvested. DEGs between two groups were visualized in heat map
(Figure 4A). GO and KEGG analysis were also performed and these DEGs in TMB-high group were mainly involved
in neuroactive ligand–receptor interaction, cAMP signaling pathway, calcium signaling pathway (Figure 4B,C and
Table 2). GSEA indicated that high TMB level was correlated with splicesome, RNA degradation, cell cycle and base
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Figure 3. Prognostic value of TMB and its association with clinical characteristics

(A) Higher TMB level was correlated with better survival outcome of GC patients, P=0.017. (B,C,E,F) Higher TMB was associated

with lower age, female, lower AJCC-T stage and lower AJCC-N stage. (D,G) No statistical difference was observed between TMB

and tumor grade and AJCC-M stage.

Table 1 Clinical characteristics of TCGA GC patients

Variables TCGA cohort (n=443)

Status

Alive 272 (61.4)

Dead 171 (38.6)

Age 66 +− 10.76

Gender

Female 158 (35.6)

Male 285 (64.4)

AJCC-T

T1 23 (5.2)

T2 93 (21.0)

T3 198 (44.7)

T4 119 (26.9)

TX 10 (2.2)

AJCC-N

N0 132 (29.8)

N1 119 (26.9)

N2 85 (19.2)

N3 88 (19.9)

NX 17 (3.8)

Unknown 2 (0.4)

AJCC-M

M0 391 (88.3)

M1 30 (6.8)

MX 22 (4.9)

Pathologic stage

I–II 192 (43.3)

III–IV 224 (50.6)

Unknown 27 (6.1)

Tumor grade

G1–G2 171 (38.6)

G3 263 (59.4)

GX 9 (2.0)
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Figure 4. Comparison of DEGs between TMB-high and TMB-low groups and pathway analysis

(A) Top 40 DEGs between TMB-high and TMB-low group were shown in heatmap. (B,C) GO and KEGG analyses of DEGs between

TMB-high and TMB-low groups. (D) GSEA indicated that high TMB was correlated with spliceosome, RNA degradation, cell cycle

and base excision repair.

excision repair (Figure 4D). In addition, low TMB level was associated with arachidonic acid metabolism, calcium
signaling pathway, neuroactive ligand–receptor interaction and vascular smooth muscle contraction (Supplementary
Figure S2).
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Table 2 KEGG analysis of the DEGs in TMB-high group

Description Bg ratio P-value P.adjust q-value

Neuroactive ligand–receptor interaction 340/8040 2.58E-11 6.64E-09 0.00000001

Vascular smooth muscle contraction 132/8040 4.90E-08 6.30E-06 0.00000537

cAMP signaling pathway 216/8040 2.44E-07 2.09E-05 0.00001779

Calcium signaling pathway 193/8040 4.46E-07 2.86E-05 0.00002440

Dilated cardiomyopathy (DCM) 96/8040 1.62E-06 8.33E-05 0.00007096

Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

77/8040 3.33E-06 0.00014 0.00011966

Hypertrophic cardiomyopathy (HCM) 90/8040 3.83E-06 0.00014 0.00011966

Pancreatic secretion 102/8040 1.70E-05 0.000546 0.00046522

Cell adhesion molecules (CAMs) 148/8040 2.40E-05 0.000685 0.00058390

Insulin secretion 86/8040 5.79E-05 0.001487 0.00126717

cGMP-PKG signaling pathway 167/8040 0.000112 0.002621 0.00223331

Protein digestion and absorption 95/8040 0.000155 0.00331 0.00281991

Renin secretion 69/8040 0.000811 0.014904 0.01269720

Fat digestion and absorption 43/8040 0.000812 0.014904 0.01269720

Focal adhesion 201/8040 0.000996 0.016124 0.01373677

Adrenergic signaling in cardiomyocytes 149/8040 0.001004 0.016124 0.01373677

Drug metabolism - cytochrome P450 72/8040 0.001108 0.016744 0.01426520

Aldosterone-regulated sodium
reabsorption

37/8040 0.001959 0.027971 0.02382945

Cortisol synthesis and secretion 65/8040 0.002295 0.031038 0.02644201

Aldosterone synthesis and secretion 98/8040 0.002842 0.036521 0.03111326

Chemical carcinogenesis 83/8040 0.003022 0.036981 0.03150577

ECM–receptor interaction 88/8040 0.004487 0.052421 0.04465959

Bile secretion 90/8040 0.005209 0.058203 0.04958528

Table 3 Multivariate Cox regression analysis of immune infiltration cells in GC

Cell types Coef HR 95%CI l 95%CI u P-value sig

B cell 3.262 26.096 0.419 1625.426 0.122 -

CD8 T cell −2.040 0.130 0.009 1.966 0.141 -

CD4 T cell −3.825 0.022 0.000 1.763 0.088 -

Marcophage 5.680 293.055 15.915 5396.255 0.000 *

Neutrophil −0.629 0.533 0.003 88.445 0.809 -

Dendritic 1.506 4.510 0.401 50.764 0.223 -

*P<0.05.

Immune cell infiltration in TMB-high and TMB-low GC patients
As we have separated two groups of GC patients according to TMB level, we wanted to investigate the immune cells
infiltration between the two groups. By using ‘CIBERSORT’ R package, we compared 22 immune cells in TMB-high
and TMB-low groups. The fraction of 22 immune cells in each GC patients were shown in Figure 5A and different
colors represented different immune cell type. Furthermore, the violin plot was utilized to visualize the immune cell
proportion. Wilcoxon’s rank-sum test revealed that the infiltration of activated CD4+ memory T cells, follicular helper
T cells, resting NK cells, M0 and M1 macrophages and neutrophils in TMB-high group were higher compared than
that in TMB-low group (Figure 5B). The absolute abundance of each immune cell type in each patient was shown
in Supplement Table S1. In order to further investigate the prognostic role of immune cells, we constructed a Cox
regression model in GC samples and the formula was demonstrated as follow: Surv (STAD) ∼ B cell + CD8+ T cell
+ CD4+ T cell + Macrophage + Neutrophil + Dendritic. The result showed that macrophage infiltration was the only
risk factor for GC patients (HR = 293.055, P<0.001 Table 3). Kaplan–Meier analysis was also performed and the
result showed that high macrophage was correlated with inferior survival outcome of GC patients (Figure 5C).
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Figure 5. Immune cells infiltration between TMB-high and TMB-low groups and survival analysis of immune cells

(A) Twenty-two types of immune cells infiltration status in each GC sample. (B) The comparison of immune cells infiltration between

TMB-high and TMB-low groups. (C) Kaplan–Meier analysis of different immune cells and high macrophage infiltration was correlated

with worse survival outcome of GC patients.

Figure 6. Identification of hub immune genes and construction of TMBPRS

(A) Identification of differentially expressed immune-related genes through Venn plot. (B) Assessment of TMBPRS in GC patients

and patients with high TMBPRS had worse survival outcome (P=0.00032). (C) ROC plot of TMBPRS with AUC = 0.642.

Identification of immune-related DEGs and TMBPRS establishment
We downloaded immune-related genes from immport database and ‘VennDiagram’ package was utilized to screen
out 96 immune-related genes (Figure 6A). Univariate Cox regression analysis was performed and further identified
12 prognostic genes (Table 4). TMBPRS was constructed basing on multivariate Cox regression analysis and model
was demonstrated as follow: PRS = (0.001763 × APOD + 0.033231 × FGF7 + 0.107249 × AMHR2 + 0.067987 ×
NPR3) (Table 5). And then we calculated the TMBPRS of each GC patient and patients were divided into high-risk
and low-risk groups with the cutoff value of median. Kaplan–Meier analysis was performed and the result showed
that GC patients with high risk had worse survival outcome (Figure 6B). The ROC curve of 1-year overall survival
(OS) prediction was drawn with area under curve (AUC) = 0.642 (Figure 6C).
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Table 4 Univariate Cox regression analysis of immune-related DEGs

HR HR.95L HR.95H coxPvalue

SLC22A17 1.067292 1.023803 1.112629 0.002153

APOD 1.002423 1.001157 1.003692 0.000175

CMA1 1.155618 1.043777 1.279444 0.005354

FGF7 1.048351 1.016115 1.081609 0.003044

OGN 1.006824 1.001391 1.012288 0.013767

AMHR2 1.109999 1.038009 1.186982 0.002286

GHR 1.215142 1.071306 1.37829 0.002433

GLP2R 1.412913 1.092291 1.827648 0.008483

NPR3 1.073467 1.009318 1.141694 0.024136

PTGER3 1.149958 1.018448 1.298451 0.024135

PTGFR 1.198121 1.043102 1.376179 0.010561

PTH1R 1.440015 1.056238 1.963235 0.021113

Table 5 Multivariate Cox regression analysis of immune-related DEGs

Id Coef HR HR.95L HR.95H Cox P-value

APOD 0.001763 1.001765 1.000301 1.00323 0.018081

FGF7 0.033231 1.03379 0.998769 1.070039 0.058773

AMHR2 0.107249 1.113211 1.037874 1.194017 0.002702

NPR3 0.067987 1.070352 0.998354 1.147541 0.055671

Association between CNV of TMB-related immune genes and immune
cell infiltrate
As we previously described, we used ‘VennDiagram’ package to identify the intersection between DEGs and
immune-related genes and 96 differentially expressed immune-related genes were harvested. Further univariate anal-
ysis was applied to identify genes associated with prognosis. At last, we identified four hub immune genes (APOD,
FGF7, AMHR2, NPR3) that were correlated with TMB. We then further investigated the association between mutants
of these hub immune genes and immune cell infiltrate. The ‘SCNA’ module of Timer database was used to analyze the
association and B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil and dendritic cell were incorporated into
the analysis (Figure 7). Besides, all four hub immune genes were also analyzed by Kaplan–Meier method in TCGA
and K–M plotter database (Supplementary Figure S3). The methylation status of the four hub immune genes were
also assessed in Supplementary Figure S4.

Discussion
Immunotherapy has brought a revolutionary advance in the field of oncology and ICIs played a pivotal role in it.
The mAb which targets PD-1 and CTLA-4 are the most extraordinary examples of cancer immunotherapy. Human
PD-1 is expressed on the surface of T cells and binds to the PD-L1/PD-L2 that are present on antigen-presenting
cells (APCs). The PD-1/PD-L1 axis was found to negatively regulate T-cell activation and its immunosuppression
effect is mainly through inhibitory signaling pathway in effect T cells and regulatory T (Treg) cells [24]. Since pem-
brolizumab and nivolumab were approved by FDA in 2014, they have changed the way of cancer therapy. A phase
3 clinical trial demonstrated that pembrolizumab plus chemotherapy drugs had prolonged the OS of non-small-cell
lung cancer patients compared with chemotherapy alone [25]. Recent study focuses on melanoma also found that
patients treated with nivolumab plus ipilimumab remarkably improved their OS with 52% of them survived more
than 5 years [26]. Another clinical trial showed that atezolizumab plus nab-paclitaxel improved the progression-free
survival of metastatic triple-negative breast cancer patients [27]. Besides, myriad of clinical trials demonstrated the
efficacy of anti-PD1/PD-L1 in many cancer types such as urothelial carcinoma, renal cell carcinoma, small-cell lung
cancer [28–30].

Although spectacular result made with ICIs, complicated microenvironment of different organs makes it difficult
to predict which patient will benefit. Several markers such as PD-1/PD-L1 expression [16], microsatellite instability
[31] and CD8+ T cell infiltration [32] have been developed to recognize appropriate patients but their effects were
limited. Therefore, finding better marker to optimize the therapeutic effects of ICIs is of vital importance.

10 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. Correlation between mutants of four hub immune genes and immune cells infiltration

(A) Correlation between mutants of AMHR2 and immune cells infiltration. Arm-level deletion of AMHR2 was correlated with reduced

infiltration level of B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil and dendritic cell. (B) Correlation between mutants of

APOD and immune cells infiltration. Arm-level gain of APOD was correlated with reduced infiltration level of B cell, CD8+ T cell,

CD4+ T cell, macrophage, neutrophil and dendritic cell. (C) Correlation between mutants of FGF7 and immune cells infiltration.

Arm-level deletion of FGF7 was correlated with reduced infiltration level of B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil

and dendritic cell. (D) Correlation between mutants of NPR3 and immune cells infiltration. Arm-level gain of NPR3 was correlated

with reduced infiltration level of B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil and dendritic cell.
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TMB, a promising marker for ICIs treatment, has been found to play a vital role in predicting the response of
immunotherapy. Ready et al. found that non-small cell lung cancer patients with high TMB had better response
rate and prolonged progression-free survival when treated with nivolumab plus low-dose ipilimumab despite PD-L1
expression [33]. Among 22 colorectal patients treated with PD-1/PD-L1 inhibitors, all TMB-high patients responded
while 6 out of 9 TMB-low patients progressed [34]. Besides, TMB also been demonstrated its effect in various of cancer
such as breast cancer, melanoma, urothelial carcinoma and so on [19,35,36]. Our study showed that GC patients with
higher TMB had better survival outcome and this finding was in accordance with other cancer research. In addition,
we outlined the TMB-related characteristics of GC patients and observed that TMB-high was correlated with younger
age, female, T1-T2 and N0 in GC cases.

In the current study, we calculated the TMB score of each GC patients by perl. GC patients then were divided
into TMB-high and TMB-low groups. By comparing the DEGs between TMB-high and TMB-low groups, we iden-
tified 816 DEGs. GO and KEGG pathway analyses indicated that these DEGs were mainly involved in neuroactive
ligand–receptor interaction, cAMP signaling pathway, calcium signaling pathway and so on. Further uni- and mul-
tivariate Cox analyses indicated that AMHR2, APOD, FGF7 and NPR3 were the hub immune genes and correlated
with the prognosis of GC patients. We also found that mutant of these genes was correlated with the immune infil-
trates. Immune cells infiltration such as B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil and dendritic cell
were inhibited by the mutation of these genes. To be specific, Arm-level deletion of AMHR2 and FGF7 were associ-
ated with reduced infiltration of immune cells. However, Arm-level gain of APOD and NPR3 were associated with
reduced infiltration of immune cells.

APOD is an encoding gene which encodes a component of high-density lipoprotein. Researchers found that high
expression of APOD was correlated with worse survival outcome of breast cancer patients [37]. Another group also
reported that APOD was highly expressed in prostate cancer and high grade prostatic intraepithelial neoplasia com-
pared with adjacent normal tissue [38]. FGF7 belongs to fibroblast growth factor (FGF) family and possess mitogenic
and cell survival activities. Zhu et al. reported that FGF7 could promote breast cancer progression through AKT
signaling pathway [39]. In GC, several studies indicated that FGF7 might play a role in GC cell proliferation and
metastasis [40,41]. The product of gene NPR3 encodes one of the natriuretic peptide receptors and responsible of
clearing natriuretic peptides. Previous study demonstrated that high expression of NPR3 was correlated with poor
prognosis of colorectal patients [42].

It is widely recognized that immune cells infiltration status had prognostic value in multiple cancer. We compared
22 immune cells between TMB-high and TMB-low group and found that CD4+ memory T cells, follicular helper
T cells, resting NK cells, M0 and M1 macrophages and neutrophils were differently infiltrated in the two groups.
In order to further investigate whether this difference in the two groups would affect the survival outcome of GC
patients, we performed the Cox regression analysis. The result demonstrated that high macrophage infiltration was
associated with worse survival outcome of GC patients. Similar conclusion was drawn by Su et al. that high density
of macrophage predicted a poor survival outcome of GC patients [43]. Several studies investigated the interaction of
macrophage and GC cell and found that macrophage might play a role in promoting GC cell proliferation, metastasis,
angiogenesis, chemoresistance and immune invasion [44–47].

Finally, a prognostic algorithm (TMBPRS) was constructed according to the Cox regression analysis and patients
with high TMBPRS had worse survival outcomes. However, the AUC of this algorithm was only 0.642 and therefore
large data research was needed to improve the predictive effect.

However, there were some limitations in the present study: (a) lack of basic experiment such as immunohistochem-
istry to identify the correlation between four hub immune genes and immune cells infiltration and (b) large clinical
samples are needed to validate the prognostic effect of TMBPRS.

Conclusions
Higher TMB was correlated with better survival outcome of GC patients. High macrophage infiltration predicted
worse prognosis of GC patients.
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8 Scherpereel, A., Mazieres, J., Greillier, L., Lantuejoul, S., Dô, P., Bylicki, O. et al. (2019) Nivolumab or nivolumab plus ipilimumab in patients with

relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): a multicentre, open-label, randomised, non-comparative, phase 2 trial. Lancet Oncol.
20, 239–253, https://doi.org/10.1016/S1470-2045(18)30765-4

9 Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J.J., Cowey, C.L., Lao, C.D. et al. (2015) Combined Nivolumab and Ipilimumab or monotherapy in
untreated melanoma. N. Engl. J. Med. 373, 23–34, https://doi.org/10.1056/NEJMoa1504030

10 Wang, M., Munoz, J., Goy, A., Locke, F.L., Jacobson, C.A., Hill, B.T. et al. (2020) KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell
lymphoma. N. Engl. J. Med. 382, 1331–1342, https://doi.org/10.1056/NEJMoa1914347

11 Brudno, J.N., Lam, N., Vanasse, D., Shen, Y.-W., Rose, J.J., Rossi, J. et al. (2020) Safety and feasibility of anti-CD19 CAR T cells with fully human
binding domains in patients with B-cell lymphoma. Nat. Med. 26, 270–280, https://doi.org/10.1038/s41591-019-0737-3

12 Beatty, G.L., O’Hara, M.H., Lacey, S.F., Torigian, D.A., Nazimuddin, F., Chen, F. et al. (2018) Activity of mesothelin-specific chimeric antigen receptor t
cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155, 29–32, https://doi.org/10.1053/j.gastro.2018.03.029

13 Heery, C.R., Ibrahim, N.K., Arlen, P.M., Mohebtash, M., Murray, J.L., Koenig, K. et al. (2015) Docetaxel alone or in combination with a therapeutic cancer
vaccine (PANVAC) in patients with metastatic breast cancer: a randomized clinical trial. JAMA Oncol. 1, 1087–1095,
https://doi.org/10.1001/jamaoncol.2015.2736

14 Kang, Y.-K., Boku, N., Satoh, T., Ryu, M.-H., Chao, Y., Kato, K. et al. (2017) Nivolumab in patients with advanced gastric or gastro-oesophageal junction
cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind,
placebo-controlled, phase 3 trial. Lancet 390, 2461–2471, https://doi.org/10.1016/S0140-6736(17)31827-5

15 Janjigian, Y.Y., Bendell, J., Calvo, E., Kim, J.W., Ascierto, P.A., Sharma, P. et al. (2018) CheckMate-032 Study: efficacy and safety of nivolumab and
nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. J. Clin. Oncol. 36, 2836–2844,
https://doi.org/10.1200/JCO.2017.76.6212

16 Fumet, J.D., Truntzer, C., Yarchoan, M. and Ghiringhelli, F. (2020) Tumour mutational burden as a biomarker for immunotherapy: current data and
emerging concepts. Eur. J. Cancer 131, 40–50, https://doi.org/10.1016/j.ejca.2020.02.038

17 Wu, Y., Xu, J., Du, C., Wu, Y., Xia, D., Lv, W. et al. (2019) The predictive value of tumor mutation burden on efficacy of immune checkpoint inhibitors in
cancers: a systematic review and meta-analysis. Front. Oncol. 9, 1161, https://doi.org/10.3389/fonc.2019.01161

18 Rizvi, N.A., Hellmann, M.D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J.J. et al. (2015) Cancer immunology. Mutational landscape determines
sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128, https://doi.org/10.1126/science.aaa1348

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

13

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/41/2/BSR
20203336/904872/bsr-2020-3336.pdf by guest on 19 April 2024

https://doi.org/10.3322/caac.21492
https://doi.org/10.1016/S0140-6736(03)13975-X
https://doi.org/10.1016/S1470-2045(09)70136-6
https://doi.org/10.1097/00000658-200009000-00008
https://doi.org/10.1007/s10120-020-01090-4
https://doi.org/10.1038/s41577-020-0306-5
https://doi.org/10.1038/nrc1252
https://doi.org/10.1016/S1470-2045(18)30765-4
https://doi.org/10.1056/NEJMoa1504030
https://doi.org/10.1056/NEJMoa1914347
https://doi.org/10.1038/s41591-019-0737-3
https://doi.org/10.1053/j.gastro.2018.03.029
https://doi.org/10.1001/jamaoncol.2015.2736
https://doi.org/10.1016/S0140-6736(17)31827-5
https://doi.org/10.1200/JCO.2017.76.6212
https://doi.org/10.1016/j.ejca.2020.02.038
https://doi.org/10.3389/fonc.2019.01161
https://doi.org/10.1126/science.aaa1348


Bioscience Reports (2021) 41 BSR20203336
https://doi.org/10.1042/BSR20203336

19 Snyder, A., Makarov, V., Merghoub, T., Yuan, J., Zaretsky, J.M., Desrichard, A. et al. (2014) Genetic basis for clinical response to CTLA-4 blockade in
melanoma. N. Engl. J. Med. 371, 2189–2199, https://doi.org/10.1056/NEJMoa1406498

20 Goodman, A.M., Kato, S., Bazhenova, L., Patel, S.P., Frampton, G.M., Miller, V. et al. (2017) Tumor mutational burden as an independent predictor of
response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16, 2598–2608, https://doi.org/10.1158/1535-7163.MCT-17-0386

21 Wang, F., Wei, X.L., Wang, F.H., Xu, N., Shen, L., Dai, G.H. et al. (2019) Safety, efficacy and tumor mutational burden as a biomarker of overall survival
benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ib/II clinical trial NCT02915432. Ann. Oncol. 30,
1479–1486, https://doi.org/10.1093/annonc/mdz197

22 Mayakonda, A., Lin, D.-C., Assenov, Y., Plass, C. and Koeffler, H.P. (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer.
Genome Res. 28, 1747–1756, https://doi.org/10.1101/gr.239244.118

23 Newman, A.M., Steen, C.B., Liu, C.L., Gentles, A.J., Chaudhuri, A.A., Scherer, F. et al. (2019) Determining cell type abundance and expression from bulk
tissues with digital cytometry. Nat. Biotechnol. 37, 773–782, https://doi.org/10.1038/s41587-019-0114-2

24 Keir, M.E., Butte, M.J., Freeman, G.J. and Sharpe, A.H. (2008) PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704,
https://doi.org/10.1146/annurev.immunol.26.021607.090331

25 Gandhi, L., Rodrı́guez-Abreu, D., Gadgeel, S., Esteban, E., Felip, E., De Angelis, F. et al. (2018) Pembrolizumab plus chemotherapy in metastatic
non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092, https://doi.org/10.1056/NEJMoa1801005

26 Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J.-J., Rutkowski, P., Lao, C.D. et al. (2019) Five-year survival with combined nivolumab and
ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546, https://doi.org/10.1056/NEJMoa1910836

27 Schmid, P., Adams, S., Rugo, H.S., Schneeweiss, A., Barrios, C.H., Iwata, H. et al. (2018) Atezolizumab and Nab-Paclitaxel in advanced triple-negative
breast cancer. N. Engl. J. Med. 379, 2108–2121, https://doi.org/10.1056/NEJMoa1809615

28 Bellmunt, J., de Wit, R., Vaughn, D.J., Fradet, Y., Lee, J.-L., Fong, L. et al. (2017) Pembrolizumab as second-line therapy for advanced urothelial
carcinoma. N. Engl. J. Med. 376, 1015–1026, https://doi.org/10.1056/NEJMoa1613683

29 Motzer, R.J., Tannir, N.M., McDermott, D.F., Arén Frontera, O., Melichar, B., Choueiri, T.K. et al. (2018) Nivolumab plus ipilimumab versus sunitinib in
advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290, https://doi.org/10.1056/NEJMoa1712126

30 Horn, L., Mansfield, A.S., Szcz
↪
esna, A., Havel, L., Krzakowski, M., Hochmair, M.J. et al. (2018) First-line atezolizumab plus chemotherapy in

extensive-stage small-cell lung cancer. N. Engl. J. Med. 379, 2220–2229, https://doi.org/10.1056/NEJMoa1809064
31 Dudley, J.C., Lin, M.-T., Le, D.T. and Eshleman, J.R. (2016) Microsatellite instability as a biomarker for PD-1 blockade. Clin. Cancer Res. 22, 813–820,

https://doi.org/10.1158/1078-0432.CCR-15-1678
32 Fumet, J.-D., Richard, C., Ledys, F., Klopfenstein, Q., Joubert, P., Routy, B. et al. (2018) Prognostic and predictive role of CD8 and PD-L1 determination

in lung tumor tissue of patients under anti-PD-1 therapy. Br. J. Cancer 119, 950–960, https://doi.org/10.1038/s41416-018-0220-9
33 Ready, N., Hellmann, M.D., Awad, M.M., Otterson, G.A., Gutierrez, M., Gainor, J.F. et al. (2019) First-line nivolumab plus ipilimumab in advanced

non-small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J. Clin. Oncol. 37,
992–1000, https://doi.org/10.1200/JCO.18.01042

34 Schrock, A.B., Ouyang, C., Sandhu, J., Sokol, E., Jin, D., Ross, J.S. et al. (2019) Tumor mutational burden is predictive of response to immune
checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann. Oncol. 30, 1096–1103, https://doi.org/10.1093/annonc/mdz134

35 Park, S.E., Park, K., Lee, E., Kim, J.-Y., Ahn, J.S., Im, Y.-H. et al. (2018) Clinical implication of tumor mutational burden in patients with HER2-positive
refractory metastatic breast cancer. Oncoimmunology 7, e1466768, https://doi.org/10.1080/2162402X.2018.1466768

36 Galsky, M., Saci, A., Szabo, P.M., Han, G.C., Grossfeld, G.D., Collette, S. et al. (2020) Nivolumab in patients with advanced platinum-resistant urothelial
carcinoma: efficacy, safety, and biomarker analyses with extended follow-up from CheckMate 275. Clin. Cancer Res.,
https://doi.org/10.1158/1078-0432.CCR-19-4162

37 Jankovic-Karasoulos, T., Bianco-Miotto, T., Butler, M.S., Butler, L.M., McNeil, C.M., O’Toole, S.A. et al. (2020) Elevated levels of tumour apolipoprotein D
independently predict poor outcome in breast cancer patients. Histopathology 76, 976–987, https://doi.org/10.1111/his.14081

38 Hall, R.E., Horsfall, D.J., Stahl, J., Vivekanandan, S., Ricciardelli, C., Stapleton, A.M. et al. (2004) Apolipoprotein-D: a novel cellular marker for HGPIN
and prostate cancer. Prostate 58, 103–108, https://doi.org/10.1002/pros.10343

39 Zhu, Y., Yang, L., Chong, Q.-Y., Yan, H., Zhang, W., Qian, W. et al. (2019) Long noncoding RNA Linc00460 promotes breast cancer progression by
regulating the miR-489-5p/FGF7/AKT axis. Cancer Manag. Res. 11, 5983–6001, https://doi.org/10.2147/CMAR.S207084

40 Ma, H.-W., Xi, D.-Y., Ma, J.-Z., Guo, M., Ma, L., Ma, D.-H. et al. (2020) Long noncoding RNA AFAP1-AS1 promotes cell proliferation and metastasis via
the miR-155-5p/FGF7 axis and predicts poor prognosis in gastric cancer. Dis. Markers 2020, 8140989, https://doi.org/10.1155/2020/8140989

41 Huang, T., Wang, L., Liu, D., Li, P., Xiong, H., Zhuang, L. et al. (2017) FGF7/FGFR2 signal promotes invasion and migration in human gastric cancer
through upregulation of thrombospondin-1. Int. J. Oncol. 50, 1501–1512, https://doi.org/10.3892/ijo.2017.3927

42 Martinez-Romero, J., Bueno-Fortes, S., Martı́n-Merino, M., Ramirez de Molina, A. and De Las Rivas, J. (2018) Survival marker genes of colorectal
cancer derived from consistent transcriptomic profiling. BMC Genomics 19, 857, https://doi.org/10.1186/s12864-018-5193-9

43 Su, C.-Y., Fu, X.-L., Duan, W., Yu, P.-W. and Zhao, Y.-L. (2018) High density of CD68+ tumor-associated macrophages predicts a poor prognosis in
gastric cancer mediated by IL-6 expression. Oncol. Lett. 15, 6217–6224, https://doi.org/10.3892/ol.2018.8119

44 Eissmann, M.F., Dijkstra, C., Jarnicki, A., Phesse, T., Brunnberg, J., Poh, A.R. et al. (2019) IL-33-mediated mast cell activation promotes gastric cancer
through macrophage mobilization. Nat. Commun. 10, 2735, https://doi.org/10.1038/s41467-019-10676-1

45 Lin, C., He, H., Liu, H., Li, R., Chen, Y., Qi, Y. et al. (2019) Tumour-associated macrophages-derived CXCL8 determines immune evasion through
autonomous PD-L1 expression in gastric cancer. Gut 68, 1764–1773, https://doi.org/10.1136/gutjnl-2018-316324

46 Yu, S., Li, Q., Yu, Y., Cui, Y., Li, W., Liu, T. et al. (2020) Activated HIF1α of tumor cells promotes chemoresistance development via recruiting
GDF15-producing tumor-associated macrophages in gastric cancer. Cancer Immunol. Immunother. 69, 1973–1987,
https://doi.org/10.1007/s00262-020-02598-5

14 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/41/2/BSR
20203336/904872/bsr-2020-3336.pdf by guest on 19 April 2024

https://doi.org/10.1056/NEJMoa1406498
https://doi.org/10.1158/1535-7163.MCT-17-0386
https://doi.org/10.1093/annonc/mdz197
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1146/annurev.immunol.26.021607.090331
https://doi.org/10.1056/NEJMoa1801005
https://doi.org/10.1056/NEJMoa1910836
https://doi.org/10.1056/NEJMoa1809615
https://doi.org/10.1056/NEJMoa1613683
https://doi.org/10.1056/NEJMoa1712126
https://doi.org/10.1056/NEJMoa1809064
https://doi.org/10.1158/1078-0432.CCR-15-1678
https://doi.org/10.1038/s41416-018-0220-9
https://doi.org/10.1200/JCO.18.01042
https://doi.org/10.1093/annonc/mdz134
https://doi.org/10.1080/2162402X.2018.1466768
https://doi.org/10.1158/1078-0432.CCR-19-4162
https://doi.org/10.1111/his.14081
https://doi.org/10.1002/pros.10343
https://doi.org/10.2147/CMAR.S207084
https://doi.org/10.1155/2020/8140989
https://doi.org/10.3892/ijo.2017.3927
https://doi.org/10.1186/s12864-018-5193-9
https://doi.org/10.3892/ol.2018.8119
https://doi.org/10.1038/s41467-019-10676-1
https://doi.org/10.1136/gutjnl-2018-316324
https://doi.org/10.1007/s00262-020-02598-5


Bioscience Reports (2021) 41 BSR20203336
https://doi.org/10.1042/BSR20203336

47 Wang, Z., Yang, Y., Cui, Y., Wang, C., Lai, Z., Li, Y. et al. (2020) Tumor-associated macrophages regulate gastric cancer cell invasion and metastasis
through TGFβ2/NF-κB/Kindlin-2 axis. Chinese J. Cancer Res. 32, 72–88, https://doi.org/10.21147/j.issn.1000-9604.2020.01.09

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

15

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/41/2/BSR
20203336/904872/bsr-2020-3336.pdf by guest on 19 April 2024

https://doi.org/10.21147/j.issn.1000-9604.2020.01.09

