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Background: Emerging evidence shows that m.5178C>A variant is associated with a lower
risk of coronary artery disease (CAD). However, the specific mechanisms remain elusive.
Since dyslipidemia is one of the most critical risk factors for CAD and accounts for at least
50% of the population-attributable risk, it is tempting to speculate that the reduced CAD risk
caused by the m.5178C>A variant may stem from an improved lipid profile. In order to verify
this hypothesis, we conducted the present study to clarify the association of m.5178C>A
variant with lipid levels.
Methods: By searching ten databases for studies published before 30 June 2021. Thirteen
East Asian populations (7587 individuals) were included for the analysis.
Results: The present study showed that m.5178C>A variant was associated with higher
high-density lipoprotein cholesterol (HDL-C) [standardized mean difference (SMD) = 0.12,
95% confidence interval (CI) = 0.06–0.17, P<0.001] and total cholesterol (TC) (SMD = 0.08,
95% CI = 0.02–0.14, P=0.01) levels. In subgroup analysis, the association of m.5178C>A
variant with higher HDL-C levels were observed in Japanese (SMD = 0.09, 95% CI =
0.01–0.17, P=0.03) and Chinese populations (SMD = 0.13, 95% CI = 0.07–0.20, P<0.001).
However, the association of m.5178C>A variant with lower low-density lipoprotein choles-
terol (LDL-C) levels were only observed in Japanese populations (SMD = −0.11, 95% CI =
−0.22 to 0.00, P=0.04).
Conclusions: The m.5178C>A variant was associated with higher HDL-C and lower LDL-C
levels in Japanese populations, which may contribute to decreased CAD risk and longevity
of Japanese.

Introduction
The human mitochondrial genome is closely associated with the human lifespan, and each human cell
contains hundreds to thousands of copies of the mitochondrial genome, which encode 13 polypeptides
[1] that are associated with oxidative phosphorylation (OXPHOS) respiratory chain complex [2].

The m.5178C>A variant is rare worldwide [3] and is the earliest reported to be associated with longevity
in Japanese populations [4]. Since variant of m.5178C>A primarily linked to Asian haplotypes [5] and
relatively absent from European descents [6], this study was conducted only in East Asian populations due
to a higher prevalence [4,5,7]. The m.5178C>A variant is located in the NADH dehydrogenase subunit-2
(ND2) gene of mitochondrial DNA (mtDNA) and formed by a transversion from cytosine (C) to adenine
(A). The mtDNA-ND2 m.5178C>A variant leads to replacing leucine with methionine (p.Leu237Met).

A series of mouse model experiments [8–10] showed that the mtDNA damage affected lipid
metabolism. For instance, the damaged mtDNA promoted lipid deposition in the atherosclerotic plaque
[8], while the mtDNA dysfunction induced dyslipidemia [9]. Moreover, the loss of mitochondrial
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Figure 1. Flow diagram of the articles selection process

A total of 70 studies were identified, and 28 studies were excluded by its title and abstract. A total of 42 possible studies were

full-text reviewed and 29 studies were excluded because of absent lipid data (n=23), overlapping data (n=5), data from other

ethnicities (n=1). Finally, 13 studies were included for quantitative analysis.

polymerase-γproofreading activity (PolgD257A/D247A) and ApoE knockout (ApoE−/−) caused severe dyslipidemia
[10]. Together, it indicated that the damage of mtDNA was associated with dyslipidemia. Notably, this speculation
was verified by Sun et al. [11]. Moreover, an emerging study [12] reported that m.5178C>A variant was associated
with improved mitochondrial functions. Intriguingly, the improvement of mitochondrial functions was associated
with ameliorated lipid metabolism [13–15]. When combined with the above speculation, a variant of m.5178C>A
may benefit lipid profile by enhancing mitochondrial functions.

Moreover, it was well documented that [4,7,16] variant of m.5178C>A was more frequent in centenarians than in
general populations, suggesting that m.5178C>A variant was associated with longevity. Notably, this speculation was
consistent with a complete mitochondrial sequencing analysis [17].

Over the last decade, intensive efforts [18–20] have been made in the scientific community to clarify the corre-
lation between lipid metabolism and lifespan. The research results showed that the healthy [21] or the ameliorated
[22,23] lipid profile may contribute to the extent of lifespan [21–23]. When combined with the above speculations
whereby variant of m.5178C>A was associated with ameliorated lipid metabolism and longevity, it indicated that the
ameliorated lipid profile might mediate the effects of the m.5178 variant on longevity.

The studies regarding the relationship between m.5178C>A variant and acute myocardial infarction (AMI) were
limited but consistent. For instance, Mukae et al. [24] reported that the m.5178A>C variant was a risk factor of
AMI. In contrast, Takagi et al. [25] claimed that the m.5178C>A variant was a protective factor of AMI. Moreover,
Mitrofanov et al. [26] revealed that m.5178C>A variant was associated with reduced cardiovascular events in AMI
patients. Although the m.5178C>A variant may reduce the AMI risk, the underlying mechanisms remain elusive.
Therefore, the present study was required to clarify the effects of m.5178C>A variant on lipid levels and provide
some clues or references to clarify possible mechanisms underlying m.5178C>A variant and AMI.
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Figure 2. Forest plot of the meta-analysis between the mt5178 C/A mutant and serum lipid levels

(A) mt5178 C/A and HDL-C levels. (B) mt5178 C/A and LDL-C levels. (C) mt5178 C/A and TG levels. (D) mt5178 C/A and TC levels.

Materials and methods
Literature search
A comprehensive literature search was performed from 31 March 2021 to 30 June 2021 by using ten databases in-
cluding PubMed, Medline, Embase, Cochrane Library, Web of Science, Google Scholar, Foreign Medical Journal Ser-
vice, Excerpta Medica, CNKI, Wanfang. The following keywords were used in the search: (‘mtDNA’, ‘m.5178C>A’,
‘ND2-237’, ‘ND2-237 L/M’), (‘mutant’, ‘mutation’, ‘variant’, ‘variation’, ‘polymorphism’, ‘SNP’ or ‘single nucleotide poly-
morphism’) and (‘lipids’, ‘serum lipids’, ‘plasma lipids’, ‘circulating lipids’, ‘blood lipids’, ‘triglycerides’, ‘total cholesterol’,
‘low-density lipoprotein cholesterol’, ‘high-density lipoprotein cholesterol’, ‘TG’, ‘TC’, ‘LDL-C’ or ‘HDL-C’). Addition-
ally, the reference lists of all eligible studies were manually retrieved to obtain more literature.

Inclusion and exclusion criteria
The specific inclusion criteria were listed: (1) The test subjects must be limited to the East Asian population. (2)
The studies investigated the association of m.5178C>A variant with serum lipid levels. (3) The studies at least pro-
vided one of four parameters in lipid profile (triglyceride (TG), TC, low-density lipoprotein cholesterol (LDL-C) and
high-density lipoprotein cholesterol (HDL-C)). (4) The studies provided the frequency of m.5178C>A variant. (5)
The studies offered the mean lipid levels with standard deviation (SD) or standard errors (SE) by m.5178C>A variant.
(6) The interventional articles provided pre-intervention data. (7) The language of eligible studies was restricted to
English or Chinese. The specific exclusion criteria were as follows: (1) The studies did not relate to m.5178C>A vari-
ant. (2) The studies did not relate to lipid levels. (3) The studies did not present the frequency of m.5178C>A variant.
(4) The studies provided invalid data. (5) The studies provided incomplete data. (6) Pedigree studies. (7) Overlapping
studies. (8) Abstract, review, case report, meta-analysis and animal studies.
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Figure 3. Sensitivity analysis between the mt5178 C/A mutant and serum lipid levels

Open circle is SMID, parallel lines represent 95% CI. (A) mt5178 C/A and TG levels. (B) mt5178 C/A and TC levels. (C) mt5178 C/A

and HDL-C levels. (D) mt5178 C/A and LDL-C levels.

Data extraction
Two authors (Fuqiang Liu and Shengping Wang) extracted the data independently using a standardized data ex-
traction table. The discrepancy in data extracted was resolved by consensus or a discussion with the third author
(Zhi Luo). If critical data were absent, e-mail or telephone was used to contact the corresponding author to acquire
this information. The following data were extracted from each eligible study: the last name of the first author, year,
country (i.e., China and Japan), gender (males and females), ethnicity (i.e., Chinese and Japanese), the frequency of
m.5178C>A variant, genotyping methods, type of study, type of disease, total sample size, mean lipid levels with SD
or SE by m.5178C>A variant.

Data analysis
The units of TG, TC, LDL-C and HDL-C were converted into mmol/l. All extracted data were expressed as mean +−
SD. All the analyses were performed by STATA software (version 15.0, College Station, TX). P<0.05 was recognized
as statistically significant. The standardized mean difference (SMD) and 95% confidence interval (CI) were used to
evaluate the differences in lipid levels.

Heterogeneity definition and processing
Inevitably, there were differences between the studies included in the meta-analysis. The differences or diversity be-
tween participants, interventions, and the measurement results among a series of studies were defined as ‘hetero-
geneity’ [27]. Heterogeneity was tested by I2 statistic and Cochran’s χ2-based Q statistic. Galbraith plots were used to
detect the potential sources of heterogeneity. If heterogeneity was significant (I2 > 50%, P≤0.05), the random-effects
model (DerSimonian–Laird method) was used to calculate the results [28]. Otherwise, the fixed-effects model
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Figure 4. Begg’s funnel plot of the association analysis between the mt5178 C/A mutant and serum lipid levels

The diverging lines represent 95% CI and the central line is SMD. (A) mt5178 C/A and TG levels. (B) mt5178 C/A and TC levels. (C)

mt5178 C/A and LDL-C levels. (D) mt5178 C/A and HDL-C levels.

(Mantel–Haenszel method) would be adopted. All synthetic results were recalculated after eliminating the studies
with heterogeneity.

Publication bias test
The publication bias among the included studies was evaluated by Begg’s funnel plot and Egger’s linear regression test
[29].

Subgroup analysis
Subgroup analysis was carried out by ethnicity, gender and health status. The ethnicity was divided into Chinese
and Japanese. The health status was divided into type 2 diabetes mellitus (T2DM) patients and healthy subjects. In
some studies, the subjects were divided into more than one subpopulation (e.g., the subjects originated from different
races, the subjects with different types of disease, case and control subjects). Each subpopulation was regarded as an
independent comparison in the present study.

Sensitivity analysis
Sensitivity analysis was conducted in the present meta-analysis, in which the comparison was excluded one by one
and performed the analysis again after omitting each comparison. If the synthetic results in any study changed sub-
stantially to alter the results from significant to non-significant or the other way around. The absence of such a phe-
nomenon usually indicates the robustness and stability of synthetic results.
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Results
Study selection
By searching the above ten databases, 70 studies were identified. After the screening, 28 studies were excluded by
their title and abstract. Next, 42 studies were estimated by their contents. In which, 23 studies did not provide lipid
data, 5 studies [30–34] had lipid data overlapping with other publications [35], and 1 study had lipid data of other
ethnicities [36]. Therefore, 29 studies were further excluded. Finally, 13 studies (7587 individuals) were included in
our study (Figure 1).

The references of the included studies were listed in Supplementary Material. The characteristics of the included
studies were presented in Supplementary Table S1. The serum lipid levels by m.5178C>A variant were presented in
Supplementary Table S2.

Association of m.5178C>A variant with serum lipid levels
The outcomes of the analysis on all comparisons showed that m.5178C>A variant was associated with higher HDL-C
levels (SMD = 0.12, 95% CI = 0.05–0.19, P=0.001) (Table 1).

Then the subgroup analysis was carried out (Table 1). Subgroup analysis by the characteristics of the subjects
showed that the significant association of m.5178C>A variant with higher HDL-C levels was observed in Japanese,
Chinese, T2DM patients, male and healthy subjects. However, the significant association of m.5178C>A variant with
lower LDL-C levels was only observed in Japanese.

The analysis that excluded the studies with heterogeneity was also carried out (Table 1). However, the significant
associations of m.5178C>A variant with serum lipid levels did not change (Figure 2A–C) substantially excepting
TC (Table 1 and Figure 2D), which showed statistical significance in Chinese and T2DM patients after eliminating
heterogeneity.

Evaluation of heterogeneity
In analyzing the association of m.5178C>A variant with lipid levels, significant heterogeneity was detected in TG, TC
and HDL-C (Table 1). Four (Kokaze A2 2001, Ohkubo R1 2002, Ohkubo R2 2002, Song XY 2006), four (Matsunaga
H 2001, Ohkubo R1 2002, Ohkubo R2 2002, Gu JG 2005) and one (Gu JG 2005) comparisons were recognized as
the main contributors to TG, TC and HDL-C heterogeneity, respectively. The SMD values and 95% CIs of TG and
HDL-C did not change substantially after excluding these comparisons (Table 1). However, the SMD value and 95%
CI of TC (SMD = 0.08, 95% CI = 0.02–0.14, P=0.01) changed significantly after excluding these comparisons.

Sensitivity analysis
Sensitivity analysis showed that no comparison might affect the association of m.5178C>A variant with TG (Figure
3A), TC (Figure 3B) and HDL-C (Figure 3C) levels. However, one comparison (Song XY 2006) may affect the signif-
icant association of m.5178C>A variant with LDL-C (Figure 3D) levels. Interestingly, the SMD value and 95% CI of
LDL-C (SMD = −0.01, 95% CI = −0.08–0.05, P=0.66) did not change significantly after excluding this comparison.

Publication bias test
Begg’s funnel plot was used to evaluate the publication bias among the included studies. However, no publication bias
was observed in synthetic results (Figure 4A–D), which was confirmed by Egger’s regression test (P=0.78 for TG,
P=0.37 for TC, P=0.22 for LDL-C and P= 0.31 for HDL-C).

Discussion
The present study showed that the m.5178C>A variant was significantly associated with higher HDL-C and TC levels.
Subgroup analysis showed the significant association of m.5178C>A variant with higher HDL-C levels was primarily
in Japanese and Chinese populations. While the significant association of m.5178C>A variant with lower LDL-C
levels was only observed in Japanese populations.

The mechanisms underlying the association of m.5178C>A variant with lipid levels remain elusive. However, one
hypothesis could be proposed to explain our findings, that is, by protecting against oxidative stress. The p.Leu237Met in
mtDNA-ND2 may affect NADH dehydrogenase’s function and thus inhibit ROS release [37,38]. Moreover, a promis-
ing study conducted by Levine et al. [39] showed that the methionine readily reacts with oxidants to form methionine
sulfoxide and thus scavenges oxidizing molecules [40]. Therefore, the increased methionine caused by m.5178C>A
variant may protect against oxidative stress. Notably, this hypothesis was verified by an emerging study conducted
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Table 1 Associations of m.5178C>A variant with serum lipid levels

Groups or
subgroups

Comparisons
(Subjects) PH

SMD (95%
CI) PSMD

Groups or
subgroups

Comparisons
(Subjects) PH

SMD (95%
CI) PSMD

Overall results Recalculated results that eliminated heterogeneity
TG TG

All 17 (7477) <0.001 −0.04
(−0.14–0.05)

0.36 All 13 (5918) 0.40 −0.05
(−0.11–0.01)

0.12

Japanese 10 (2388) <0.01 −0.08
(−0.23–0.07)

0.30 Japanese 7 (1868) 0.44 −0.03
(−0.12–0.06)

0.54

Chinese 7 (5089) 0.02 −0.01
(−0.13–0.11)

0.85 Chinese 6 (4050) 0.24 −0.06
(−0.13–0.02)

0.12

Male 7 (1667) 0.35 −0.02
(−0.13–0.10)

0.78 Male 7 (1667) 0.35 −0.02
(−0.12–0.09)

0.78

T2DM 6 (3396) 0.01 0.01
(−0.21–0.23)

0.95 T2DM 5 (2357) 0.08 −0.10
(−0.26–0.06)

0.22

Healthy
subjects

8 (1993) 0.02 −0.05
(−0.21–0.11)

0.53 Healthy
subjects

6 (1600) 0.54 -0.03
(−0.14–0.07)

0.54

TC TC

All 16 (6789) <0.001 −0.02
(−0.13–0.10)

0.79 All 12 (5782) 0.68 0.08
(0.02–0.14)

0.01

Japanese 9 (1700) <0.001 −0.08
(−0.26–0.10)

0.37 Japanese 6 (867) 0.94 −0.05
(−0.19–0.08)

0.46

Chinese 7 (5089) <0.01 0.05
(−0.08–0.19)

0.46 Chinese 6 (4915) 0.78 0.12
(0.05–0.18)

<0.01

Male 6 (979) 0.62 −0.01
(−0.14–0.13)

0.94 Male 6 (979) 0.62 −0.01
(−0.14–0.13)

0.94

T2DM 6 (3396) <0.01 −0.04
(−0.33–0.25)

0.69 T2DM 4 (2810) 0.64 0.11
(0.02–0.19)

0.02

Healthy
subjects

7 (1305) 0.15 0.06
(−0.10–0.21)

0.48 Healthy
subjects

6 (1011) 0.61 −0.02
(−0.16–0.11)

0.72

LDL-C LDL-C

All 12 (6458) 0.42 0.01
(−0.04–0.07)

0.64 All 12 (6458) 0.42 0.01
(−0.04–0.07)

0.64

Japanese 5 (1369) 0.94 −0.11
(−0.22–0.00)

0.04 Japanese 5 (1369) 0.94 −0.11
(−0.22–0.00)

0.04

Chinese 7 (5089) 0.72 0.06
(−0.01–0.12)

0.08 Chinese 7 (5089) 0.72 0.06
(−0.01–0.12)

0.08

Male 5 (1481) 0.60 −0.09
(−0.20–0.02)

0.10 Male 5 (1481) 0.60 −0.09
(−0.20–0.02)

0.10

T2DM 5 (2984) 0.55 0.07
(−0.02–0.15)

0.11 T2DM 5 (2984) 0.55 0.07
(−0.02–0.15)

0.11

Healthy
subjects

6 (1580) 0.74 −0.09
(−0.20–0.01)

0.09 Healthy
subjects

6 (1580) 0.74 −0.09
(−0.20–0.01)

0.09

HDL-C HDL-C

All 18 (7587) 0.07 0.12
(0.05–0.19)

0.001 All 17 (7413) 0.24 0.12
(0.06–0.17)

<0.001

Japanese 11 (2498) 0.42 0.09
(0.01–0.17)

0.03 Japanese 11 (2498) 0.42 0.09
(0.01–0.17)

0.03

Chinese 7 (5089) 0.02 0.16
(0.04–0.27)

0.01 Chinese 6 (4915) 0.12 0.13
(0.07–0.20)

<0.001

Male 8 (1777) 0.54 0.13
(0.03–0.23)

0.01 Male 8 (1777) 0.54 0.13
(0.03–0.23)

0.01

T2DM 6 (3396) 0.01 0.15
(0.00–0.30)

0.05 T2DM 5 (3222) 0.05 0.11
(0.03–0.19)

0.01

Healthy
subjects

9 (2103) 0.60 0.12
(0.03–0.21)

0.01 Healthy
subjects

9 (2103) 0.60 0.12
(0.03–0.21)

0.01

Abbreviation: PH, PHeterogeneity.
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by Tian et al. [12], in which, variant of m.5178C>A decreased ROS production and Caspase 3/7 activity, increased
ATP production and membrane potential, and resistance to apoptosis. All these protective effects caused by this poly-
morphism demonstrated that variant of m.5178C>A was related to increased mitochondrial functions, which might
benefit lipid metabolism [13–15,41–44].

In the present study, the significant association of m.5178C>A variant with higher HDL-C and TC levels was
observed in Chinese (Table 1), indicating a contradictory correlation between m.5178C>A variant and lipid levels in
Chinese populations. In addition, the significant association of m.5178C>A variant with higher HDL-C and lower
LDL-C levels was observed in Japanese (Table 1), indicating a beneficial correlation between m.5178C>A variant and
lipid levels in Japanese populations, which may contribute to the decreased susceptibility of AMI [24–26].

The mechanisms underlying the effects of m.5178C>A variant on longevity have not been fully clarified. However,
it is now increasingly evidenced that the higher levels of HDL-C [22,45–47] and the lower levels of LDL-C [22,23]
were associated with longevity. When combined with the present study, whereby m.5178C>A variant was associated
with higher HDL-C levels and lower LDL-C levels in Japanese populations, this variant was associated with higher
HDL-C levels in Chinese populations. It indicated that the higher HDL-C and lower LDL-C levels associated with
m.5178C>A variant may contribute to the longevity of Japanese populations [4]. In contrast, the higher HDL-C levels
associated with m.5178C>A variant may contribute to the longevity of Chinese populations [7].

Several limitations of the present meta-analysis should be noted. First of all, a large number of genes as well as some
environmental factors are involved in dyslipidemia. However, this meta-analysis has not investigated the interactions
of m.5178C>A variant with other variant loci or environmental factors on serum lipid levels due to the lack of original
data from the included studies. Secondly, a relatively small number of individuals have been included in the lipid
association analysis for m.5178C>A variant due to the limited number of studies that met the inclusion criteria,
which may reduce the statistic power and even cause type I error (false-positive results). Thirdly, this meta-analysis
only included the studies published in English and Chinese as it is very difficult to get the full papers published in
various languages.

Conclusions
The m.5178C>A variant was associated with higher HDL-C and lower LDL-C levels in Japanese populations, which
may contribute to decreased coronary artery disease (CAD) risk and longevity of Japanese.
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