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Background: We aimed to develop a diagnostic indicator of stroke based on serum miRNAs
correlated to systolic blood pressure.
Methods: Using miRNA expression profiles in GSE117604 from the Gene Expression Om-
nibus (GEO), we utilized the WGCNA to identify hub miRNAs correlated to systolic blood
pressure (SBP). Differential analysis was applied to highlight hub differentially expressed
miRNAs (DE-miRNAs), whereby we built a miRNA-based diagnostic indicator for stroke us-
ing bootstrap ranking Least Absolute Shrinkage and Selection Operator (LASSO) regression
with 10-fold cross-validation. The classification value of the indicator was validated with re-
ceiver operating characteristic (ROC) analysis in both the training set and test set, as well as
quantitative real-time PCR (qRT-PCR) for the feature miRNAs. Further, target genes of hub
miRNAs and hub DE-miRNAs were retrieved for functional enrichment.
Results: A total of 447 hub miRNAs in the blue modules were significantly correlated with
systolic blood pressure (r = 0.32, false discovery rate = 10−6). Target genes predicted with
the hub miRNAs were mostly implicated in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) terms including mitogen-activated protein kinase (MAPK) pathway, senescence, and
TGF-β signaling pathway. The diagnostic indicator with miR-4420 and miR-6793-5p showed
remarkable performance in the training set (area under curve [AUC]= 0.953), as well as in
the test set (AUC = 0.894). Results of qRT-PCR validated the diagnostic value of the two
miRNAs embedded in the proposed indicator.
Conclusions: We developed a panel of two miRNAs, which is a good diagnostic indicator
for stroke. These results require further investigation.

Introduction
Stroke, also known as cerebral vascular accident, is one of the most prevalent causes of death and long-term
disability worldwide [1,2]. A comprehensive understanding of risk factors may contribute to intervention
to reduce the risk of stroke, identification of diagnostic biomarkers, as well as a better chance of func-
tional recovery. It has been well-established that hypertension is the most prominent risk factor of stroke
independent of stroke subtypes (hemorrhagic or ischemic) [3]. With its modifiable nature, blood pressure
holds potential in the identification of diagnostic and predictive biomarkers for stroke. Surrogate biomark-
ers could be developed using transcriptomic data correlated to blood pressure, including serum mRNA
and non-coding RNA expressions. Among them, microRNAs (miRNAs) have shown clinical relevance to
diagnosis, prognosis, and therapy in the context of stroke [4].

MiRNAs, a group of small non-coding RNAs, bind to the 3′ untranslated regions of target mRNAs and
play a suppressive role in post-transcriptional regulation of gene expression [5,6]. Specifically, miRNAs
could be exploited for noninvasive detection from samples of body fluids such as peripheral blood [7]. In
this context, clinical implications of serum miRNAs have been reported in a variety of diseases including
stroke [8–11]. Researches have shown signatures based on serum miRNAs could predict the risk of stroke
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Figure 1. Workflow of the overall analysis
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Figure 2. WGCNA identified hub miRNAs associated with clinical features

(A) Clustering analysis of samples to detect outliers. (B) Soft threshold determination of the WGCNA. (C) Hierarchical clustering

dendrograms of identified modules with co-expressed miRNAs. (D) Correlation matrix between miRNA modules and clinical traits.

The number in each cell represents coefficient (r) indicating the strength of correlation between module and corresponding clinical

trait, while the number in the parenthesis shows the P-value of the correlation test. The blue circle indicated miRNAs in the blue

module were significantly correlated to systolic blood pressure.

[12], and hold promise to be prognostic biomarkers in survivors with neurological neoplasms [13,14]. Besides, miR-
NAs are implicated in various biological processes including immune response [15], regulation of cell cycles [16], and
cellular metabolism [17]. As such, we hypothesized that serum miRNAs correlated to systolic blood pressure (SBP)
could be diagnostic biomarkers for stroke.

Using miRNA profiles from the Gene Expression Omnibus (GEO) database, we identified miRNAs correlated to
SBP via Weighted Gene Co-expression Network Analysis (WGCNA) [18,19], and built a diagnostic indicator with
two miRNAs by integrated analysis. Meanwhile, functional implications of featured miRNAs, as well as downstream
mRNAs, were explored with bioinformatics methods.

Materials and methods
Flowchart and data source
The workflow of the overall analysis is presented in Figure 1. From the GEO database (https://www.ncbi.nlm.nih.gov/
geo/), the miRNA expression matrix of GSE117064 was obtained [12]. The dataset embedded a total of 1785 serum
samples, out of which 262 samples were collected from individuals with age >69 years, comprising 173 samples of
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stroke patients and 89 samples of age-matched controls. Analyses of the present study were performed using the 262
samples.

WGCNA and functional enrichment analysis
The weighted gene correlation network analysis (WGCNA) [18,19] was performed to construct a co-expression net-
work in an effort to identify hub miRNAs correlated to clinical features using the ‘WGCNA’ package. Samples and
miRNAs were filtered with good sample test and good gene test, while outliers of samples were further detected with
hierarchical clustering. Filtered miRNAs were used to construct a scale-free network by calculating the connection
strength between miRNAs. We assessed the correlation among miRNA modules, as well as their correlations to clinical
traits. To narrow down the candidate miRNAs, we specifically focused on the miRNA module significantly associated
with systolic blood pressure in elderly individuals. P values were adjusted with the false discovery rate (FDR) method
[20], where FDR < 0.05 and correlation coefficient (r) > 0.3 were considered statistically significant. The potential
target genes of selected hub miRNAs embedded in the module were predicted using FunRich software 3.1.3 [21].
The Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment
analysis via the clusterProfiler R package [22].

Differential analysis and identification of hub DE-miRNAs
Differentially expressed miRNAs (DE-miRNAs) between stroke and control samples using the Linear Models for
Microarray Data (LIMMA) package [23] in R software, with the P values adjusted via the FDR as well [20]. The
threshold for identification of DE-miRNAs was FDR < 0.05 and |log2 FC| > 1. Expression of the top 100 DE-miRNAs
with the most significant FDR values were presented with a heatmap and volcano plot. Subsequently, hub DE-miRNAs
were identified with the intersection of hub miRNAs identified via WGCNA and the top 100 DE-miRNAs. To identify
downstream hub genes of the hub DE-miRNAs, target genes were predicted using the aforementioned method. Then,
the protein–protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting
Genes [24] (STRING, version 10.5, https://www.string-db.org/). Genes with no less than 8 edges were considered as
hub genes. Samples were also filtered with the intersection of samples in the WGCNA and differential analysis, in
order to build a diagnostic indicator in downstream analyses.

Development and validation of the diagnostic indicator
Filtered samples were randomly assigned in a 1:1 ratio to a training set and a test set, with the same proportion of
stroke patients in both datasets. From the hub DE-miRNAs, we selected specific hub DE-miRNAs in the training
set via the least absolute shrinkage and selection operator (LASSO) regression analysis using a bootstrap ranking
procedure [25]. A 10-fold cross-validation was conducted with five external loops for intersection operation and
100 internal loops for bootstrap resampling [26,27]. Subsequently, we calculated the individualized riskscore with
coefficients-weighted expression levels of specific feature DE-miRNAs and constructed a diagnostic indicator. The
cutoff score was determined by the Youden method [28]. Samples with riskscores higher than the cutoff value were
classified as stroke cases, while those with lower scores was classified into healthy controls. Using data in the training
set, the receiver operating characteristic (ROC) analysis was performed with the area under the curve (AUC) calcu-
lated to evaluate the diagnostic accuracy. The AUC ranges from 0 to 1, with 0.7 being acceptable performance and 0.9
being excellent [29]. Besides, the diagnostic indicator was presented with risk plots incorporating the distribution of
riskscores, a discriminative plot of the indicator-based classification, and heatmap of expression profiles of included
hub DE-miRNAs between risk groups as defined by the indicator. Using the same formula, we assigned riskscores to
individual subjects in the test set and classified them with the same cutoff value. Subsequently, the diagnostic accu-
racy was validated in the test set with ROC analysis and a risk plot for visualization. To detect potential overfitting
of the diagnostic model, Kolmogorov–Smirnov (K-S) test based on the empirical distribution function (ECDF) was
performed to compare the distributions of model outputs between the training set and the test set [30,31]. If model
outputs of both datasets follow different distributions (P<0.05), then the model is considered overfitting [30–32].
Model outputs were calculated using the logistic function [33]: probability = eriskscore/1+eriskscore .

Sample collection, RNA extraction, and quantitative real-time PCR
(qRT-PCR)
From Shuyang Minghe Rehabilitation Hospital, we collected 10 samples with 10 ml peripheral blood in ethylenedi-
aminetetraacetic acid (EDTA) tubes (five stroke vs. five age-match healthy controls). Blood samples were taken in
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Figure 3. Functional enrichment analysis

(A) The top 5 most enriched Gene Ontology (GO) terms. (B) The top 10 most enriched Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway.
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Figure 4. Differentially expressed microRNAs (DE-miRNAs)

(A) Heatmap of top 100 DE-miRNAs. (B) Volcano plot. (C) Identification of hub DE-miRNAs with intersection of hub miRNAs and

DE-miRNAs. (D) Protein–protein Interaction (PPI) network analysis of downstream genes regulated by hub DE-miRNAs. (E) Hub

genes revealed by PPI.

10 ml serum separator tubes (Vacusera) and centrifuged at 2000 g for 10 min to isolate the serum, from which to-
tal RNAs were extracted with MolPure Blood RNA Kit (YEASEN Biotech Co., Ltd, Shanghai, China) and reversely
transcribed into complementary DNAs according to the protocol of the Goldenstar™ RT6 cDNA Synthesis Kit (Bei-
jing TsingKe Biotech Co., Ltd, Beijing, China). SYBR Green PCR Master Mix (TsingKe) was then used for qRT-PCR
analysis on Step-One Plus System (Applied Biosystems, Foster City, CA, U.S.A.). The miRNA sequences were re-
versely transcribed using reverse transcription primers and then amplified by upstream and downstream primers
[34,35]. The primer sequences are shown in Supplementary File S1. All reactions were conducted in triplicate, and
the relative expression of miRNAs was calculated by 2−��CT method, with U6 small nuclear RNA (snRNA) being
the internal control. The experiment was approved by the Ethics Committee of Nanjing Medical University, and all
subjects provided informed consent.

Construction of a diagnostic nomogram
With the whole dataset, a diagnostic nomogram incorporating the indicator-based miRNAs was constructed using
the rms R package [36], so as to intuitively detect the risk of stroke using the miRNA panel. Additionally, decision
curve analysis (DCA) [37] was conducted to investigate the clinical utility of the nomogram by evaluating the net
benefits at different threshold probabilities.

Results
Construction of a miRNA co-expression network
The hierarchical clustering of the samples was performed and eight outliers in samples were removed (Figure 2A).
The soft-thresholding power was set at 5 with the cutoff score of scale-free R2 being 0.9 (Figure 2B). The clustering
dendrograms of the sample revealed a total of 12 modules (Figure 2C), and these modules were correlated with clin-
ical features, as presented in the heatmap plot (Figure 2D). Specifically, a total of 447 miRNAs in the blue modules
(Supplementary File S2) were significantly correlated with systolic blood pressure (r = 0.32, FDR = 10−6). Hence,

6 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/41/1/BSR
20203458/901712/bsr-2020-3458.pdf by guest on 09 April 2024



Bioscience Reports (2021) 41 BSR20203458
https://doi.org/10.1042/BSR20203458

Figure 5. Validation of the diagnostic indicator

(A) ROC analysis in the training set. (B) Risk plots for the training set. (C) ROC in the test set. (D) Risk plot for the test set. Risk

plots encompass distribution of riskscores (upper panel), discriminative plot for visualization of the indicator-based classification

(middle panel), and heatmap of expression profiles of included DE-miRNAs (lower panel).

these miRNAs were regarded as the hub miRNAs. Target genes (Supplementary File S3) predicted with the hub miR-
NAs, as showed in GO enrichment, were mostly implicated in axonogenesis, glutamatergic synapse, as well as in RNA
polymerase II-specific DNA-binding transcription activator activity (Figure 3A). KEGG analysis revealed the most
enriched pathways including mitogen-activated protein kinase (MAPK) pathway, senescence, and TGF-beta signaling
pathway (Figure 3B).

Differential analysis and identification of hub DE-miRNAs
Results of the differential analysis were showed in the heatmap (Figure 4A) with the top 100 DE-miRNAs, along
with a volcano plot (Figure 4B). The intersection between the top 100 DE-miRNAs and hub miRNAs identified with
WGCNA yielded a total of 254 serum samples and 67 hub DE-miRNAs (Figure 4C). The list of the 67 hub DE-miRNAs
can be accessed in Supplementary File S4. Downstream genes (Supplementary File S5) of these hub DE-miRNAs were
predicted and fitted into a PPI network (Figure 4D), which highlighted 11 hub genes, i.e., CDC27, SMURF1, RPS21,
AREL1, BTBD6, FBXO9, KLHL25, PIK3CB, TRIM71, UBE2R2, and ZNRF2 (Figure 4E).

Development and validation of the diagnostic indicator
Bootstrap ranking LASSO regression within the training set revealed an indicator of two hub DE-miRNAs (miR-4420
and miR-6793-5p), which yielded a diagnostic accuracy defined by AUC of 0.953 (95% confidence interval [CI]:
0.920–0.986; Figure 5A). Using the Youden method, the cutoff score was set as 1.32 with a specificity of 0.925 and a
sensitivity of 0.908. As shown in the risk plot (Figure 5B), visualization of the indicator-based classification (middle

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

7

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/41/1/BSR
20203458/901712/bsr-2020-3458.pdf by guest on 09 April 2024



Bioscience Reports (2021) 41 BSR20203458
https://doi.org/10.1042/BSR20203458

Figure 6. Validation of the diagnostic indicator with statistical distribution and qRT-PCR

(A) Kolmogorov–Smirnov plot of model outputs in both the training set and test set. (B) Relative expression levels of miR-4420 and

miR-6793-5p as evaluated by qRT-PCR. ** P<0.01.

panel of Figure 5B) demonstrated intuitively a highly accurate classification, while the heatmap (lower panel of Figure
5B) showed expression profiles between risk groups as defined by the indicator. To validate the robustness of the
proposed indicator, the panel of two miRNAs was validated in the test set with the same formula and cutoff value
using ROC analysis (Figure 5C) as well as a risk plot (Figure 5D). The diagnostic accuracy in the test set, as evaluated
by the ROC curve, was 0.894 (95% CI: 0.836–0.951), while both specificity and sensitivity were higher than 0.80 at
the cutoff. The risk plot (Figure 5D) demonstrated a highly accurate classification of the diagnostic indicator, as well
as a similar pattern of miRNA expression. Results of K-S test demonstrated that the model outputs in the training
set and test set came from the same distribution (D = 0.11024, P=0.4232), indicating no sign of overfitting (Figure
6A). Further, qRT-PCR showed distinct expression levels of miR-4420 and miR-6793-5p between stroke and control,
which supports the diagnostic value of the proposed indicator (Figure 6B).

A diagnostic nomogram with the indicator-based miRNAs and DCA
A diagnostic nomogram with the indicator-based miRNAs was presented in Figure 7A to detect the risk of stroke.
Each of the two miRNAs corresponds vertically to the points, of which the sum was total points. The total points of
a specific individual correspond to the risk of stroke. DCA (Figure 7B) showed that most of the red curve was above
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Figure 7. Development and validation of a diagnostic nomogram

(A) Nomogram with expression of two indicator-based miRNAs. (B) Decision curve analysis

the other dashed curves, indicating net benefits of the nomogram as compared with either of miRNA, treat-none,
and treat-all scheme. In other words, the clinical decisions made upon the nomogram would be favorable than other
diagnostic schemes.

Discussion
The present study utilized the WGCNA to identify hub miRNAs in the blue module correlated to SBP and applied
differential analysis to highlight hub DE-miRNAs, whereby we built a robust 2-miRNA indicator for the diagnosis of
stroke with remarkable classification accuracy. Results of qRT-PCR validated the diagnostic value of the two miRNAs
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(miR-4420 and miR-6793-5p). A diagnostic nomogram was constructed to intuitively predict the individual risk of
stroke, while DCA showed a positive net benefit of the nomogram-based decisions.

The diagnostic indicator revealed two miRNAs (miR-4420 and miR-6793-5p), both of which were first reported in
the present study. Target genes of hub miRNAs and hub DE-miRNAs were retrieved for functional enrichment and
PPI analysis, respectively. As shown in KEGG pathway analysis, downstream genes of hub miRNAs were significantly
enriched in the MAPK signaling pathway, senescence, and transforming growth factor-β (TGF-β) signaling path-
way. Extensive literature indicates that the MAPK pathway was crucial in the regulation of inflammatory responses,
cytokines, cell apoptosis in brain ischemia, and hemorrhage [38–40]. As such, therapies targeting the MAPK pathway
could exert potentials in hypertension-related stroke. Senescence on cellular and individual levels contributes to high
blood pressure, which in turn accelerates aging process and forms a vicious circle responsible for complications like
stroke [41,42]. This enriched pathway, in part, explains the underlying mechanism on the interplay of aging, blood
pressure, and stroke, as subjects in the present study were the elderly with age>69. TGF-β, a cytokine with multiple
functions, regulates inflammatory response following injury in the brain [43]. Meanwhile, TGF-β activated kinase 1
(TAK1) correlates with the aggravation of injury [44], and contributes to an inferior long-term stroke outcome via
microglial and macrophage responses [45]. Additionally, PPI with target genes of 67 hub DE-miRNAs emphasized
eleven hub genes, i.e., CDC27, SMURF1, RPS21, AREL1, BTBD6, FBXO9, KLHL25, PIK3CB, TRIM71, UBE2R2, and
ZNRF2. The functions of these genes in the pathogenesis of stroke warrant validation in experimental studies.

Although accumulating studies of miRNAs in stroke have been reported [4], a few studies focused on the diagnostic
value of serum circulating miRNAs in stroke patients [12,46,47]. In a previous cross-sectional study, Yang et al [46]
identified three circulating miRNAs (miR-107, miR-128b, and miR-153) with diagnostic accuracy of 0.97, 0.903, and
0.893 respectively. Likewise, Wang et al [47] demonstrated elevated miR-106b-5P and miR-4306, as well as decreased
miR-320e and miR-320d in patients with acute stroke, showing diagnostic accuracy as high as 0.999. However, these
results were subject to overfitting due to a lack of cross-validation and bootstrap resampling [48]. The diagnostic
indicator in our study, albeit not as seemingly accurate as of the two aforementioned studies, was observed to be
accurate and robust in the training set with 10-fold bootstrap ranking LASSO regression, as well as in the test set.
Further, K-S test on model outputs detected no sign of overfitting. Similarly, a large-scale study in Japan [12] built a
3-miRNA indicator (miR-1268b, miR-4433b-3p, and miR-6803-5p) to predict the risk of stroke, which showed good
predictive performance. However, the cutoff value in the training set and test set were not consistently determined,
which stymies the clinical application of the miRNA indicator. In contrast, the proposed diagnostic indicator in the
present study was validated in both datasets with identical cutoff value, which yielded a superior accuracy as evaluated
by ROC in both datasets. Experimental validation with qRT-PCR also validated the diagnostic value of the proposed
indicator. In addition, we explored the functional implications of the featured miRNAs along with target genes, which
were not reported in previous studies. These findings may shed light on the design of future experiments. Of note,
hub DE-miRNAs embedded in the proposed indicator did not overlap with the previous study [12], as a different
modeling strategy was adopted (Figure 1).

To the authors’ best knowledge, the present study is the first report of a diagnostic indicator for stroke derived from
serum miRNAs correlated to systolic blood pressure. Considering image-based techniques (computer tomography
[CT] or Magnetic Resonance Imaging [MRI]) are costly, inconvenient, and unavailable in poor areas, the 2-miRNA
diagnostic panel holds clinical relevance in the detection of stroke. However, the present study is subject to a few
limitations. First, due to the fact that the subjects included were diagnosed with stroke without details of subtypes,
subgroup analysis could not be performed. Further, the lack of function experiments in animal models is consid-
ered a major limitation. Therefore, the diagnostic performance and functional roles of these miRNAs require further
investigation.
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28 Rücker, G. and Schumacher, M. (2010) Summary ROC curve based on a weighted Youden index for selecting an optimal cutpoint in meta-analysis of
diagnostic accuracy. Stat. Med. 29, 3069–3078, https://doi.org/10.1002/sim.3937

29 Fawcett, T. (2006) An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874, https://doi.org/10.1016/j.patrec.2005.10.010
30 Conover, W.J. (1998) Practical Nonparametric Statistics, Vol. 350, pp. 309–314, John Wiley & Sons, (two-sample Smirnov test)
31 Marsaglia, G., Tsang, W.W. and Wang, J. (2003) Evaluating Kolmogorov’s distribution. J. Statistical Software 8, 1–4,

https://doi.org/10.18637/jss.v008.i18
32 Hodges, J.L. (1958) The significance probability of the Smirnov two-sample test. Arkiv för Matematik 3, 469–486,

https://doi.org/10.1007/BF02589501
33 Pregibon, D. (1981) Logistic regression diagnostics. Ann. Statistics 9, 705–724, https://doi.org/10.1214/aos/1176345513
34 Qian, Z. et al. (2020) Excess administration of miR-340-5p ameliorates spinal cord injury-induced neuroinflammation and apoptosis by modulating the

P38-MAPK signaling pathway. Brain Behav. Immun. 87, 531–542, https://doi.org/10.1016/j.bbi.2020.01.025
35 Zhang, S. et al. (2020) miR-766-3p Targeting BCL9L Suppressed Tumorigenesis, Epithelial-Mesenchymal Transition, and Metastasis Through the

β-Catenin Signaling Pathway in Osteosarcoma Cells. Front. Cell Dev. Biol. 8, 594135, https://doi.org/10.3389/fcell.2020.594135
36 Harrell, Jr, F.E. (2017) RMS: Regression Modeling Strategies. R package version 5.1-2, Dept. Biostatist., Vanderbilt Univ., Nashville, TN, U.S.A.
37 Vickers, A.J. and Elkin, E.B. (2006) Decision curve analysis: a novel method for evaluating prediction models. Med. Decis. Making 26, 565–574,

https://doi.org/10.1177/0272989X06295361
38 Gladbach, A. et al. (2014) ERK inhibition with PD184161 mitigates brain damage in a mouse model of stroke. J. Neural. Transm. (Vienna) 121,

543–547
39 Huang, L. et al. (2013) Inhibitory effects of p38 inhibitor against mitochondrial dysfunction in the early brain injury after subarachnoid hemorrhage in

mice. Brain Res. 1517, 133–140, https://doi.org/10.1016/j.brainres.2013.04.010
40 Wu, B. et al. (2010) Ac-YVAD-CMK Decreases Blood-Brain Barrier Degradation by Inhibiting Caspase-1 Activation of Interleukin-1β in Intracerebral

Hemorrhage Mouse Model. Transl. Stroke Res. 1, 57–64, https://doi.org/10.1007/s12975-009-0002-z
41 Ungvari, Z. et al. (2020) Mechanisms of Vascular Aging, A Geroscience Perspective: JACC Focus Seminar. J. Am. Coll. Cardiol. 75, 931–941,

https://doi.org/10.1016/j.jacc.2019.11.061
42 Forte, M. et al. (2020) Vascular ageing in hypertension: Focus on mitochondria. Mech. Ageing Dev. 189, 111267,

https://doi.org/10.1016/j.mad.2020.111267
43 Aigner, L. and Bogdahn, U. (2008) TGF-beta in neural stem cells and in tumors of the central nervous system. Cell Tissue Res. 331, 225–241,

https://doi.org/10.1007/s00441-007-0466-7
44 Zeyen, T. et al. (2020) Microglial-specific depletion of TAK1 is neuroprotective in the acute phase after ischemic stroke. J. Mol. Med. (Berl.) 98,

833–847, https://doi.org/10.1007/s00109-020-01916-9
45 Wang, R. et al. (2020) Transforming Growth Factor Beta-Activated Kinase 1-Dependent Microglial and Macrophage Responses Aggravate Long-Term

Outcomes After Ischemic Stroke. Stroke 51, 975–985, https://doi.org/10.1161/STROKEAHA.119.028398
46 Yang, Z.B. et al. (2016) The Diagnostic Value of Circulating Brain-specific MicroRNAs for Ischemic Stroke. Intern. Med. 55, 1279–1286,

https://doi.org/10.2169/internalmedicine.55.5925
47 Wang, W. et al. (2014) Circulating microRNAs as novel potential biomarkers for early diagnosis of acute stroke in humans. J. Stroke Cerebrovasc. Dis.

23, 2607–2613, https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.002
48 Borra, S. and Di Ciaccio, A. (2010) Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods.

Comput. Statistics Data Analysis 54, 2976–2989, https://doi.org/10.1016/j.csda.2010.03.004

12 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/41/1/BSR
20203458/901712/bsr-2020-3458.pdf by guest on 09 April 2024

https://doi.org/10.1002/mdc3.12568
https://doi.org/10.1111/j.1467-9868.2007.00627.x
https://doi.org/10.1371/journal.pone.0134151
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1002/sim.3937
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.18637/jss.v008.i18
https://doi.org/10.1007/BF02589501
https://doi.org/10.1214/aos/1176345513
https://doi.org/10.1016/j.bbi.2020.01.025
https://doi.org/10.3389/fcell.2020.594135
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1016/j.brainres.2013.04.010
https://doi.org/10.1007/s12975-009-0002-z
https://doi.org/10.1016/j.jacc.2019.11.061
https://doi.org/10.1016/j.mad.2020.111267
https://doi.org/10.1007/s00441-007-0466-7
https://doi.org/10.1007/s00109-020-01916-9
https://doi.org/10.1161/STROKEAHA.119.028398
https://doi.org/10.2169/internalmedicine.55.5925
https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.002
https://doi.org/10.1016/j.csda.2010.03.004

