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High-altitude retinopathy (HAR) is an ocular manifestation of acute oxygen deficiency at
high altitudes. Although the pathophysiology of HAR has been revealed by many studies
in recent years, the molecular mechanism is not yet clear. Our study aimed to systemati-
cally identify the genes and microRNA (miRNA) and explore the potential biomarkers asso-
ciated with HAR by integrated bioinformatics analysis. The mRNA and miRNA expression
profiles were obtained from the Gene Expression Omnibus database. We performed Gene
Ontology functional annotations and Kyoto Encyclopedia of Genes and Genomes path-
way analysis. Potential target gene analysis and miRNA–mRNA network analysis were also
conducted. Quantitative RT-PCR (qRT-PCR) was used to validate the results of the bioinfor-
matics analysis. Through a series of bioinformatics analyses and experiments, we selected
16 differentially expressed miRNAs (DE-miRNAs) and 157 differentially expressed genes re-
lated to acute mountain sickness (AMS) and constructed a miRNA–mRNA network contain-
ing 240 relationship pairs. The hub genes were filtered from the protein-protein interaction
network: IL7R, FOS, IL10, FCGR2A, DDX3X, CDK1, BCL11B and HNRNPH1, which were
all down-regulated in the AMS group. Then, nine up-regulated DE-miRNAs and eight hub
genes were verified by qRT-PCR in our hypoxia-induced HAR cell model. The expression
of miR-3177-3p, miR-369-3p, miR-603, miR-495, miR-4791, miR-424-5p, FOS, IL10 and
IL7R was consistent with our bioinformatics results. In conclusion, FOS, IL10, IL-7R and 7
DE-miRNAs may participate in the development of HAR. Our findings will contribute to the
identification of biomarkers and promote the effective prevention and treatment of HAR in
the future.

Introduction
High-altitude retinopathy (HAR) is one clinical entity of acute high-altitude illness (AAI), which also in-
cludes acute mountain sickness (AMS), high-altitude pulmonary edema (HAPE) and high-altitude cere-
bral edema (HACE) [1,2]. As retinopathy is caused by the inability to adapt to acute oxygen deficiency
at high altitudes, HAR mainly manifests as leakage of the peripheral retinal vessels, retinal hemorrhages,
tortuous retinal vessels, optic disc edema and macular edema [3,4]. With the development of the economy
and tourism in the plateau area, the incidence of HAR is up to 79% and is increasing [5]. However, the
pathogenesis of HAR remains unclear, and there is a lack of effective prevention and treatment measures.

Current studies suggest that hypoxia is the main reason for the pathophysiological change in
high-altitude situations [6,7]. However, under the same hypoxic conditions, some high-altitude residents
will remain in good condition, while others may have AAI [8]. Several genes, including ACE, EDN1,
ACYP2, RTEL1, and VEGF, are related to hypoxia [9–11]. In hypoxic environments, transcription of
various genes, such as endothelial PAS domain-containing protein 1 (EPAS1) and prolyl hydroxylase
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domain-containing protein 2 (PHD2), is initiated by hypoxia-related pathways [12]. Also, genetic susceptibility
has been reported as one of the major determinants of HAPE and AMS. The oxidative stress-related genes CYBA
and GSTP1, contributing to endothelial damage under hypobaric hypoxia, are potential candidate genes for HAPE
[13–17]. However, there are a few genetic studies on HAR.

MicroRNAs (miRNAs) can inhibit mRNA translation or induce degradation of target mRNAs by binding to com-
plementary sequences in target regions [18,19]. Huang et al. revealed that saliva miR-134-3p and miR-15b-5p could
be used as noninvasive biomarkers to predict AMS individuals exposed to high altitude in advance [19]. In a hypoxic
atmosphere, the expression levels of miR-16, 20b, 22, 206, and 17/92 are reduced, which can inhibit ion channels,
increase pulmonary artery pressure, and cause vascular dysfunction and the loss of cell integrity, promoting the oc-
currence of HAPE, and miR-155, 23b, 26a can inhibit TGF signals and promote pulmonary pressure, miR-210 can
inhibit mitochondrial function. These may promote the occurrence of HAPE [20]. However, the differential expres-
sion of miRNAs has not been reported in HAR.

In the present study, we aimed to explore HAR-related miRNAs and mRNAs via analyzing the GSE90500 and
GSE75665 datasets from the Gene Expression Omnibus (GEO). Gene Ontology (GO) functional annotations, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis, potential target gene analysis, and construction of
potential miRNA–mRNA network were also conducted. Besides, the HAR cell model was established to validate the
results of the bioinformatics analysis via quantitative RT-PCR (qRT-PCR). The present study may help elucidate the
pathogenic mechanism and identify valuable diagnostic biomarkers for HAR.

Materials and methods
Data source
The miRNA expression profile GSE90500 and the mRNA expression profile GSE75665 were obtained from the GEO
database. The RNA-seq data of GSE90500 were based on the platform of GPL18058 (Exiqon miRCURY LNA mi-
croRNA array, 7th generation) and contained 13 patients with AMS and 9 non-AMS volunteers. The microarray data
of GSE75665 were based on the platform GPL11154 (Illumina HiSeq 2000) and contained 5 patients with AMS and
5 non-AMS volunteers. Figure 1 shows the workflow for the study.

Identification of the differentially expressed miRNA and differentially
expressed mRNA
The GEO2R online tool (https://www.ncbi.nlm.nih.gov/geo/geo2r/) based on the R software ‘LIMMA’ package
was used to identify differentially expressed miRNA (DE-miRNA) between AMS and non-AMS blood samples of
GSE90500 with thresholds of |logFC| > 2 and P-value <0.01. A volcano plot was generated to visualize the sig-
nificant miRNA expression changes using GraphPad Prism 8.0 (GraphPad, San Diego, CA, USA). For GSE75665,
differentially expressed mRNAs (DE-mRNAs) related to AMS were obtained from the study of Liu et al. [21].

The prediction of target genes of DE-miRNA
We used three prediction tools to predict the target mRNAs of DE-miRNA: TargetScan (http://www.targetscan.org/),
miRDB (http://mirdb.org/), and DIANA-microT (http://www.microrna.gr/microT). The genes predicted by at least
two programs were chosen as the targets of DE-miRNA. We selected the overlapping genes between targets
and DE-mRNAs as target differentially expressed genes (DEGs). A heatmap was performed using the R package
‘Pheatmap’. Then, using Cytoscape software [22], the miRNA–mRNA regulatory network was constructed.

Functional enrichment analysis of miRNA-target DEG
GO annotation and KEGG pathway enrichment analyses were performed by utilizing the Database for Annotation,
Visualization, and Integrated Discovery (DAVID, http://david.abcc.Ncifcrf.gov/) online software [23]. P<0.05 was
set as the cut-off value. The GO analysis included three categories: biological process (BP), cellular component (CC),
and molecular function (MF). Heatmaps of DEGs significantly enriched KEGG pathways was performed by the R
package ‘Pheatmap’.

Construction of the protein–protein interaction network
By putting the target DEGs in the Search Tool for the Retrieval of Interacting Genes (STRING, http://string-db.org/)
database [24], the interaction relationships among DEGs at the protein level were screened. Then, the protein–protein
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Figure 1. The workflow of bioinformatics analysis

interaction (PPI) networks for up- and down-regulated target DEGs were constructed under the criterion of a com-
bined score > 0.4. Cytoscape software was used to visualize the networks. The connectivity degrees were calculated
through network statistical methods.

Establishment of HAR cell model
Human retinal microvascular endothelial cells (HRMECs) were purchased from Cell Systems Corporations (catalog
no. ACBRI181; Kirkland, WA, USA) [25]. The HRMECs were cultured in M199 medium supplemented with 20%
fetal bovine serum, 3 ng/ml FGF-basic, 10 units/ml heparin, and 1% streptomycin/penicillin at 37◦C. To establish the
hypoxia model, cell culture was performed in a hypoxia chamber filled with an anaerobic gas mixture of 94% N2, 5%
CO2, and 1% O2 for 12 h. Control groups were cultured in 95% air and 5% CO2.

Quantitative real-time PCR
Total RNA was extracted from HRMECs by using TRIzol reagent. RNA was reverse-transcribed into complementary
DNA using PrimeScript RT Master Mix or miRNA First-Strand Synthesis kits (TaKaRa, Kumamoto, Japan), following
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Table 1 Up- and down-regulated DE-miRNA

DE-miRNA LogFC T B P-value Regulation

hsa-miR-3177-3p −6.20491 −5.3524 −3.024 4.01E-03 Up

hsa-miR-369-3p −5.90352 −6.64136 −2.0516 7.64E-04 Up

hsa-miR-138-2-3p −4.5548 −4.49122 −2.6156 4.98E-03 Up

hsa-miR-603 −4.25215 −4.52661 −2.6024 4.81E-03 Up

hsa-miR-495 −4.19332 −3.61489 −2.5279 7.51E-03 Up

hsa-miR-4791 −3.41691 −4.26991 −1.8136 2.33E-03 Up

hsa-miR-424-5p −3.19308 −4.15642 −2.4021 4.90E-03 Up

hsa-miR-449b-3p −2.47931 −3.29887 −2.5743 9.89E-03 Up

hsa-miR-23b-5p 3.31787 4.21334 −1.7154 2.53E-03 Down

hsa-miR-1304-3p 3.26306 3.3816 −2.3317 7.43E-03 Down

hsa-miR-1183 3.14353 5.14318 0.0349 2.74E-04 Down

hsa-miR-1255b-5p 2.77088 4.48947 −0.2807 5.49E-04 Down

hsa-miR-15b-5p 2.59052 2.88696 −2.4875 8.20E-03 Down

hsa-miR-1258 2.47358 3.60538 −2.2692 6.18E-03 Down

hsa-miR-3144-3p 2.32697 3.15168 −2.1737 6.34E-03 Down

hsa-miR-155-5p 2.20884 3.06764 −2.1221 5.35E-03 Down

the manufacturer’s protocols. qRT-PCR was performed by TB Green Premix ExTaq (TaKaRa, Kumamoto, Japan). The
oligonucleotide primers used for PCR amplification were purchased from BioSune Biotechnology (Shanghai, China)
and are listed in Supplementary Table S1. ACTB and U6 served as internal control for gene and miRNA expression in
analysis, respectively. The relative expression of the DE-miRNAs and the DE-mRNAs was calculated using the 2−��Ct

method.

Statistical analysis
The data in the present study are presented as the mean +− SD. The results were analyzed by the two-tailed Student’s
t test, and P<0.05 was considered to show a statistical difference.

Results
Identification of the DE-mRNA and the DE-miRNA
According to the analysis of Liu et al. for GSE75665 [21], a total of 807 genes were differentially expressed between
the non-AMS and AMS groups, with 271 up-regulated and 535 down-regulated DE-mRNAs (Supplementary Table
S2). During an analysis of the GSE90500 dataset, we obtained 16 DE-miRNAs (8 up-regulated and 8 down-regulated)
by using the GEO2R online tool (P<0.01 and |logFC| > 2) (Table 1). These DE-miRNAs are indicated by a volcano
plot (Figure 2). MiR-495 includes miR-495-3p and miR-495-5p, and we discussed them separately in the study, so
there were 17 DE-miRNAs (9 up-regulated and 8 down-regulated).

MiRNA–mRNA network
The target mRNAs of the DE-miRNAs were predicted by the three programs. Besides, by comparing the targets with
DE-mRNAs, we only selected the overlapping genes as target DEGs. As shown in Figure 3A and B, 122 out of 5652
predicted targets of up-regulated DE-miRNAs overlapped down-regulated DE-mRNAs, and 37 out of 3857 predicted
targets of down-regulated DE-miRNAs overlapped up-regulated DE-mRNAs. After removing 1 duplicate, we got 157
target DEGs, and the expression of these DEGs was visualized in Figure 3C. Then, we constructed the miRNA–mRNA
regulatory network (Figure 4), which consisted of 240 miRNA–mRNA pairs in total. Among them, there were 196
up-regulated miRNA–mRNA pairs and 44 down-regulated miRNA–mRNA pairs. Among the target DEGs, there
were 29 transcription factors and 128 non-transcription factors. Table 2 listed the target DEGs of DE-miRNAs.

Functional annotation analysis of the target DEGs
To further explore the biological function of the target DEGs, GO enrichment and KEGG pathway analysis were per-
formed using DAVID. GO analysis results showed that acrosome assembly was the only significantly enriched BP
for the up-regulated target DEGs. As shown in Figure 5A and Table 3, the down-regulated target DEGs were mainly
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Figure 2. Volcano plot of DE-miRNAs

Red dots indicate up-regulated miRNAs and green dots indicate down-regulated miRNAs with P<0.01 and |logFC| > 2. Black dots

indicate the genes which were not differentially expressed in AMS vs. non-AMS.
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Figure 3. The mRNAs related to AMS

(A) Overlapped genes between targets of up-regulated DE-miRNAs and down-regulated DE-mRNAs. (B) Overlapped genes be-

tween targets of down-regulated DE-miRNAs and up-regulated DE-mRNAs. (C) Heatmap plot of 157 target DEGs. Green means

down-regulation, while red means up-regulation.

enriched in the process of RNA expression, such as positive regulation of transcription from RNA polymerase II pro-
moter, positive regulation of gene expression at BP level. On the CC level, the down-regulated DEGs were mainly en-
riched in the nucleus, cytoplasm, and plasma membrane. For the MF, the down-regulated DEGs were mainly enriched
in sequence-specific DNA binding, transcriptional activator activity, and RNA polymerase II core promoter proxi-
mal region sequence-specific binding. In addition, KEGG pathway analyses indicated that down-regulated DEGs
were significantly enriched in the Hippo signaling pathway (Figure 5B and Table 4), which is associated with the
proliferation and migration of vascular endothelial cells [26,27] and can be deactivated by hypoxia [28]. In addition,
as shown in Figure 6A–D, heatmaps illustrated the allocation of down-regulated DEGs significantly enriched four
KEGG pathways.
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Figure 4. The miRNA–mRNA network in AMS

The diamonds stand for DE-miRNAs, and the ellipses stand for target DEGs. The red and blue colors represent up-regulation

and down-regulation, respectively. The yellow ellipses represent transcription factors. The lines indicate the regulation relationship

between DE-miRNAs and target DEGs.

Table 2 The target DEGs of DE-miRNA

MiRNA Up/Down Count Target DEGs

hsa-miR-3177-3p Up 1 HNRNPH1

hsa-miR-369-3p Up 18 IL10, IL7R, ANLN, CCNE2, CDH20, CELF2, CXADR, KCMF1, KL, MDFIC, MSN, NFIB, PDE7B,
PTAR1, STEAP2, TLN1, TP63, WNT16

hsa-miR-138-2-3p Up 36 FCGR2A, DDX3X, ATAD1, ATP6AP1L, BTLA, CCDC83, CREBZF, CTSS, DGKH, FAM179B,
FER, GPR173, HOXA5, HPDL, ICA1L, IL6ST, LGR4, MAP3K1, MYBL1, NFIB, NUCKS1, PLAT,
PLCE1, PRKAR1A, PSIP1, PTAR1, RIMKLA, SCN11A, SLC35G1, SLC38A1, SPAG17, TC2N,
TTC14, YWHAB, ZC3H12C, ZNF780B

hsa-miR-603 Up 37 FOS, ALDH1A2, BTLA, CD164, CELF2, CHD5, DGKH, ELOVL4, ESM1, FAM110C, FER,
FZD8, GNAI1, GPR173, HLF, HNRNPA2B1, IL6ST, KCMF1, KCNK10, LGR4, LUC7L3, MDFIC,
NEBL, NFIB, OGT, PARVA, PKIB, PLAT, PSIP1, RAG1, RAPH1, RIMKLA, SPOCK2, SYNPO2L,
TP63, ZNF226, ZNF704

hsa-miR-495-3P Up 41 DDX3X, HNRNPH1, CDK1, AJUBA, ANLN, ATP8A1, C21ORF62, CCNE2, CD164, CELF2,
CREBZF, CTSS, DGKH, ESM1, FER, FERMT2, FZD8, GAS2L3, HECTD2, KCMF1, LUC7L3,
MAP3K1, MYEF2, NEBL, NFIB, NTN4, NUCKS1, PRKAR1A, PTAR1, RAI2, RAPH1, RBMS3,
RCAN3, SLC12A5, SOX5, SYT15, TNC, WWTR1, ZC3H12C, ZNF644, ZNF704

hsa-miR-495-5p Up 10 DDX3X, DGKH, GOLGA8A, IL6ST, KL, SOX5, TPBG, WWTR1, ZC3H12C, ZFP36L1

hsa-miR-4791 Up 7 FOS, CXADR, FZD8, NUCKS1, RASSF6, SLC38A1, ZNF460

hsa-miR-424-5p Up 19 IL7R, DDX3X, BCL11B, ANLN, BCL2, BTLA, FAM110C, FERMT2, FSTL4, HEPHL1, ILDR2,
MYBL1, MYEF2, NEBL, NRN1, PLEKHH1, SLC35G1, SYDE1, ZNF704

hsa-miR-449b-3p Up 27 BCL2, C1ORF226, CD164, CELF2, CIRBP, DAB2IP, DGKH, EXPH5, FOXD, GOLGA8B, ICA1L,
IGDCC4, ILDR1, KL, LGR4, LUC7L3, MAP3K, MMP1, NOS1AP, PLEKHH2, RPL22, SLC13A1,
SLC38A1, TAGLN2, TLN1, TNC, TNFRSF19

hsa-miR-23b-5p Down 3 SCUBE1, SPRED3, RFX2

hsa-miR-1304-3p Down 10 C2ORF48, CDC42EP4, GALNT5, LRP10, NDUFV3, PRICKLE2, RNF152, SATB2, CEACAM8,
SEC62

hsa-miR-1183 Down 8 CADM2, DNAJC6, GALNT5, GLUL, ZPBP2, CYP26B1, HDLB, SEC62

hsa-miR-1255b-5p Down 1 NEK11

hsa-miR-15b-5p Down 8 BACE2, GDPD5, SPSB4, SYT3, ZBTB44, CARM1, CYP26B1, LYNX1

hsa-miR-1258 Down 4 SEC14L1, TMBIM1, ZBTB44, TMPRSS4

hsa-miR-3144-3p Down 3 GALNT5, SATB2, FAM166B

hsa-miR-155-5p Down 7 CDC42EP4, GLUL, MARVELD3, SATB2, ZDHHC2, MYO1D, TRIP13
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Table 3 GO enrichment terms of down-regulated target DEGs in AMS

GO ID GO Term Category Count P-value FDR

GO:0045944 Positive regulation of transcription from RNA
polymerase II promoter

BP 15 5.22E-03 7.91E+00

GO:0006366 Transcription from RNA polymerase II promoter BP 9 2.05E-02 2.78E+01

GO:0010628 Positive regulation of gene expression BP 8 1.78E-03 2.77E+00

GO:0033077 T-cell differentiation in thymus BP 5 2.82E-05 4.45E-02

GO:0034097 Response to cytokine BP 4 4.91E-03 7.47E+00

GO:0030182 Neuron differentiation BP 4 2.51E-02 3.30E+01

GO:0010468 Regulation of gene expression BP 4 2.86E-02 3.67E+01

GO:0035264 Multicellular organism growth BP 4 1.60E-02 2.24E+01

GO:0048041 Focal adhesion assembly BP 3 1.09E-02 1.58E+01

GO:0048538 Thymus development BP 3 3.28E-02 4.09E+01

GO:0042100 B-cell proliferation BP 3 1.89E-02 2.60E+01

GO:1900740 Positive regulation of protein insertion into
mitochondrial membrane involved in apoptotic
signaling pathway

BP 3 1.67E-02 2.33E+01

GO:0008625 Extrinsic apoptotic signaling pathway via death
domain receptors

BP 3 2.61E-02 3.41E+01

GO:0045727 Positive regulation of translation BP 3 4.80E-02 5.39E+01

GO:0031532 Actin cytoskeleton reorganization BP 3 3.86E-02 4.62E+01

GO:0034446 Substrate adhesion-dependent cell spreading BP 3 2.61E-02 3.41E+01

GO:0032835 Glomerulus development BP 3 1.51E-03 2.36E+00

GO:0072577 Endothelial cell apoptotic process BP 2 4.54E-02 5.19E+01

GO:0046632 α-β T-cell differentiation BP 2 3.90E-02 4.66E+01

GO:0005634 Nucleus CC 48 3.07E-03 3.67E+00

GO:0005737 Cytoplasm CC 46 4.66E-03 5.52E+00

GO:0005886 Plasma membrane CC 36 1.88E-02 2.07E+01

GO:0005856 Cytoskeleton CC 8 7.63E-03 8.90E+00

GO:0005925 Focal adhesion CC 8 1.00E-02 1.15E+01

GO:0005913 Cell–cell adherens junction CC 7 1.42E-02 1.60E+01

GO:0030027 Lamellipodium CC 5 1.66E-02 1.84E+01

GO:0015629 Actin cytoskeleton CC 5 4.44E-02 4.24E+01

GO:0030018 Z disc CC 4 3.54E-02 3.56E+01

GO:0044300 Cerebellar mossy fiber CC 2 3.01E-02 3.11E+01

GO:0043565 Sequence-specific DNA binding MF 9 1.81E-02 2.14E+01

GO:0001077 Transcriptional activator activity, RNA polymerase
II core promoter proximal region
sequence-specific binding

MF 8 8.05E-04 1.05E+00

GO:0098641 Cadherin binding involved in cell-cell adhesion MF 7 1.08E-02 1.34E+01

GO:0000166 Nucleotide binding MF 7 2.44E-02 2.77E+01

GO:0003779 Actin binding MF 6 3.31E-02 3.58E+01

GO:0003730 mRNA 3′-UTR binding MF 4 3.79E-03 4.87E+00

Table 4 Enriched KEGG pathway of down-regulated target DEGs associated with AMS

KEGG ID KEGG Term Count FDR Genes

hsa04390 Hippo signaling pathway 6 2.65E+00 AJUBA, FZD8, WNT16, RASSF6,
YWHAB, WWTR1

hsa05161 Hepatitis B 6 2.23E+00 CCNE2, FOS, DDX3X, BCL2,
MAP3K1, YWHAB

hsa05200 Pathways in cancer 7 3.27E+01 CCNE2, FZD8, FOS, WNT16,
GNAI1, BCL2, MMP1

hsa05203 Viral carcinogenesis 5 3.60E+01 CCNE2, CDK1, DDX3X, IL6ST,
YWHAB

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 5. GO enrichment and KEGG pathway analysis of the down-regulated target DEGs

(A) Significant enriched GO terms of down-regulated target DEGs. Green bars stand for the BP, blue bars stand for the CC, and red

bars stand for the MF. (B) KEGG pathway analysis of the down-regulated target DEGs.
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Figure 6. Heatmaps of down-regulated DEGs significantly enriched four KEGG pathways

Viral carcinogenesis (A), pathways in cancer (B), Hepatitis B (C), and Hippo signaling pathway (D). Green means down-regulation,

while red means up-regulation.

Table 5 Top eight highest degree nodes

Node IL10 CDK1 FOS HNRNPH1 IL7R BCL11B FCGR2A DDX3X

Degree 10 8 7 5 5 5 5 5

Type Down Down Down Down Down Down Down Down

PPI network of the target DEGs
Based on information from the STRING database, the PPI network was constructed and contained 59 nodes and 99
interactions (Figure 7). The details of the PPI network are described in Supplementary Table S3. In this network, with
the criteria of filtering degree > 5, eight genes were defined as hub genes, including IL10, CDK1, FOS, HNRNPH1,
IL7R, BCL11B, FCGR2A, and DDX3X (Table 5).

Validation of hub genes in HAR cell model
To validate the results of bioinformatics analysis, we chose the nine up-regulated DE-miRNAs and eight hub genes
for qRT-PCR under normoxia and hypoxia in HRMECs. As shown in Figure 8A and B, miR-3177-3p, miR-369-3p,
miR-603, miR-495-3p, miR-495-5p, miR-4791, and miR-424-5p were significantly up-regulated in hypoxia-cultured
HRMECs compared with normoxia (P<0.05). FOS, IL10, and IL7R were strongly down-regulated under hypoxia
conditions (P<0.05), which was also consistent with our bioinformatics results. However, the expression of DDX3X,
BCL1B, HNRNPH1, and CDK1 was higher than that in normoxia-cultured HRMECs.
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Figure 7. PPI network construction and module analysis

The red nodes represent the up-regulated DEGs. The blue nodes represent the down-regulated DEGs. The size of the nodes

indicates the degree of the DEGs, and the lines represent the interaction between gene-encoded proteins.

Discussion
HAR is an ocular manifestation of AAI [1], and studies have found a statistically significant correlation between HAR
and HACE [3]. Some researchers have proposed that AMS is a mild form of HACE [29,30]. Since the retina and optic
nerve act as the directly visible part of the brain, belonging to the central nervous system due to its embryonic origin
[31,32], we obtained the DE-miRNAs and DE-mRNAs of HAR by analyzing the AMS datasets and then explored the
possible potential target genes of HAR.

MiRNAs can regulate many BPs by negatively regulating the expression of target genes and are thus important
targets for studying the genetic susceptibility of diseases [19,33]. Through a series of bioinformatics analyses and
experiments, we selected 16 DE-miRNAs and 157 target DEGs related to AMS from GSE90500 and GSE75665 and
constructed an miRNA–mRNA network containing 240 relationship pairs. The top eight hub genes—IL7R, FOS,
IL10, FCGR2A, DDX3X, CDK1, BCL11B and HNRNPH1—filtered from the PPI network may serve as candidate
biomarkers of HAR. The expression of miR-3177-3p, miR-369-3p, miR-603, miR-495-3p, miR-495-5p, miR-4791,
miR-424-5p, FOS, IL10, and IL7R were confirmed by qRT-PCR in our HAR cell model to have the same trend as that
found in our bioinformatics results. These miRNAs and mRNAs may play an important role in the development of
HAR.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 8. Relative expression levels of DE-miRNAs and hub genes in HRMECs under normoxia and hypoxia conditions by

qRT-PCR

(A) The expression of nine up-regulated miRNAs. (B) The expression of eight DEGs. *P<0.05; **P<0.01; ***P<0.001.

FOS, consisting of c-Fos, FosB, Fra1, and Fra2 [34], was significantly down-regulated in our hypoxia-cultured
HRMECs. In the lung tissues of hypoxic rats, the expression of c-Fos and FosB was significantly decreased [35], which
is consistent with our results. c-Fos promotes the development of inflammatory diseases such as arthritis [36], but it
also inhibits inflammation in myeloid and lymphoid cell lineages [37]. In studies on retinal development, it has been
found that c-Fos induces inflammatory signals in photoreceptor cells, leading to an increase in VEGF, thus promoting
the formation of new blood vessels [38]. Therefore, FOS may be associated with the leakage of the peripheral retinal
vessels and retinal hemorrhages in HAR through the regulation of inflammatory constituents. The bioinformatics
analysis showed that miR-603 and miR-4791 may down-regulate FOS, and miR-603 can promote the growth of glioma
cells via the Wnt/β-catenin pathway [39]. The Wnt pathway mediates many complex biological and pathological
processes of retinopathy [40], but there are no reports about miR-603 and this pathway in the development of HAR.
Further research about the role of FOS and miR-603 in HAR is needed.

Another inflammation-related gene, IL10, could reduce tissue damage and promote immune tolerance [41]. It
was down-regulated in our study, and maybe serve as a biomarker in HAR. Under hypoxic conditions, the decrease
in IL10 indicates hypoxia reduces the ability to inhibit immunity and inflammation [42]. However, in the study of
Kang et al., mice adapted to the low oxygen environment (10% O2) had higher IL10 levels [43]. Therefore, the role of
anti-inflammatory markers IL10 in HAR needs further investigation.

IL7R mediates the signaling of IL7, affecting the role of IL7 in regulating the development of T and B cells and the
balance of the internal environment of T cells [44], and IL7R is involved in the pathogenesis of several autoimmune
diseases, such as rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus etc. [45] High altitude
also could cause changes in different immune cells [46]. According to our bioinformatics analysis, we found that
IL7R was regulated by miR-369-3p and miR-424-5p. It is noted that the induction of miR-369-3p expression inhibits
the release of inflammatory cytokines [47]. Furthermore, up-regulated miR-424-5p in hypoxic vascular endothelial
cells was shown to stabilize hypoxia-inducible factor-1α (HIF-1α) and fine-tune VEGF, promoting angiogenesis and
preserving the integrity of the endothelial barrier [48]. Although the down-regulated IL7R and the up-regulated
miR-369-3p and miR-424-5p may play an important role in the progression of HAR, the specific mechanism is not
clear and remains to be clarified.

High-altitude retinal hemorrhages and vascular leakage may be caused by the retinal microcirculation disorder
under hypoxia conditions at high altitude, but the specific mechanism is not clear. The expression of DDX3X was
found to be correlated with overexpression of HIF-1α in breast cancer, indicating the oncogenic role of DDX3X [49].
CDK1 has been shown to promote tumor angiogenesis by stabilizing HIF-1α, and its disruption could inhibit retinal
angiogenesis by inducing cell cycle arrest and apoptosis [50]. However, inhibition of miR-495 improves angiogenesis
and blood flow recovery after ischemia [51]. Although the expression of DDX3X and CDK1 did not down-regulate
in HRMECs as predicted, these genes had high degrees in the PPI network, indicating their potential roles in the
development of HAR. It worth mentioning that very little was reported on miR-3177-3p, so the specific function of
miR-3177-3p needs further research.
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To our knowledge, our study is the first to explore the DE-miRNAs and DEGs of HAR and establish the
miRNA–mRNA network through comprehensive bioinformatics analyses. However, there are still some limitations in
the present study. First, the data of the GSE90500 and GSE75665 are collected from blood samples, which may be the
reason why the expression of several hub genes in HRMECs was inconsistent with the bioinformatics analyses. Then,
there are some differences between the analytical methods of GSE90500 and GSE75665, which reduces the reliability
of this study to a certain extent. Third, the miRNA–mRNA relationships in HAR were based on target prediction and
statistical evidence, which need experimental investigations. Thus, Further studies are required to verify the specific
functions of the identified DE-miRNAs and hub genes in HAR.

In conclusion, the present study identified FOS, IL10, IL7R and seven miRNAs as candidate biomarkers of HAR,
which may participate in the development of HAR through possible pathways. It has been proposed that HAR is
related to individual sensitivity, promoting the effective prevention, and treatment of HAR in the future. Nevertheless,
we carried out the systematic and comprehensive bioinformatics analyses to identify the new miRNA and genes of
HAR and performed experimental validation in the HAR cell model, which is helpful for understanding the gene
changes in HAR and provides novel candidate biomarkers for the diagnosis of HAR.
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