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Recently, Rho GTPases substrates include Rac (Rac1 and Rac2) and Cdc42 that have been
reported to exert multiple cellular functions in osteoclasts, the most prominent of which in-
cludes regulating the dynamic actin cytoskeleton rearrangements. In addition, natural prod-
ucts and their molecular frameworks have a long tradition as valuable starting points for
medicinal chemistry and drug discovery. Although currently, there are reports about the
natural product, which could play a therapeutic role in bone loss diseases (osteoporosis
and osteolysis) through the regulation of Rac1/2 and Cdc42 during osteoclasts cytoskeletal
structuring. There have been several excellent studies for exploring the therapeutic poten-
tials of various natural products for their role in inhibiting cancer cells migration and function
via regulating the Rac1/2 and Cdc42. Herein in this review, we try to focus on recent ad-
vancement studies for extensively understanding the role of Rho GTPases substrates Rac1,
Rac2 and Cdc42 in osteoclastogenesis, as well as therapeutic potentials of natural medici-
nal products for their properties on the regulation of Rac1, and/or Rac2 and Cdc42, which
is in order to inspire drug discovery in regulating osteoclastogenesis.

Introduction
Osteoclastogenesis has been defined as a multistep processes of osteoclast differentiation [1], including
several osteoclastic cellular biological functions; such as: migration, cellular contact, cellular fusion and
cellular response extracellular factors [2]. Documented studies demonstrated that osteoclastogenesis ini-
tially mediated by two critical cytokines, the macrophage colony stimulating factor-1 (M-CSF) and the
receptor activator of nuclear factor-κB ligand (RANKL) [3]. M-CSF binds to its receptor (cFms) present
in osteoclast precursors, which stimulates their proliferation and inhibits their apoptosis; while, RANKL
interacts with its receptor RANK in osteoclast precursor cells, and osteoclastognesis is induced [4] (Figure
1).

However, at the late stage of osteoclastogenesis, osteoclastic polarization characterized the final matura-
tion of bone resorptive osteoclasts. Notably, during the bone resorption process, osteoclastic polarization
involves rearrangement of the actin cytoskeleton, in which a filamentous (F)-actin ring that comprises
dense continuous zones of highly dynamic podosomes are formed and consequently an area of mem-
brane that develops into the ruffled border is isolated [5,6].

Cytoskeletal rearrangement during osteoclastogenesis
It is worthy to note that during the cytoskeletal rearrangement in the osteoclastogenesis, podosome is
the most prominent cytoskeletal structure for the degradation of mineralized bone matrix and associates
with the mobility of osteoclasts [7]. In fact, podosome is not the exclusive organelle in osteoclast, which
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Figure 1. The schematic of osteoclastogenesis

The cytokines M-CSF and RANKL (from osteoblasts) bind to its receptors cFms and RANKL present in osteoclast precursors,

respectively. Then the M-CSF stimulates osteoclast precursors proliferation and inhibits their apoptosis. Besides that, RANKL

interacts with its receptor RANK in osteoclast precursor cells, then osteoclastognesis is induced.

also includes endothelial cells, and cells from the monocytic lineage such as: dendritic cells (DCs) and macrophages
[8]. Regardless, the presentation of podosomes in various cells, podosomes patterning plays a crucial and unique
role in the support osteoclast final maturation [8]. As early as individual podosome forms within an osteoclast, they
are collectively and sequentially organized into different patterns along the life of the same cell. However, these pat-
terns evolve along with osteoclastogenesis from monocytes/macrophages to osteoclast precursors, further to the bone
resorptive matured osteoclast. In the early stage of osteoclastogenesis, podosome pattern from apparently random
groups of ‘clusters’ to circle pattern ‘rings’ in the middle-term stage [9]. Eventually, in the late stage of osteoclasto-
genesis, podosome patterns into much massive circular structures, i.e., either ‘sealing zone like structures’ (SZL, also
known as ‘belts’) or ‘sealing zones’ (SZ) [10].

Rac isoforms (Rac1 and Rac2) in regulation of cytoskeletal arrangement
during osteoclastogenesis
It has been reported that Rac1 and Rac2 are critical GTPases for osteoclast formation and maturation. In fact, Rac1
and Rac2, are intimately associated with the organization of the different types of cellular cytoskeleton, such as: os-
teoclasts, DCs and macrophages. Notably, these two isoforms are also involved in the osteoclastic adhesive function
formation and subsequent bone resorption [11,12]. However, the specific role of Rac1 and Rac2 in osteoclastogenesis
is still unknown. For example, osteoclasts contain NADPH diaphorase activity [13,14], and free radicals which both
could influence bone resorption, however, Rac1 and Rac2 are also essential components of NADPH oxidase [15–18],
the enzyme responsible for generating free radicals. Besides that, a study has also demonstrated that Rac1 and Rac2
could regulate the generation of reactive oxygen species (ROS) [19] and actin remodeling participating in the osteo-
clastogenesis regulation. Recent study has found that both Rac1 and Rac2 are required for normal RANKL-induced
osteoclast differentiation, but Rac1 deletion results in a more profound reduction in osteoclast formation in vitro be-
cause of its regulatory role in pre-osteoclast M-CSF mediated chemotaxis and actin assembly and RANKL-mediated
ROS generation [20]. These results speculated that Rac1 and Rac2 might function in osteoclastic organelle actin dy-
namics regulating, such as: actin filament ends and podosomes. In fact, Rac1 and Rac2 proteins have overlapping
roles in podosome assembly and SZL formation by localizing Arp2/3 at podosome sites during osteoclastogenesis
[7,21–27]. Osteoclasts generated from the Rac1 and Rac2 double knockout mouse are devoid of podosomes and
SZ, which finally showed impaired bone resorption capacities [24,28–32]. Notably, however, these defects are ob-
served only if Rac1 and Rac2 deletion occurs at the early osteoclast precursor stage, which means the Rac1- and
Rac2-deficient osteoclasts lack the capabilities of actin cytoskeletal formation.

The role of Cdc42 in regulation of the podosome of osteoclast
Cdc42 is another Rho family small GTPase [33]. As a downstream signaling of RANKL, Cdc42 might interact with the
Crib domain of the adaptor Par3 [34,35], Par6 and atypical PKC (aPKC) [36–38], which forms a quaternary complex
to cascade the upper signaling transduction from RANKL and RANK binding, further stimulating the osteoclasto-
genesis. However, unlike Rac1 and Rac2 the definition role of Cdc42 in osteoclastogenesis is much clearly associated
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with its actin regulative effects, i.e. the podosome regulation. Recent studies using mice with increased Cdc42 activa-
tion due to knockout of its negative regulator Cdc42GAP have shown increased SZ formation and bone resorption,
compared with wildtype cells [27,39].

Cdc42 stands as a central player in the regulation of podosome dynamics as it orchestrates podosome actin poly-
merization, which from the monomeric globular (G)-actin into filamentous (F)-actin, through its canonical effector,
Wiscott–Aldrich Syndrome protein (WASp) [40–42]. WASp depletion in macrophages leads to a virtual absence of
podosomes and a defective chemotactic response under a gradient of M-CSF. Cdc42 binds directly to WASp, a mul-
tidomain adapter protein regulating transmission of signals to the actin cytoskeleton. This binding, together with
phosphorylation of WASp on tyrosine, induces a dramatic conformational change [40,41,43]. The hydrophobic core
is disrupted, releasing the VCA (Verprolin Homology domain-cofilin homology domain–acidic region) domain and
enabling its interaction with the Arp2/3 complex, thereby promoting actin nucleation [44–46].

Natural products targeting the regulation of Rac1 and Rac2, and Cdc42
Natural products and their molecular frameworks have a long tradition as valuable starting points for medicinal
chemistry and drug discovery. Recently, there has been a revitalization of interest in the inclusion of these chemotypes
in compound collections for screening and achieving selective target modulation. Although currently, there have
been no reports on the natural product, which could play a therapeutic role in bone loss diseases (osteoporosis and
osteolysis) through the regulation of Rac1/2 and Cdc42 during osteoclasts cytoskeletal structuring. There have been
several excellent studies exploring the therapeutic potentials of various natural products in regulating cancer cells
migration and function (Table 1). Here we collected several natural products with a focus on recent advances in their
properties on the regulation of Rac1 and/or Rac2 and Cdc42, and related signaling molecules, in order to inspire drug
discovery in regulating osteoclastogenesis (Figure 2).

Rac1 and Rac2 regulative natural products
Fisetin (3,3′,4′,7-Tetrahydroxyflavone), is natural product that could be found in vegetables and fruits [47]. Fisetin
has been well established and possesses antioxidant [48] and anti-neurodegenerative progression [49]. Most recently,
Jacob et al. [50] have reported Fisetin showed a significant protective effect on developmental Methyl mercury neuro-
toxicity in the F1 generation of MeHg exposed rats. In that, Methyl mercury is a teratogenic and neurodevelopmental
toxicant in the environment. Whereas MeHg could affect several biological pathways critical for brain development.
Most recently, authors present study validated the effect of Fisetin on developmental MeHg exposure induced alter-
ations in mitochondrial apoptotic pathway and Rho GTPase mRNA expressions in hippocampus of F1 generation
rats. Their extensive study showed that Fisetin against gestational MeHg exposure induced changes in expression of
ERK/Caspase 3 genes of apoptosis signaling pathway and Rho A/Rac1/Cdc42 genes of Rho GTPase signaling pathway
in hippocampus of F1 generation weaning Wistar rats.

Deacetyl-mycoepoxydiene (DA-MED) is a 248 molecular weight compound that has been isolated from the
endophytic fungus, Phomopsis sp., of costal mangrove plants and has been shown to be a secondary metabo-
lite with a rare oxygen-bridged cyclopentadiene skeleton [51]. This compound has cytotoxic activities toward var-
ious cell lines, including A549, HCC-S102 and HepG2 cells with IC50 values ranging from 1.05 to 1.95 mg/ml. Re-
cently, Xie et al. [52] have reported that DA-MED treatment drives Rac1 activation and promotes robust produc-
tion of ROS, activating mitochondrial permeability transition and the intrinsic apoptotic pathway. Knockdown of
Rac1 decreases ROS production in DA-MED-treated cells, resulting in a concomitant decrease in DA-MED-induced
apoptosis. DA-MED-activated Rac1 induces autophagy by inhibiting mammalian target of rapamycin, leading to
anti-apoptotic and anti-metastatic effects. Therefore, the present study provides novel insight into the complex cyto-
toxic and pro-survival mechanisms associated with a potent Rac1 agonist and suggests that further development of
more potent Rac1 agonists could be an effective strategy for future non-small cell lung cancer treatments.

Diallyl disulfide (DADS), one of the sulfur compounds derived from garlic, exhibits biological activity via modu-
lating molecules and signaling pathways in various cell physiologies [53–57]. These properties suggesting that DADS
could be used as a potential therapeutic compound for the treatment or prevention of various diseases. Moreover,
study has demonstrated that transforming growth factor-β1 (TGF-β1) could promote epithelial–mesenchymal tran-
sition (EMT), invasion and proliferation through the activation of Rac1 and β-catenin signaling pathways. Therefore,
Su et al. [55] have conducted a study for investigating the effects of DADS on TGF-β1-induced EMT and cellular
invasion. Primarily, they found TGF-β1 treatment augmented EMT and invasion, concomitantly with increased ex-
pression of Rac1 and β-catenin. However, the DADS treatment could decrease the activities of Rac1 and β-catenin.
DADS, TGF-β1 receptor inhibitor as well as Rac1 inhibitor antagonized the up-regulation of the TGF-β1-induced
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Table 1 The source, structure, cells or animal models and mechanisms of ten natural compounds

Compound
name Source Structure

Cell lines used
for in vitro
studies Animal models Dose Mechanisms Studies

Fisetin polyphenolic
molecule of
flavonoids

Neuron Wistar rats 30 mg/kg Rac1/Cdc42 Jacob [50]

Deacetyl-
mycoepoxydiene

Phomopsis sp., of
costal mangrove

Human breast
cancer MCF-7 cells

BABL/c mice 5, 10, 20 mg/kg Rac1 Zhao [59]

Diallyl disulfide garlic Human gastric
cancer MGC803
cell line

BALB/c nude mice 100mg/kg Rac1 Su [55]

Plectranthoic acid Ficus microcarpa Prostate cancer cell
lines (DU145, PC3,
NA22, NB26)

N/A N/A Rac1 Akhtar [61]

Cudraxanthone S Cudrania
cochinchinensis

N/A N/A N/A Cdc42 Gopal [65]

Panacis Japonici
Rhizoma

Panax japonicus C.
A. Meyer

A2780 cell line N/A N/A Cdc42 Chen [66]

Triptolide Triterygium wilfordii
Hook. f.

Sprague–Dawley
(SD) rats

Sprague–Dawley
(SD) rats

100 mg/kg Rac1, Cdc42 Wang [51]

TDB
(4,5,40-trihydroxy-3,
30-
dimethoxybibenzy)

Dendrobium
ellipsophyllum Tang
and Wang

Human lung cancer
H292 cells

N/A N/A Rac1/Cdc42 Chaotham [74]

Corosolic acid Actinidia chinensis, Hepatocellular
carcinoma cell lines
(Huh7, HepG2 and
Hep3B)

NOD/SCID mice 5 mg/kg Cdc42 Ku [77]

Gigantol Thai orchid,
Dendrobium
draconis

Human lung
carcinoma cells
NCI-H460 and
NCI-H292

N/A N/A Cdc42 Charoenrungruang
[78]

expression of these genes, abolishing the enhanced effects of TGF-β1 on EMT and invasion. These data indicated
that the blockage of TGF-β1/Rac1 signaling by DADS may be responsible for the suppression of EMT and cellular
invasion.

Mulberry (Morus alba L.) is a common fruit in temperate, subtropical and tropical areas, and contains abundant
polyphenols and anthocyanin components [58,59]. Study showed the anthocyanins from the mulberry could inhibit
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Figure 2. The schematic of molecular mechanisms of Rho GTPases Rac and Cdc42, and relevant therapeutic natural

compounds

During the osteoclastogenesis, after RANKL and RANK binding, the intracellular Rac1, Rac2 and Cdc42 are via GTP associate with

podosomes regulation. However, these regulation effects might inhibited by various compounds (Left panel: inhibitory compounds

for Rac1 and Rac2; Right panel: inhibitory compounds for Cdc42).

the B16-F1 cell linage invasion [60]. The underlying molecular mechanisms is anthocyanins partly suppressed the
Ras/PI3K signaling pathway. In addition, mulberry polyphenol extract (MPE) is rich in polyphenols that have an-
tioxidant, anti-inflammatory, anti-aging, anti-obesity and anti-tumor effects. Considering the biological effects of
anthocyanins, further study performed by Yu et al. [58] investigated that MPE on treating vascular smooth muscle
cellular migration and proliferation. Their results showed that MPE could suppress the expression of FAK, Src, PI3K,
Akt, c-Raf, and inhibit the signaling axis of FAK/Src/PI3K in cell. Besides that, their study also showed that MPE
decrease the expression of small Rac1 and Cdc42 to affect F-actin cytoskeleton rearrangement.

As aforementioned, cytoskeletal structure rearrangement grant various cellular functions in various cell linages,
such as: podosome patterning in osteoclasts and EMT transition. This has led to a surge in the efforts for identifica-
tion of safer and more effective compounds which can modulate these cellular behaviors. Plectranthoic acid (PA),
a natural compound isolated from the extracts of Ficus microcarpa, has been reported to possess the capability to
induce cell cycle arrest and apoptosis in prostate cancer cells [61,62]. Recently, Akhtar et al. [61] extensively studied
the PA biological effects on suppressing the cellular migration. Through the proteomic analysis, authors identified
that Rac1 is the major cadherin signaling protein modulated with PA treatment.

Cdc42 regulative natural products
Cudrania cochinchinensis (Moraceae) has been reported for its potent biological activites such as: anti-inflammation
[63] and neuroprotective effects [64]. Whereas, the compound Cudraxanthone-S derived from C. cochinchinensis
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was studied for its pharmacokinetics and binding potential in treating the fungal infection of Candida albicans,
which could cause several lethal infections in immune-suppressed patients and recently emerged as drug-resistant
pathogens worldwide [65]. Authors found that Cudraxanthone-S had exhibited ability on regulating the Cdc42 in
MAPK signaling pathway.

Panacis Japonici Rhizoma (PJR), derived from dry rhizome of Panax japonicus C. A. Meyer (Araliaceae), dis-
tributes in the southwest of China [66–68]. As a widely used focal medicine, the PJR manifested similar clinical merits
in anti-tussive and anti-inflammatory diseases [69,70]. Recently, Chen et al. [71] have demonstrated that PJR could
suppress the HEY and A2780 cells migration and invasion by decreasing the Cdc42 and Rac activities.

Triptolide (TP), derived from the medicinal plant Triterygium wilfordii Hook. f. (TWHF), is a diterpene triepox-
ide with variety of biological and pharmacological activities [72]. Wang et al. [73] has studied the cytoskeletal struc-
turing effects of TP on Sertoli cells, which play a critical role during spermatogenesis. Their study results demonstrate
that TP can regulating the Sertoli cellular cytoskeleton structuring via inhibiting the expression of Cdc42.

The compound (4,5,4′-trihydroxy-3,3′-dimethoxybibenzyl (TDB)) extract from Dendrobium ellipsophyl-
lum Tang and Wang , has been demonstrated to have antimetastatic activity through the sensitization of
detachment-induced cell death [74,75]. Study from Chaotham et al. [76] showing that TDB reduced such cell mi-
gration and invasion by decreasing migration-regulating proteins, including integrins αv, α4, β1, β3 and β5, as well
as downstream signaling proteins, such as activated focal adhesion kinase (pFAK), activated Rac1 and Cdc42. As the
presence of cellular protrusion, called filopodia, has been indicated as a hallmark of migrating cells, we showed that
the reduction in the mentioned proteins correlated well with the disappearance of filopodia. In summary, the present
study demonstrates the promising activity of TDB and its mechanism in the inhibition of lung cancer cell migration,
which might be useful for encouraging the development of this compound for anti-metastatic approaches.

Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocel-
lular carcinoma (HCC). Corosolic acid (CA), which exists in the root of Actinidia chinensis, as having a significant
anti-cancer effect on HCC cells by decreasing the tumor cellular migration. Ku et al. [77] have extensively studied
the effects of CA on its cellular regulating effects found that CA inhibits VEGFR2 kinase activity by directly inter-
acting with the ATP-binding pocket. Moreover, they found CA could decrease the VEGFR2/Src/FAK/Cdc42 axis,
subsequently decreasing F-actin formation and migratory activity in vitro.

Gigantol is a bibenzyl compound derived from the Thai orchid, Dendrobium draconis. It exhibits significant
cytotoxic activity against several cancer cell lines. Study conducted by Charoenrungruang et al. [78] demonstrates that
gigantol suppresses the migratory cellular behavior via decreasing Cdc42, thereby suppressing filopodia formation.
The inhibitory activity of Gigantol on lung cancer cellular migration suggests that this compound may be suitable for
further development for the treatment of osteoclastogenesis by regulating the osteoclastic cytoskeletal structuring.

Conclusion
Characterized by the unique property, osteoclasts have been extensively studied for their differentiation and cellular
functions during the bone homeostasis and pathological process, which makes them as a critical target for therapy in
the bone loss diseases, such as: osteoporosis and osteolysis. Given that the low production costs and the increasing
evidence of the ability to target the cellular activities and signaling cascades relevant to various diseases, naturally oc-
curring compounds have received extensive attention as potential therapeutic osteoclastogenesis. Our current review
has outlined some naturally occurring compounds, which have shown merit in terms of regulating macrophage po-
larization. However, given that current natural compounds have the Rac and Cdc42 regulatory effects on cancer cell
line, the specific mechanisms and therapeutic effects on osteoclastognesis remain incompletely understood. Clearly,
more in-depth characterization of osteoclast cytoskeleton rearrangement and relevant therapeutic compounds should
be conducted to identify the best possible strategies.
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