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Background: Hypermethylation of gene promoters plays an important role in tumorigen-
esis. The present study aimed to identify and validate promoter methylation-driven genes
(PMDGs) for pancreatic ductal adenocarcinoma (PDAC). Methods: Based on GSE49149
and the PDAC cohort of The Cancer Genome Atlas (TCGA), differential analyses of promoter
methylation, correlation analysis, and Cox regression analysis were performed to identify
PMDGs. The promoter methylation level was assessed by bisulfite sequencing polymerase
chain reaction (BSP) in paired tumor and normal tissues of 72 PDAC patients. Kaplan−Meier
survival analyses were performed to evaluate the clinical value of PMDGs. Results: In
GSE49149, the β-value of the dipeptidyl peptidase like 6 (DPP6) promoter was significantly
higher in tumor compared with normal samples (0.50 vs. 0.24, P<0.001). In the PDAC cohort
of TCGA, the methylation level of the DPP6 promoter was negatively correlated with mRNA
expression (r = −0.54, P<0.001). In a multivariate Cox regression analysis, hypermethylation
of the DPP6 promoter was an independent risk factor for PDAC (hazard ratio (HR) = 543.91,
P=0.002). The results of BSP revealed that the number of methylated CG sites in the DPP6
promoter was greater in tumor samples than in normal samples (7.43 vs. 2.78, P<0.001).
The methylation level of the DPP6 promoter was moderately effective at distinguishing tumor
from normal samples (area under ROC curve (AUC) = 0.74, P<0.001). Hypermethylation of
the DPP6 promoter was associated with poor overall (HR = 3.61, P<0.001) and disease-free
(HR = 2.01, P=0.016) survivals for PDAC patients. Conclusion: These results indicate that
DPP6 promoter methylation is a potential prognostic biomarker for PDAC.

Background
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant tumor with low excision rate, poor over-
all survival (OS), and high metastatic incidence [1]. Up until now, radical resection was the only possible
curative treatment for PDAC. However, most pancreatic cancer (PC) patients were diagnosed in the pro-
gressive stage and missed the opportunity for curative surgery. Therefore, identification of tumor-specific
diagnostic and prognostic biomarkers is beneficial for the early treatment of PDAC. Recent studies indi-
cated that during the pancreatic carcinogenesis, molecular epigenetic alterations are driving factors that
have potential applications in early diagnosis and survival prediction [2].

DNA methyltransferases 1/3A/3B promote the addition of a methyl moiety of S-adenosylmethionine
to the 5′ position of a cytosine residue in CpG dinucleotides. DNA regions that are rich in CpG sites are
called CpG islands. CpG islands can be found in 40–60% of gene promoter regions, and play an impor-
tant role in regulating gene expression. Genomic hypomethylation and promoter hypermethylation are
typical epigenetic features during cancerization or aggression. In human malignancy, hypermethylation
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Figure 1. The flowchart of the present study

Abbreviations: GSE49149, genome-wide DNA methylation patterns in PDAC (accession number of GEO, 49149); GO, Gene Ontol-

ogy; KEGG, Kyoto Encyclopedia of Genes and Genomes; K–M survival analysis, Kaplan–Meier survival analysis; PCR, polymerase

chain reaction; ROC curve, receiver operating characteristic curve; TCGA, The Cancer Genome Atlas; TSS, transcription start site;

UTR, untranslated region.

at promoter-associated CpG islands, which generally inhibits gene expression, has been proven to be a hallmark
epigenetic alteration [3–6].

With regard to PDAC, aberrant methylation of gene promoters was found to be involved in oncogenesis and pro-
gression. For example, promoter hypermethylation of APC was detected in the pancreatic juice of PDAC patients [7].
In the pancreatic microenvironment, the promoter of SOCS1, which encodes a member of the suppressor of cytokine
signaling family, is frequently methylated in cancer-associated fibroblasts [8]. Similarly, SOCS3 is also hypermethy-
lated and leads to PC growth and metastasis by activating the IL-6 signal transducer and the STAT3 signaling pathway
[9]. Finally, promoter methylation-based biomarkers such as EFEMP1 can predict the malignant formation of pan-
creatic precancerous lesions [10].

Some tools and algorithms have been developed to identify methylation-driven genes for cancers [11,12]; however,
the relationship between gene promoter methylation level, mRNA expression, and clinical phenotype was poorly
explored, especially for PDAC. The aim of the present study was to identify promoter methylation-driven genes
(PMDGs), which were aberrantly methylated in the promoter region, negatively correlated with mRNA levels, and
associated with OS for PDAC. Potential PMDGs were first screened with public databases as a derivation cohort and
then validated with our own datasets (Figure 1).

Materials and methods
DNA methylation datasets of the derivation cohort
In the derivation cohort, the DNA methylation profile (accession number: GSE49149) was downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) [13,14]. The level-3 DNA methylation
dataset of the PDAC cohort was downloaded from the Broad TCGA (The Cancer Genome Atlas) GDAC (http://
gdac.broadinstitute.org). Both sets of methylation data were screened with the HumanMethylation450 (HM450K)
Illumina SNPBeadChip and scanned with iScan. Between the two DNA methylation databases, the β-value, which is
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the ratio of the methylated probe intensity and the overall intensity, was applied to describe the methylation degree.
The β-value ranged from 0 to 1, and a higher β-value represented higher methylation.

mRNA sequencing and clinical data of the PDAC cohort of TCGA
Publicly available mRNA level-3 sequencing of the PDAC cohort of TCGA was obtained from GDAC, and a normal-
ized RSEM count value indicated gene expression. We processed the RSEM count value with log2 and removed 10%
minimal expression genes in all samples. We extracted clinicopathological parameters including age, postoperative
chemotherapy, neoplasm recurrence, resection status, tumor dimension, and lymph node metastasis from the clini-
cal data of the PDAC cohort of TCGA. Follow-up times and survival conditions were also acquired to perform the
Kaplan–Meier (K–M) survival analysis and Cox regression analysis.

Identification of PMDGs
In GSE49149, we first screened for the probe ID in four promoter regions, including transcription start site (TSS) 200
(TSS200), TSS1500, 5′ untranslated regions (5′UTR), and the first exon (1st exon). Since multiple CpG islands were
detected in one promoter region of most genes, we averaged the β-values in this region to describe the methylation
status. We then chose the β-value of TSS200 to represent the promoter methylation status for one gene. If there
were no CpG islands in the TSS200 for a gene, we chose the β-values of TSS1500, 5′UTR, or 1st exon to represent
the methylation status for this gene. Finally, we converted the β-value into log2(β-value) and employed the Limma
package to identify differentially methylated genes under the threshold (|log2 fold change (log2 FC)| >1 and P<0.05)
[15].

In the PDAC cohort of TCGA, the Pearson correlation was implemented to evaluate the relevance between the
promoter methylation level and mRNA expression value. A negative correlation was considered significant if the
P-value was less than 0.05. To screen out survival-associated genes, we divided the patients into high-expressed and
low-expressed groups according to the median value of mRNA expression and performed a Kaplan–Meier survival
analysis (K–M survival analysis). To eliminate the impact of surgical complications on survival, we excluded cases
where the death occurred within 90 days postoperatively. In the PDAC cohort, 163 patients were enrolled in the
survival analysis.

To understand the function of PMDGs, we applied the clusterProfiler package to analyze the Gene Ontology (GO)
annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment [16].

To identify independent factors for OS, we performed a univariate and multivariate Cox regression analyses com-
bining the clinical parameters with the methylation values of the PMDGs.

Patients in the validation cohort
Between September 2016 and December 2018, 72 patients with PDAC who underwent pancreatoduodenectomy and
diagnosed by histological evidence postoperatively, were enrolled in the validation cohort. The clinicopathological
characteristics of these patients were collected, and the survival status was followed-up till September 2019. The
patients were followed up for an average of 14 months (2–34 months). The present study was permitted by the research
ethics committee of Chao-Yang Hospital, and all patients signed the informed consent (No. 2017-S-241).

Bisulfite sequencing polymerase chain reaction
In the validation cohort, 72 pairs of tumor and adjacent normal pancreatic tissues were collected from PDAC patients,
and the CG sites of the promoter regions of four potential PMDGs were examined using bisulfite sequencing poly-
merase chain reaction (BSP). First, the upstream 3-kb DNA sequence of the gene promoter region was extracted from
the NCBI dataset (Supplementary Figure S1). We predicted the CpG island with MethPrimer and selected the CpG
island closest to the location of the probe in methylation microarrays (Supplementary Figure S2) to perform the sub-
sequent cloning sequencing. The primer was designed with Primer5 software V5.6 (Table 1) according to the sequence
of the CpG island. After that, the Universal DNA Purification Kit (DP214; Tiangen, Beijing, China) was used to ex-
tract and purify DNA from tissue samples following the manufacturer’s manual. The EZ DNA Methylation-Direct Kit
(D5020; Zymo Research, CA, U.S.A.) and pEASY®-T1 Cloning Kit (CT101-01; TransGen Biotech, Beijing, China)
were used to perform the DNA bisulfite conversion and polymerase chain reaction (PCR) cloning sequencing. We
used the BiQ Analyzer to analyze the original sequencing data and performed a comparison of methylated CG sites
(Supplementary Figure S3).
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Table 1 The primer sequence of four PMDGs

Gene Primer sequence (5′–3′) Product size (bp)

DPP6-F TTG(C/T)GTT(C/T)GTTTAATTTTGATGTAG 512

DPP6-R AAAAATCTTCCAAATCTTCAATT

ZFP28-F TATTTTGGAGGATGGGAGGTT 389

ZFP28-R TAACCAAC(G/A)CTAAACCTAAATATAAC

MTMR7-F GGGAAAAGTGT(C/T)GTTTGTAATAGTG 411

MTMR7-R CTAAAATTACC(G/A)AAAC(G/A)AAAACTACT

HIST1H4E-F ATTTTATTTAGTTGTTAAAATATGTT 373

HIST1H4E-R AACTTAATAATACCCTAAATATTATCT

Abbreviations: DPP6, dipeptidyl peptidase like 6; HIST1H4E, H4 clustered histone 5; MTMR7, Myotubularin related protein 7; ZFP28, ZFP28 zinc finger
protein.

Validation of the PMDGs as potential biomarkers for PDAC
A differential analysis of the promoter methylation levels of PMDGs was performed between pancreatic tumor and
adjacent normal tissue samples. A receiver operating characteristic (ROC) curve was then constructed based on the
numbers of methylated CG sites of the promoter. The area under the ROC curve (AUC) was calculated to evaluate the
efficiency of methylation levels in distinguishing tumor from normal samples. According to the median value of the
numbers of the methylated CG sites, the PDAC patients were divided into high-level and low-level groups. A K–M
survival analysis was performed to evaluate the OS between the two groups. The clinicopathological parameters were
also compared between the two groups.

Statistical analysis
R software version 3.6.0 was used to generally integrate and analyze data. The Limma package was employed to iden-
tify the differentially methylated promoters. The Pearson correlation analysis between promoter methylation level and
mRNA expression, and a K–M survival analysis were used to identify the PMDGs. The R packages of pheatmap and
ggplot were used to complete the visualization of the results. Univariate and multivariate Cox regression analyses were
performed to highlight the potential prognostic biomarkers for PDAC. A paired-sample t-test and two-sample vari-
ance were used to compare continuous variables. The Wilcoxon signed ranks were utilized to analyze the correlation
between gene expression level and clinicopathological parameters. P<0.05 was considered statistically significant.

Results
Identification of 50 PMDGs
There were 167 malignant and 29 normal pancreatic samples in the GSE49149 dataset. In total, 406496 CpG sites were
detected. The promoter regions included 27910, 34558, 16583, and 6418 CpG sites in TSS200, TSS1500, 5′UTR, and
the 1st exon, respectively. After equalization, 9389 genes with CpG islands in TSS200, 11339 genes with CpG islands in
TSS1500, 3281 genes with CpG islands in 5′UTR, and 3817 genes with CpG islands in 1st exon were confirmed. After
integration, we obtained 12441 genes with average β-values in the promoter regions. We performed a differential
methylation analysis and observed a total of 406 differentially expressed genes (|log2 FC| > 1 and P<0.05). Of these,
367 were hypermethylated, and 39 were hypomethylated in tumor tissues compared with normal tissues (Figure 2A).

To study the correlation between gene expression and promoter methylation, we downloaded the PDAC methy-
lation data of TCGA, which included 185 malignant and ten normal samples. The probe IDs of TSS200, TSS1500,
5′UTR, and 1st exon for the 406 genes were mapped to the PDAC dataset of TCGA. After integrating the β-values
of the four TSS regions into one, we obtained the methylation patterns for the 406 genes. We then screened out the
mRNA expression count values of these genes from the PDAC mRNA sequencing data. Next, a Pearson correlation
between the methylation value and mRNA expression of each gene was conducted, and 287 candidate genes were
selected in which the correlation coefficient was significantly negative (P<0.05). Among these genes, 49 hyperme-
thylated genes and one hypomethylated gene were significantly associated with OS and were identified as PMDGs
(Figure 2B and Supplementary Table S1).

GO analysis was employed to understand the functions of the 50 PMDGs. The results indicated that the top en-
riched term in biological process (BP) was ‘positive regulation of neurological process.’ The greatest gene number in
cellular component (CC) was ‘microtubule.’ The most enriched term in molecular function (MF) was ‘microtubule
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Figure 2. Identification of differentially methylated genes across the whole gene promoters

(A) In GSE49149, a total of 367 hypermethylated genes (red dots) and 39 hypomethylated genes (green dots) were identified (|log2

FC| > 1 and P<0.05). (B) Heatmap of the 50 PMDGs. The mRNA values of PMDGs were negatively correlated with the promoter

methylation levels (P<0.05), and the mRNA levels of PMDGs were associated with the OS of the PC cohort of TCGA (P<0.05). The

red and blue bars on the top represent tumor and normal samples, respectively. Colors changing from mazarine (low) to crimson

(high) represent the homogenized β-value of the gene promoter in GSE49149.

Figure 3. Functional enrichment analyses for the PMDGs

Top five enriched GOs for the 50 PMDGs. (A) BP. (B) CC. (C) MF. (D) Top five signaling pathways enriched in KEGG for PMDGs.

motor activity’ (Figure 3A–C). Based on the KEGG pathway enrichment analysis, there were six genes participating
in the pathway of herpes simplex virus-1 infection (P<0.01) (Figure 3D).

Identification of potential prognostic biomarkers among PMDGs
To determine the possible prognostic biomarkers in PMDGs, we extracted 14 clinicopathological variables from the
PDAC cohort of TCGA, including age, therapy methods, and tumor histopathological characteristics. A univariate
Cox regression analysis was performed based on methylation levels of the 50 PMDGs and the clinical parameters.
After that, nine clinical characteristics, including age, postoperative chemotherapy, neoplasm recurrence, histologi-
cal grade, use of molecular targeting drugs, radiotherapy, resection status, lymph node metastasis, and tumor grade
showed statistical differences (Table 2). The promoter methylation level of seven PMDGs including dipeptidyl pep-
tidase like 6 (DPP6), myotubularin related protein 7 (MTMR7), leucine rich repeat and Ig domain containing 3
(LINGO3), H4 clustered histone 5 (HIST1H4E), glutamate metabotropic receptor 6 (GRM6), ZFP28 zinc finger
protein (ZFP28), and regulator of G protein signaling 22 (RGS22) were significantly associated with OS (Table 2).
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Table 2 Univariate and multivariate Cox regression analyses according to clinicopathological variables and
seven PMDGs in the PDAC cohort of TCGA

Clinical parameters
Univariate Cox regression

analysis
Multivariate Cox regression

analysis
HR (95% CI) P HR (95% CI) P

Age 1.03 (1.00–1.05) 0.006 1.01 (0.98–1.04) 0.563

Resection status (R0, R1) 1.79 (1.17–2.74) 0.007 1.28 (0.80–2.00) 0.304

T stage (T1/T2, T3/T4) 2.01 (1.07–3.82) 0.031 1.32 (0.64–2.70) 0.455

Lymph node invasion (no, yes) 2.00 (1.19–3.37) 0.009 2.04 (1.11–3.80) 0.023

Histologic grade (Gx, G1, G2, G3, G4) 1.46 (1.08–1.98) 0.014 1.41 (0.99–2.00) 0.059

Neoplasm recurrence (no, NA, yes) 1.26 (1.01–1.58) 0.042 1.28 (0.99–1.70) 0.057

Molecular targeting drugs using (no, yes) 0.58 (0.38–0.88) 0.011 0.76 (0.42–1.40) 0.351

Radiotherapy (no, NA, yes) 0.72 (0.54–0.96) 0.024 0.70 (0.51–9.97) 0.034

Postoperative chemotherapy (no, yes) 0.58 (0.37–0.89) 0.013 0.38 (0.20–0.71) 0.003

HIST1H4E 14.11 (4.47–44.55) 0.000 5.92 (1.19–29.00) 0.030

DPP6 6.77 (1.70–27.00) 0.007 543.91
(9.50–31000.00)

0.002

MTMR7 5.66 (1.61–19.95) 0.007 4.00 (0.16–99.00) 0.397

LINGO3 9.17 (1.83–45.89) 0.007 7.01 (0.79–62.00) 0.08

GRM6 4.07 (1.15–14.49) 0.030 0.04 (0.00–1.40) 0.073

ZFP28 3.09 (1.06–9.02) 0.039 1.04 (0.20–5.30) 0.967

RGS22 3.48 (1.02–11.94) 0.047 0.05 (0.00–1.10) 0.054

Abbreviations: CI, confidence interval; HR, hazard ratio.
T stage is based on the 7th edition of the American Joint Committee on Cancer staging system.

Figure 4. Identification of DPP6 and HIST1H4E as prognostic biomarkers for PDAC

(A,B) In the GSE49149 dataset and the PDAC cohort of TCGA, the promoter regions of seven PMDGs, including DPP6, MTMR7,

LINGO3, HIST1H4E, GRM6, ZFP28, and RGS22 were significantly hypermethylated in tumor compared with normal tissues

(*P<0.05). (C,D) High mRNA levels of DPP6 and HIST1H4E were associated with better OS of the PDAC cohort of TCGA. (E,F) The

promoter methylation levels of DPP6 and HIST1H4E were negatively correlated with mRNA expression values.

In both the GSE49149 and PDAC cohort of TCGA, these seven genes showed similar methylation patterns in the
promoter region: hypermethylation in tumor samples and hypomethylation in normal samples (Figure 4A,B).
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Figure 5. Validation of DPP6 as a prognostic biomarker for PDAC

(A–D) The number of methylated CG sites of the DPP6 and MTMR7 promoters was significantly greater in tumor than in adjacent

normal samples. However, no difference was observed for HIST1H4E and ZFP28. (E) The number of methylated CG sites of the

DPP6 promoter could distinguish the tumor from normal samples with moderate efficiency (AUC = 0.74 and P<0.001). (F,G)

Hypermethylation of the DPP6 promoter was associated with poor overall and disease-free survivals for PDAC patients. **P<0.01.

We integrated the above-mentioned seven genes and nine clinical factors into a multivariate Cox regression analy-
sis, and found that chemotherapy and radiation were significant protective factors, while lymph node metastasis and
promoter hypermethylation of DPP6 and HIST1H4E were significant risk factors for PDAC patients (Table 2). As
previously mentioned, the K–M survival analysis showed that high mRNA levels of DPP6 (hazard ratio (HR) = 0.63,
95% confidence interval (CI) = 0.42–0.96, P=0.03) and HIST1H4E (HR = 0.62, 95% CI = 0.41–0.93, P=0.02) were
both associated with better OS (Figure 4C,D). Moreover, promoter methylation levels of DPP6 and HIST1H4E were
both negatively correlated with mRNA expression (Figure 4E,F).

Validation of DPP6 as a potential prognostic biomarker for PDAC
BSP was performed focusing on the promoter regions of four potential PMDGs (DPP6, HIST1H4E, MTMR7, and
ZFP28) in 72 paired tumor and adjacent normal samples of PDAC patients. The results confirmed that the numbers
of methylated CG sites in DPP6 and MTMR7 in tumor tissues were significantly higher than in normal tissues (7.43
+− 6.12 vs. 2.78 +− 2.96, P<0.001; 45.95 +− 16.68 vs. 31.36 +− 16.90, P<0.001; Figure 5A,B). However, the numbers of
methylated CG sites in HIST1H4E and ZFP28 were not different between tumor and normal tissues (1.69 +− 1.43 vs.
1.74 +− 1.70, P=0.587 and 1.69 +− 1.37 vs. 1.47 +− 1.35, P=0.73; Figure 5C,D).

A ROC curve was constructed based on the number of methylated CG sites in DPP6. The results showed that the
methylated status of the DPP6 promoter had a moderate ability to distinguish tumor from normal tissues (AUC =
0.74, P<0.001; Figure 5E). The cut point was 4.5 methylated CG sites in the DPP6 promoter, with a specificity of
65% and a sensitivity of 78%. Based on the median number of methylated CG sites of the DPP6 promoter, we divided
the patients into high- (n=36) and low-level (n=36) groups. The K–M survival analysis showed that the OS was
significantly better in the low-level group than in high-level group (HR = 3.61, 95% CI = 1.91–6.84, P<0.001; Figure
5F). Similarly, the disease-free survival of the low methylation group was significantly better than in the high-level
group (HR = 2.01, 95% CI = 1.11–3.64, P=0.016; Figure 5G).
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Table 3 Kaplan–Meier survival analyses for PDAC patients stratified with clinicopathological parameters, and the
association between the methylation level of the DPP6 promoter and clinicopathological features

Clinical
parameters OS (30 months) Methylation of DPP6 promoter

n HR (95% CI) P Low level (n=36) High level (n=36) P

Age (years) 0.599 631 611 0.522

≤62 36 1

>62 36 1.18 (0.63–2.21)

Tumor size (cm) 0.218 3.341 4.34 0.021

<4 40 1

≥4 32 1.47 (0.78–2.76)

Resection 0.240 0.003

R0 57 1 34 23

R1 and R2 15 1.71 (0.79–3.72) 2 13

Invasion of reginal
lymph node

0.234 <0.001

Negative 21 1 20 1

Postitive 51 1.57 (0.79–3.15) 16 35

Vascular invasion 0.243 0.153

Negative 41 1 24 17

Postitive 31 1.44 (0.75–2.75) 12 19

TNM stage 0.022 <0.001

II 38 1 35 3

III and IV 34 2.37 (1.26–4.47) 1 33

T stage 0.196 0.020

T1 and T2 50 1 30 20

T3 and T4 22 1.51 (0.76–3.01) 6 16

N stage 0.001 <0.001

N0 and N1 44 1 20 1

N2 28 2.63 (1.35–5.12) 16 35

M stage 0.575 0.011

Negative 65 1 36 29

Postitive 7 1.30 (0.46–3.66) 0 7

1Mean value of continuous parameters.
TNM stage was based on the 8th edition of the American Joint Committee on Cancer staging system.

Association of the methylation level of the DPP6 promoter with
clinicopathological parameters of PDAC
Clinicopathological characteristics were compared between the above-mentioned high- and low-level groups (Table
3). Tumor size in the high-level group was significantly larger than the low-level group (4.34 vs. 3.34 cm, P=0.021).
However, the ratio of R0 resection in the high-level group was lower than in the low-level group (94 vs. 64%, P=0.003).
On the contrary, more patients in high-level group suffered from PDAC in the III or IV TNM stage compared with
low-level group (92 vs 3%, P<0.001). Compared with the low-level group, the ratio of vascular invasion was higher
in the high-level group, but not to a statistically significant level (53 vs. 33%, P=0.153).

Discussion
Hypermethylation in gene promoters is a general epigenetic modification in cancer formation, especially for in-
hibition of tumor-suppressive genes such as PCDH10 [17], DKK1 [18], and KLF4 [19]. For example, PCDH10
is down-regulated in PC cells and overexpression of PCDH10 inhibits proliferation and migration of cells. Pro-
moter methylation of PCDH10 was observed in cancer cells, and the expression of PCDH10 could be restored by
5-aza-2′-deoxycytidine [17]. For certain genes such as CDO1, promoter methylation could be used as a diagnostic
biomarker, and methylation of the ZNF671 promoter could predict survival [3,20].

In the present work, we focused on the methylation status of whole coding genes and found 50 PMDGs. Some of
PMDGs were confirmed as tumor-suppressive genes, such as VASH1 [21], ALX3 [22], and LDN3 [23]. Among the

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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PMDGs, promoter hypermethylation of seven genes, HIST1H4E, DPP6, MTMR7, LINGO3, GRM6, ZFP28, and
RGS22, were all correlated with poor survival of PDAC patients using a univariate Cox regression analysis. Most of
the seven genes were associated with tumor suppression. RGS22 was revealed to exhibit tumor suppressive function
in hepatocellular carcinoma [24]. In a pancreatic cell line, overexpression of RGS22 reduced cellular migration by
coupling to GNA12/13, which led to inhibition of stress fiber formation [25]. Hypermethylation of GRM6 was de-
tected in renal carcinoma [26], and LINGO3 was reported as one of the hub genes of metastatic melanoma [27]. In
colorectal cancer, down-regulation of MTMR7 was associated with a malignant phenotype by reducing the level of
phosphoinositide and the activity of insulin-mediated AKT-ERK1/2 signaling [28].

The results of the multivariate Cox regression analysis showed that high levels of promoter methylation of
HIST1H4E and DPP6 were independent risk factors for PDAC. Therefore, we validated the methylation status of
the two genes using BSP. The results confirmed that methylation levels of the DPP6 promoter was significantly in-
creased in tumor tissues compared with normal tissues. The number of methylated CG sites could be a potential
biomarker to distinguish tumor from normal samples with moderate efficiency. The results of the K–M survival
analysis verified that hypermethylation of the DPP6 promoter was associated with poor OS and disease-free survival.
Moreover, several malignant phenotypes, such as tumor size, lymph node invasion, and TNM stage, were related to
hypermethylation of the DPP6 promoter.

DPP6 encodes a single-pass type II membrane protein, which binds to specific voltage-gated potassium chan-
nels and regulates dendritic excitability. GO annotations of DPP6 include serine-type peptidase activity and
dipeptidyl-peptidase activity. Somatic mutations of DPP6 were discovered in PDAC [29], which suggests that its loss
of function was associated with invasion of PC cells [30]. However, the function of DPP6 in regulating tumor progres-
sion is unknown. Further studies are needed to define the potential molecular mechanism of this novel biomarker.

In renal cell carcinoma, the promoter hypermethylation of DPP6 frequently occurred in tumor cells and was asso-
ciated with poor survival serving as an independent predictor for distant metastasis [31]. Similarly, the promoter of
DPP6 was also found to be hypermethylated in a TCGA esophagus adenocarcinoma cohort [32]. To our knowledge,
our study is the first to observe and validate that, the promoter of DPP6 was significantly hypermethylated in PDAC,
and that the number of methylated CG sites could be a prognostic biomarker for PC. Further molecular biological
experiments are needed to reveal the function of DPP6 in PDAC.

Furthermore, in the derivation cohort, the results of a multivariate Cox regression analysis revealed that postoper-
ative chemotherapy and radiation were significant protective factors; however, lymph node metastasis was an inde-
pendent risk factor for PDAC patients. This is accordance with the results of recent clinical cohort studies [33–35].

Conclusions
We studied the promoter methylation status across the whole genome through a series of bioinformatics analyses and
identified that hypermethylation of the DPP6 promoter was an independent risk factor for PDAC. Using BSP and
clinicopathological data of our own, we validated that as a PMDG, DPP6 could be a potential prognostic biomarker
for PDAC, which may provide a new therapeutic target for PC.
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