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Hepatocellular carcinoma (HCC) is one of the most common malignant tumor. miR-331-3p
has been reported relevant to the progression of HCC, but the molecular mechanism of its
regulation is still unclear. In the study, we comprehensively studied the role of miR-331-3p in
HCC through weighted gene coexpression network analysis (WGCNA) based on The Cancer
Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Oncomine. WGCNA was ap-
plied to build gene co-expression networks to examine the correlation between gene sets
and clinical characteristics, and to identify potential biomarkers. Five hundred one target
genes of miR-331-3p were obtained by overlapping differentially expressed genes (DEGs)
from the TCGA database and target genes predicted by miRWalk. The critical turquoise
module and its eight key genes were screened by WGCNA. Enrichment analysis was imple-
mented based on the genes in the turquoise module. Moreover, 48 genes with a high degree
of connectivity were obtained by protein–protein interaction (PPI) analysis of the genes in the
turquoise module. From overlapping genes analyzed by WGCNA and PPI, two hub genes
were obtained, namely coatomer protein complex subunit zeta 1 (COPZ1) and elongation
factor Tu GTP binding domain containing 2 (EFTUD2). In addition, the expression of both hub
genes was also significantly higher in tumor tissues compared with normal tissues, as con-
firmed by analysis based on TCGA and Oncomine. Both hub genes were correlated with
poor prognosis based on TCGA data. Receiver operating characteristic (ROC) curve vali-
dated that both hub genes exhibited excellent diagnostic efficiency for normal and tumor
tissues.

Introduction
Liver cancer is the fifth and third malignant tumor with morbidity and mortality [1]. In clinical diagnosis,
hepatocellular carcinoma (HCC) cannot easily be diagnosed at an early stage, and is often not detected
until the late stage of cancer [2,3]. HCC is the most common type of liver cancer, accounting for 75%
of liver cancer [4]. Although some progress has been made in diagnosis and treatment strategies, the
high metastasis rate and recurrence rate of HCC make it difficult for patients with advanced HCC to be
effectively treated [5,6]. Thus, it is meaningful for the treatment to study the underlying molecular and
identify novel markers for diagnosis and prognosis.

MicroRNAs (miRNAs) are a class of short, highly conserved, single-stranded non-coding RNAs, each
with a length of 18–25 nucleotides [7,8]. MiRNAs play an important part in a variety of biological pro-
cesses (BPs) by regulating gene expression post-transcriptionally [9,10]. According to recent studies, Let-7,
miR-101 and miR-370 are down-regulated in HCC [11–13]. While miR-155, miR-21, miR- 221, miR-146a,

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

1

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/40/6/BSR
20200124/886024/bsr-2020-0124.pdf by guest on 23 April 2024

http://orcid.org/0000-0002-5127-8112
mailto:zhaohan@mail.ustc.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1042/BSR20200124&domain=pdf&date_stamp=2020-06-25


Bioscience Reports (2020) 40 BSR20200124
https://doi.org/10.1042/BSR20200124

Figure 1. Venn diagram of a differential analysis dataset

Datasets (GSE31383, GSE40744, GSE64632) were selected. Non-coding RNA profiling by array method in the dataset was

implemented.

miR-515 and miR-224 are up-regulated in HCC [14–18]. At the same time, these miRNAs have certain diagnostic
value and prognostic significance for HCC.

In our previous studies, we combined computational, experimental and bioinformatic methods to investigate the
biophysical properties of the nucleic acids [19,20], and the molecular mechanism of inflammation regulation of small
molecule drugs [21–23]. miR-331-3p is considered to be an important cancer-related mircoRNA. Chen et al. found
that miR-331-3p is an up-regulated micoRNA in pancreatic cancer (PC), while miR-331-3p inhibits suppression of
tumorigenicity 7 like (ST7L) and epithelial mesenchymal transition (EMT)-mediated tumor metastasis, thereby pro-
moting PC cell proliferation. miR-331-3p could be used as a potential diagnostic biomarker and drug target [24].
Similarly, Gu et al. found that the recurrence rate of esophageal adenocarcinoma patients with high-expressing serum
miR-331-3p was lower, and miR-331-3p could be a potential biomarker for predicting tumor recurrence in patients
with esophageal adenocarcinoma [25]. Yang et al. found that miR-331-3p inhibits the development of gastric can-
cer by targeting MSI 1 and serve as an indicator of gastric cancer prediction and prognosis [26]. Novel targets of
miR-331-3p for liver cancer were also revealed. miR-331-3p promotes liver cancer and secondary EMT-mediated
metastasis by inhibiting PLPPP-mediated dephosphorylation of protein kinase B (AKT). And miR-331-3p can serve
as a new therapeutic target and a potential prognostic biomarker [27]. Similarly, miR-331-3p down-regulates E2F1 to
promote the development and metastasis of HCC, indicating the possible application of miR-331-3p in predicting the
prognosis and treatment of HCC [28]. There are reports that miR-331-3p expression is affected by viruses in HCC,
and hepatitis B virus (HBV) is a typical virus that up-regulates miR-331-3p in HCC cell lines. miR-331-3p reduces
von Hippel–Lindau tumor suppressor (VHL) expression by directly targeting its 3′-UT [29].

However, the molecular mechanism of miR-331-3p is not clear in the development of HCC. We aimed to compre-
hensively studied the role of miR-331-3p in HCC through WGCNA based on TCGA, GEO and Oncomine. WGCNA
were applied to build gene co-expression networks to examine the correlation between gene sets and clinical charac-
teristics, and to identify hub genes and critical pathway.

Materials and methods
Differential analysis is performed on three datasets (GSE31383, GSE40744, GSE64632) in the GEO database. These
datasets implemented non-coding RNA profiling by microarray technology. Differentially expressed microRNAs
(DEMs) were screened (P<0.05, |log FC|>1) individually obtained from these datasets were overlapped to get
three DEMs (miR-199a-5p, miR-483-5p, miR-331-3p) (Figure 1). The role of miR-199a-5p [30–34] and miR-483-5p
[35–39] in HCC has been extensively studied. However, the molecular mechanism of miR-331-3p in HCC is not clear
and remains to be explored. Consequently, miR-331-3p was chosen for further study.

First, the expression of miR-331-3p in HCC was obtained by integrating multiple ways, and the prognostic value
analysis and comprehensive meta-analysis of miR-331-3p were performed. Then, the HCC-related differentially ex-
pressed genes (DEGs) from TCGA were overlapped with the target genes of miR-331-3p predicted from 12 databases
to obtain overlapping target genes. Through WGCNA, the overlapping genes and the key genes in the modules that
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play an important part in the development of HCC are obtained. Through the gene ontology (GO) enrichment anal-
ysis and Kyoto, Encyclopedia of Genes and Genomes (KEGG) pathway analysis of gene sets in important modules
to explore its role in the biological process of HCC. Through PPI analysis of the gene sets in the important modules,
genes with high gene connectivity are obtained. Hub genes were obtained from key genes and genes with high gene
connectivity obtained from PPI analysis. The relationship between the miR-331-3p targeted genes and HCC was ex-
plored from the aspects of gene expression and DNA methylation. The working flow chart of the study is shown in
Supplementary Figure S1.

TCGA high-throughput data for HCC patients
The batch download mode was used to download the TCGA data and extract the HCC expression data using the
TCGA simple download tool-V16 in SangerBox software (http://sangerbox.com/). TCGA Easy Download Tool-V16
is obtained from the TCGA database website (https://portal.gdc.cancer.gov/; accessed in May 2019). A total of 422
mature miRNA expression profile samples were obtained, including 372 HCC tissue samples and 50 paracancerous
tissue samples. Further we use SangerBox to combine the expression data in 422 samples and logarithmic conversion
to obtain miRNA expression profiles. Finally, high-throughput data of TCGA of HCC patients with miR-331-3p were
obtained from miRNA expression profiles.

GEO microarray data screening
The research conducted a keyword search of HCC-related microarray data on the GEO database (Gene Expression
Omnibus; https://www.ncbi.nlm.nih.gov/gds/; accessed August 2019). For: (malignant * OR cancer OR tumor OR
tumor OR neoplasm * OR carcinoma) AND (hepatocellular OR liver OR hepatic OR HCC) AND (microRNA OR
miRNA OR ‘micro RNA’ OR ‘small temporal RNA’ OR ‘non coding RNA’ OR ncRNA OR ‘small RNA’). The data
retains that meets the following conditions is reserved for further analysis: (1) the data in the dataset are from humans;
(2) the dataset has both HCC tissue expression data and healthy or adjacent tissue as control group expression data;
(3) the number of samples in the experimental group and the control group is greater than 3; (4) the dataset contains
the expression data of miR-331-3p.

Comprehensive meta-analysis
The study used RevMan 5.3 (London, UK) for a comprehensive meta-analysis. Standard mean difference (SMD) and
95% confidence interval (CI) were used to measure continuous results. We use the Mantel–Haenszel formula (fixed
effects model) or DerSimonian–Laird formula (random effects model) to summarize SMDs and perform Cochrane’s
Q test (Chi-square test; Chi2) and inconsistency (I2) tests to assess heterogeneity. A random effect model is applied
as heterogeneity is shown (P <0.05 or I2>50%). Otherwise, a fixed-effect model is selected. A funnel plot of Egger’s
test was used to assess publication bias. A significant asymmetry of the funnel plot was determined when P<0.1.

Prognostic value of miR-331-3p
Starbase v3.0 (http://starbase.sysu.edu.cn/index.php) is an open source platform that combines miRNA expres-
sion data and prognosis data with various cancers. We determined whether miR-331-3p is an effective prognos-
tic biomarker for HCC by comparing the overall survival (OS) of HCC patients with different expression levels of
miR-331-3p.

Target gene prediction of miR-331-3p
GEPIA (http://gepia.cancer-pku.cn/detail.php) is an interactive web server that uses standard processing flow of
TCGA and GTEx projects to analyze gene expression data, which contains 9736 tumor and 8587 normal samples.
We used GEPIA to access DEGs (P<0.05 and |logFC|>1) between HCC and paracancerous tissues using its embed-
ded Limma package. There are 12 databases (Microt4, miRWalk, mir-bridge, miRanda, miRDB, miRMap, Pictar2,
PITA, MiRNAMap, RNAhybrid, RNA22 and Targetscan) in miRWalk2.0 version (http://zmf.umm.uni-heidelberg.
de/apps/zmf/mirwalk2/) to predict target genes of miR-331-3p. At least genes coexisted in five database were identi-
fied as the DEGs. Then, the DEGs obtained by GEPIA and the target genes predicted by miRWalk2.0 were compared
to obtain overlapping genes of the two.

WGCNA explores important modules and key genes of overlapping genes
WGCNA is a systematic biology method to describe the pattern of gene correlation between different samples. It
can classify highly synergistically changing gene sets based on the interconnectivity of gene sets and the relationship
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between gene sets and phenotypes. Associations identify candidate biomarker genes or therapeutic targets. Specific
steps are as follows.

Importing data and preprocessing
Based on the overlapping gene set obtained above, by matching HCC-related RNA-seq data and clinical data in the
TCGA database, a standardized transcript expression profile of the overlapping genes and clinical phenotypic data of
HCC are obtained. The expression profile matrix and phenotypic matrix of overlapping genes were imported into R
script, and then the expression profile matrix was clustered to remove outliers and genes.

Define gene expression similarity matrix
Based on the expression profile matrices of overlapping genes, a gene expression similarity matrix S of overlapping
genes is calculated.

S = [SXY] = [|cor(X, Y)|] =
⎡
⎣|

∑
n(Xi − E (X))(Yi − E (Y))√∑

n (Xi − E (X))2
√∑

n (Yi − E (Y))2
|
⎤
⎦

Among them, SXY is the similarity between genes X and Y, the absolute value of the Pearson correlation coefficient
of vectors X and Y; X is the expression vector of gene X; Y is the expression vector of gene Y; n is the number of
samples; E (X) and E (Y) represent the mean of the vectors X and Y, respectively.

Compute adjacency matrix
Select the exponential weighting coefficient β, and the selection of β should satisfy the law of scale-free networks.
The similarity matrix S is further transformed into an adjacency matrix A.

A = [aXY] = [|SXY|β]
,

where aXY shows the adjacency coefficients of genes X and Y.

Create topological overlap matrix
Based on the adjacency matrix A, a topological overlap matrix TOM is constructed.

TOM = [ωXY] =
[

lXY + aXY

min {kX, kY} + 1 − aXY

]

lXY = ∑
u aXuauY kX = ∑

u aXu kY = ∑
u aYu

The u in lXY indicates the set of genes adjacent to the genes X and Y at the same time; kX and kY the indicate the
set of genes adjacent to genes X and Y, respectively.

Building a systematic clustering tree
Calculate the node dissimilarity dω

XY and construct a node dissimilarity matrix dissTOM. Based on the matrix dis-
sTOM, a dynamic hybrid cutting algorithm is used to identify network modules from the system cluster tree.

dissTOM = [
dω

XY
] = [1 − ωXY]

dω
XY indicates the degree of dissimilarity between genes X and Y.

Map gene co-expression networks
Eigenvector genes (module eigengene, ME) of each module is calculated. ME means the overall expression level
of the module. Pearson coefficients between modules ME were calculated, and the module ME was clustered us-
ing average-linkage hierarchical clustering method. The modules with higher similarity were combined to obtain a
co-expression network.

Screening gene modules
Correlate the expression level of the module with the phenotypic data, and calculate the Pearson correlation coefficient
MT T

M between each module’s ME and the sample trait feature vector. Select modules that significantly associated with
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phenotypic data for downstream analysis. When P<0.05, results are considered statistically significant.

MT T
M = cor(ME M, ST T )

Among them, MEM indicates the ME vector of the Mth module; STT indicates the ST vector of the Tth personality;
and MT T

M indicates the correlation between the Mth module and the Tth personality.

Identifying pivot genes
The concept of module membership (MM) is introduced to measure the importance of genes in modules. At the same
time, gene significance (GS) is introduced to reflect the degree of association between genes and traits. Key genes are
identified using screening conditions of MM>0.8 and GS>0.2.

MMM(X) = cor(X, ME M)

G ST (X) = cor(X, ST T )

MMM(X) indicates the significance of the gene X in the Mth module; and GST (X) indicates the degree of the gene
X’s prominence in the Tth module.

GO enrichment and KEGG pathway analysis
Based on key genes obtained from WGCNA, GO enrichment and KEGG pathway analysis were performed using
DAVID 6.8 (https://david.ncifcrf.gov/). P<0.05 is considered to be the criteria of statistical significance in the analysis
of GO and KEGG pathway enrichment. Three entries in GO enrichment analysis, namely cell component (CC),
biological process (BP) and molecular function (MF), reflect the functional annotation of key genes. Critical pathways
involved in the activity of miR-331-3p in HCC were analyzed through KEGG pathway analysis.

PPI network analysis
STRING (https://string-db.org/) is a web server for interactive gene search to generate PPI network. Then the PPI
network of key genes collected from WGCNA is obtained from STRING. The nodes and lines in the network graph
represent the target genes and their interactions, respectively. For accurate results, nodes in the network with an
interaction score of less than 0.4 and nodes not connected to the main network will be deleted. Furthermore, interac-
tion results obtained from STRING were imported into Cytoscape 3.6.1 for visualization and determination of gene
connectivity. Gene connectivity is a quantitative indicator to assess the degree of interaction between genes.

Identification and validation of hub genes
The key genes of the important modules obtained by WGCNA are intersected with genes with a connectivity of
≥8 obtained by PPI network analysis. The hub gene with the highest correlation with HCC among miR-331-3p
was obtained. UALCAN (http://ualcan.path.uab.edu) is an interactive web server with TCGA’s RNA-seq data and
clinical data for 31 cancer types. It can obtain the expression of a single gene in cancer and its survival curve. Use
the TCGA simple download tool-V16 in SangerBox software to download the TCGA data and extract the data
of coatomer protein complex subunit zeta 1 (COPZ1) and elongation factor Tu GTP binding domain containing
2 (EFTUD2). SPSS was used to draw the ROC curves of COPZ1 and EFTUD2, respectively. The ROC curve was
used to distinguish expression data between HCC tissue and control tissue. The area under curve (AUC) value was
used to evaluate the clinical diagnostic value of miR-331-3p in HCC. A larger AUC value indicates the higher di-
agnostic performance. Oncomine (www.oncomine.org) is currently the largest oncogene chip database and com-
prehensive data mining platform, with 715 gene expression data collections and 86733 samples of cancer and nor-
mal tissues. Oncomine can analyze the differential expression of different genes for universal cancer types and their
normal tissues. We differentiated target genes by using Oncomine. Differential analysis results of HCC in different
data sets were obtained, and the results with significant research significance were selected (P<0.05). DiseaseMeth
2.0 (http://bioinfo.hrbmu.edu.cn/diseasemeth/) is the largest database of DNA methylation status today. We use the
methylation level of the hub gene obtained in this site in HCC and normal tissues adjacent to the cancer.
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Figure 2. MiR-331-3p expression in HCC and normal tissues in the GEO database

MiR-331-3p expression data in HCC and normal tissues were integrated from the datasets (GSE31383, GSE40744, GSE64632),

obtained from the GEO database.

Results
High-throughput data for TCGA in HCC patients
Box plots were drawn from the data in the three datasets (GSE31383, GSE64632, GSE40744) of miR-331-3p differ-
ential expression obtained above. The expression of miR-331-3p is higher in cancer tissues than in normal tissues
(Figure 2).

GEO data screening
According to the method mentioned above, a keyword search is performed in the GEO database. Save the datasets that
meet the requirements and get seven data sets (GSE10694, GSE31383, GSE40744, GSE64632, GSE64989, GSE67882,
GSE98269), as shown in Table 1.

Comprehensive meta-analysis
As mentioned previously, RevMan 5.3 software was used to perform a meta-analysis on the included GEO dataset and
TCGA dataset, which included 486 HCC and 179 non-cancerous liver tissues. No momentous difference was found
between HCC and the control group (SMD = 0.26; 95% CI: 0.17–0.36; P<0.00001). The random effects model has
significant heterogeneity (P<0.00001; I2 = 91%). The funnel plot does not indicate publication bias. Figure 3 shows
the results of the forest plot and funnel plot.

Prognostic significance of miR-331-3p
Based on the results of StarBase v3.0, the curve of the OS rate of HCC patients with high and low expression of
miR-331-3p (Figure 4) found that miR-331-3p has a significant prognostic significance for HCC. OS and enrollment
time of the patients are demonstrated in Supplementary Table S1.
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Table 1 Basic information of the data set studied

Series Country Experiment type Platforms
HCC

samples
Healthy
samples

GSE10694 China Non-coding RNA profiling by array GPL6542 78 88

GSE31383 USA Non-coding RNA profiling by array GPL10122 9 10

GSE40744 USA Non-coding RNA profiling by array GPL14613 9 7

GSE64632 USA Non-coding RNA profiling by array GPL18116 3 3

GSE64989 Germany Non-coding RNA profiling by array GPL16384 8 10

GSE67882 India Non-coding RNA profiling by array GPL10850 4 8

GSE98269 China Non-coding RNA profiling by array GPL20712 3 3

TCGA miR-seq Illumina 372 50

Qualified datasets were found from the GEO database and the TCGA database, respectively. (1) The data in the dataset were from humans.
(2) The dataset contained HCC tissue expression data and healthy or adjacent tissue control group expression data. The number of samples
in both the experimental group and the control group was greater than 3. (4) The data set contained the expression data of miR-331-3p.

Figure 3. The study performed meta-analysis using RevMan based on data from the GEO and TCGA

(A) Meta-analysis of data and corresponding forest plots showed no significant difference between HCC and the control group

(SMD = 0.26; 95% CI: 0.17–0.36; P<0.00001). The random effects model has significant heterogeneity (P<0.00001; I2 = 91%). (B)

Funnel plot without publication bias.

miR-331-3p target gene prediction
The first step is to analyze the genetic high-throughput data of the TCGA database through GEPIA. 2206 HCC-related
genes were screened out within the difference threshold (q<0.01 and |log2FC|>1). Next, we use miRwalk2.0 to pre-
dict the potential target genes and retain the genes found in at least three databases. Six thousand two hundred seventy
three potential target genes were obtained. In the third step, the genes obtained in the first two steps are overlapped
to obtain 501 overlapping genes (Supplementary Figure S2).
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Figure 4. Survival curve of miR-331-3p against HCC based on TCGA data using StarBase v3.0 (median = 21.8, P = 0.0015,

hazard ratio = 1.77)

WGCNA explores important modules and key genes of overlapping genes
The WGCNA method was used to find the overlapping genes that play an important part in the development of HCC
modules and the key genes in the modules. Transcript expression profiles of 501 DEGs corresponding to overlapping
genes in the TCGA database were selected and prepared for WGCNA analysis. On account of the gene expression
pattern, the optimal soft threshold 4 found by the program was used as the soft threshold. The module selection
criteria are cut height of 0.25 and minimum module size of 10. The clustering results show that the overlapping
gene set is divided into eight modules. The correlation between the module and clinical trait data showed that the
correlation between the turquoise module (correlation coefficient = 0.3, P = 1e−8) and Grade phenotype data was
the most significant. There are 208 genes in the turquoise module (Figure 5). Eight key genes (TRM3 PPMIG PIGU
RALY EFTUD2 PYGO2 STIP1 COPZ1) were obtained in the turquoise module (MM>0.8 and GS>0.2).

GO enrichment and KEGG pathway analysis of genes in the turquoise
module
We perform GO analysis and KEGG pathway analysis on 208 genes in the turquoise module through the DAVID 6.8.
Through GO analysis, 55 annotations were found to be enriched in BPs, cellular components (CCs) and MFs (Figure
6). GO analysis shows that in terms of BPs, genes are significantly enriched in certain cellular processes, such as cell
division, mitotic nuclear division, etc. In terms of CCs, they are significantly enriched in the following cell groups:
cytosol, extracellular exosome, etc. In terms of molecular function, genes are significantly enriched in protein binding
(Table 2). KEGG pathway analysis yielded a total of nine enriched pathways (Figure 7). KEGG pathway analysis
displays that the target genes were extensively involved in viral carcinogenesis, protein processing in endoplasmic
reticulum and cell cycle (Table 3).

PPI network analysis of genes in Turquoise module
A total of 208 genes in the turquoise module to construct a PPI network by STRING. The nodes and lines in the figure
represent genes and interactions between genes, respectively. The results of the PPI network obtained from STRING
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License 4.0 (CC BY).

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/40/6/BSR
20200124/886024/bsr-2020-0124.pdf by guest on 23 April 2024



Bioscience Reports (2020) 40 BSR20200124
https://doi.org/10.1042/BSR20200124

Figure 5. Exploring important modules related to target genes and clinical features through WGCNA

(A) Analyze the scale-free fitting index (left) and average connectivity (right) of various soft threshold weights. (B) Treemap of all

DEGs clustered based on dissimilarity measures. (C) Clustering of eigen genes in the module. (D) Correlation between genes. (E)

Heatmap of the correlation between modular feature genes and clinical features. Each unit corresponds to a correlation coefficient

and a P value. (F) Scatter plot of module eigen genes in turquoise module.

were imported into Cytoscape 3.6.1 for further visualization, and 42 genes were screened according to the degree of
gene connectivity degree ≥8. The PPI network is shown in Supplementary Figure S3.

Identification and validation of hub genes
The key genes of the significant module obtained by WGCNA above and the genes with the degree of connectivity of
degree ≥8 obtained by PPI network analysis are intersected to obtain two hub genes, namely COPZ1 and EFTUD2.
The Venn diagram is shown in Supplementary Figure S4. The expression of both genes in HCC tissues was higher
than in normal tissues, as revealed by UALCAN. At the same time, they have significant prognostic significance for
HCC and have high confidence (P<0.05) (Figure 8). ROC curves of COPZ1 (AUC = 0.973, P<0.001) and EFTUD2
(AUC = 0.959, P<0.001) were drawn from the TCGA database. COPZ1 and EFTUD2 have high diagnostic value
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Figure 6. GO enrichment analysis chart, which is divided into biological process, CC and molecular function, and each part

is arranged in descending order according to the first 10 terms of Count value (P<0.05)

Figure 7. KEGG enrichment analysis

The chart is arranged in descending order of Count value (P<0.05)

10 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 2 GO enrichment analysis table (divided into GOTERM BP DIRECT, GOTERM CC DIRECT,
GOTERM CC DIRECT three groups, P<0.05, each group is ranked according to the Count value from high to
low, and the first 10 data of each group are taken)

Category Term Count P value

GOTERM BP DIRECT GO:0051301∼cell division 12 0.001766834

GOTERM BP DIRECT GO:0007067∼mitotic nuclear division 10 0.001760521

GOTERM BP DIRECT GO:0016032∼viral process 9 0.017941637

GOTERM BP DIRECT GO:0000086∼G2/M transition of mitotic cell cycle 7 0.004120868

GOTERM BP DIRECT GO:0006260∼DNA replication 7 0.007530052

GOTERM BP DIRECT GO:0007049∼cell cycle 7 0.033261067

GOTERM BP DIRECT GO:0000082∼G1/S transition of mitotic cell cycle 6 0.005413891

GOTERM BP DIRECT GO:0007062∼sister chromatid cohesion 6 0.005640417

GOTERM BP DIRECT GO:0000187∼activation of MAPK activity 6 0.00661362

GOTERM BP DIRECT GO:0051726∼regulation of cell cycle 5 0.048344183

GOTERM CC DIRECT GO:0005829∼cytosol 62 7.53E−06

GOTERM CC DIRECT GO:0070062∼extracellular exosome 60 1.43E−07

GOTERM CC DIRECT GO:0005654∼nucleoplasm 48 8.85E−04

GOTERM CC DIRECT GO:0016020∼membrane 43 1.39E−04

GOTERM CC DIRECT GO:0005789∼endoplasmic reticulum membrane 22 4.08E−04

GOTERM CC DIRECT GO:0005783∼endoplasmic reticulum 20 0.001556487

GOTERM CC DIRECT GO:0005925∼focal adhesion 10 0.025871509

GOTERM CC DIRECT GO:0005913∼cell-cell adherens junction 9 0.023871692

GOTERM CC DIRECT GO:0000790∼nuclear chromatin 8 0.004950709

GOTERM CC DIRECT GO:0005765∼lysosomal membrane 8 0.029022075

GOTERM MF DIRECT GO:0005515∼protein binding 139 3.87E−08

GOTERM MF DIRECT GO:0005524∼ATP binding 26 0.036592117

GOTERM MF DIRECT GO:0042802∼identical protein binding 16 0.026280507

GOTERM MF DIRECT GO:0016301∼kinase activity 9 0.006798774

GOTERM MF DIRECT GO:0098641∼cadherin binding involved in cell-cell adhesion 9 0.019123621

GOTERM MF DIRECT GO:0001105∼RNA polymerase II transcription coactivator activity 4 0.008714107

GOTERM MF DIRECT GO:0031492∼nucleosomal DNA binding 4 0.015792542

GOTERM MF DIRECT GO:0046873∼metal ion transmembrane transporter activity 3 0.006750044

GOTERM MF DIRECT GO:0005385∼zinc ion transmembrane transporter activity 3 0.026101256

GOTERM MF DIRECT GO:0008475∼procollagen-lysine 5-dioxygenase activity 2 0.034083931

Table 3 KEGG path analysis table (ranked from highest to lowest according to the Count value)

Category Term Count P value

KEGG PATHWAY hsa05203:Viral carcinogenesis 8 0.010157189

KEGG PATHWAY hsa04141:Protein processing in
endoplasmic reticulum

7 0.014300805

KEGG PATHWAY hsa04110:Cell cycle 6 0.015123404

KEGG PATHWAY hsa05020:Prion diseases 5 6.32E−04

KEGG PATHWAY hsa04915:Estrogen signaling pathway 5 0.028902908

KEGG PATHWAY hsa00240:Pyrimidine metabolism 5 0.030805553

KEGG PATHWAY hsa04114:Oocyte meiosis 5 0.041413445

KEGG PATHWAY hsa05219:Bladder cancer 4 0.012156376

KEGG PATHWAY hsa05214:Glioma 4 0.040779829

(AUC>0.75), and both have statistical significance (P<0.05) (Figure 9). The gene expression and DNA copy number
of the hub gene in HCC were obtained through the Oncomine 4.5 database, and data with high reliability were selected
(P<0.05).The gene expression and DNA copy number of COPZ1 and EFTUD2 were significantly higher in liver
cancer tissues than in normal tissues, and the Over-expression Gene Rank and DNA Copy Number Gain Gene Rank
of all gene expressions are in the top 30% (Figure 10).The DNA methylation status of COPZ1 and EFTUD2 obtained
from DiseaseMeth 2.0 in normal tissues was higher than that in cancer tissues (Supplementary Figure S5).
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Figure 8. Box plot and survival curve of gene expression in HCC obtained by UALCAN

(A) Differential expression of COPZ1 in normal tissues and liver cancer tissues (P = 1.624E−12). (B) Differential expression of

EFTUD2 in normal tissues and liver cancer tissues (P = 1.625E−12). (C) The effect of differential expression of COPZ1 on survival

rate of patients with liver cancer (P = 0.00022). (D) The effect of differential expression of EFTUD2 on survival rate of patients with

liver cancer (P = 0.0014).

Discussion
In the study, miR-331-3p was up-regulated in HCC from the GEO database. A large amount of data on miR-331-3p
expression in HCC were collected by the GEO and TCGA databases. Then we performed meta-analysis based on GEO
microarray and TCGA-based RNA-seq data to explore the diagnostic value of miR-331-3p in HCC. The prognostic
significance of miR-331-3p in liver cancer is further confirmed by the study of the OS rate of HCC patients. We
superimpose the 2206 HCC genes obtained by differential analysis of the TCGA database and the 6273 predicted
target genes to obtain 501 overlapping genes. Important modules were further obtained through WGCNA analysis
of overlapping genes, and eight key genes were screened out (TRM3 PPMIG PIGU RALY EFTUD2 PYGO2 STIP1
COPZ1). We performed PPI network analysis on genes in important modules, and selected 42 genes with a degree of
connectivity of degree ≥8. The key genes in the important module and the genes with high gene connectivity obtained
from the PPI network analysis are overlapped to obtain the hub gene (COPZ1 EFTUD2).

Although many studies have found that miR-331-3p is related to cancers such as colorectal cancer and, research
on the regulation of miR-331-3p in HCC is still limited [40]. Chang et al. analyzed miRNA expression profiles
and found that miR-331-3p can inhibit the expression of PH domain and leucine-rich repeat protein phosphatase
(PHLPP) -mediated protein kinase B (AKT) and promote the proliferation of cancer cells [27]. Chen et al. found that
miR-331-3p was significantly up-regulated in HCC through real-time PCR, which is consistent with our results [41].
As for miR-331-3p downstream genes, Cao et al. experimentally found that up-regulation of miR-331-3p inhibits the

12 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 9. ROC curve of hub genes

(A) COPZ1 (AUC = 0.973, P<0.001). (B) EFTUD2 (AUC = 0.959, P<0.001). Both COPZ1 and EFTUD2 have diagnostic significance

(AUC>0.75) and statistical significance (P<0.05).

expression of inhibitor of growth family member 5 (ING5), and then promote the proliferation of HCC cells [42]. Cao
et al. used qRT-PCR to find that HBV up-regulates the expression of miR-331-3p in HCC cell lines. And miR-331-3p
directly inhibits VHL expression on 3′-UTR [29]. miR-331-3p was suggested as a possible prognostic marker in HCC
[43]. Moreover miR-331-3p had been used as a critical marker for early detection of high-risk HCC patients [44].
Studies have shown that miR-331-3p has clinical significance in HCC and is considered a possible prognostic marker
[45,46], which is consistent with the conclusions of our study. And the diagnostic potential of serum miR-331-3p has
also been confirmed [47]. ROC curve obtained from the expression data of miR-331-3p in TCGA (AUC = 0.594,
P<0.05) is shown in Supplementary Figure S6. It shows that miR-331-3p is of diagnostic significance.

Pathway analysis indicates that miR-331-3p is engaged in the inflammatory response of HCC through viral, endo-
plasmic reticulum and cell cycle pathways. Lots of investigations have shown that miR-331-3p is related to inflam-
matory process of HCC [48]. Results have shown that miR-331-3p is up-regulated by HBV and promotes HCC cell
proliferation by inhibiting ING5 expression [42]. Recent experiments have shown that miR-331-3p can be a serum
biomarker for early hepatitis C virus associated hepatocellular carcinoma [44]. The endoplasmic reticulum is an im-
portant organelle responsible for various functions, and there have been many studies on its relationship with cancer
[49], including that endoplasmic reticulum stress is closely related to tumor treatment [50]. Research by Su et al. also
verified that galangin inhibits HCC proliferation by inducing endoplasmic reticulum stress [51]. For the cell cycle,
studies have shown that miR-138 inhibits HCC through the cyclin D3 (CCND3) gene regulating the cell cycle of HCC
[52].

UALCAN was used to obtain COPZ1, EFTUD2 gene expression was up-regulated in HCC, and COPZ1, EFTUD2
have prognostic significance for HCC. The ROC curve shows that COPZ1 and EFTUD2 have an ideal diagnostic
performance. Oncomine further confirmed that COPZ1 and EFTUD2 gene expression was up-regulated in HCC.
The DNA methylation levels of COPZ1 and EFTUD2 obtained through DiseaseMeth were down-regulated in HCC,
which is consistent with the results of the up-regulation in gene expression above. However, studies on COPZ1 and
EFTUD2 in HCC are still few, but some studies have shown that COPZ1 and EFTUD2 are closely related to cancer
development. COPZ1 is involved in inflammatory, intracellular traffic, autophagy and lipid homeostasis. And COPZ1
also shows some function in abortive autophagy, endoplasmic reticulum stress, unfolded protein response and cell
apoptosis [53]. Research by Anania et al. demonstrates the key role of COPZ1 in thyroid tumor cell viability, suggest-
ing that it may be considered an attractive target for new treatments for thyroid cancer [54]. Oliver’s study elucidates
the mechanism by which cancer cells emit apoptosis signals when COPZ1 is depleted. Depletion of COPZ1 can lead
to loss of cancer-specific COPI function and subsequent paralysis of the Golgi apparatus. It also shows that COPZ1
is a significant target in the treatment of cancer [55]. EFTUD2, which is a spliceosome protein, was also involved in
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Figure 10. Gene expression in HCC and normal tissues from the Oncomine 4.5 database

(A) Expression of COPZ1 in different databases: (A) Chen liver; (B) Roessler liver; 2 (C) Roessler liver; (D) Wurmbach liver. The

selected databases were all up-regulated in HCC and had statistical significance (P<0.05). (B) Expressions of EFTUD2 in different

databases: (E) Chen liver; (F) TCGA liver; (G) Wurmbach liver; (H) Guichard liver; (I) Guichard liver 2. Expressions of these genes

were all up-regulated in HCC and had statistical significance for the selected databases (P<0.05).
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innate immunity and cell apoptosis [56]. EFTUD2 regulates RIG-I and MDA5 through mRNA splicing. EFTUD2 will
be an interesting target to study the splicing mechanism by which EFTUD2 regulate on MyD88, RIG-I and MDA5
[57]. Studies by Sato et al. indicate that EFTUD2 plays an important part in the development of breast cancer. It is
proved that depletion of SNW domain containing 1 (SNW1) and its related factor EFTUD2 can induce breast can-
cer cell apoptosis. In addition, expression of the SNW1 or EFTUD2 deletion construct can inhibit the association of
endogenous proteins, thereby significantly increasing the number of apoptosis cells [58]. Later studies have shown
that EFTUD2 accelerates the development of colitis-related tumors. EFTUD2 is constantly overexpressed in colon
tissue and infiltrating macrophages. EFTUD2’s myeloid-specific knockout significantly inhibits chronic intestinal in-
flammation and tumorigenesis, which is related to the reduction in the production of inflammatory cytokines and
tumorigenic factors [59]. Zhu et al. have shown that EFTUD2 mainly restricts HCV infection through a retinoic
acid-inducible gene 1 (RIG-I)/melanoma differentiation-associated protein 5 (MDA5)-mediated pathway indepen-
dent of JAK-STAT. And they suggested a potential antiviral pathway [60]. And experiments show that EFTUD2 in-
hibits HBV infection by up-regulating the expression of RIG-I [61], which is consistent with our description of the
pathway above.

Conclusion and perspectives
In the study, we comprehensively studied the role of miR-331-3p in HCC through weighted gene coexpression net-
work analysis (WGCNA) based on TCGA, GEO and Oncomine. WGCNA were applied to build gene co-expression
networks to examine the correlation between gene sets and clinical characteristics, and to identify hub genes and
critical pathways. miR-331-3p is upregulated in HCC and demonstrates good prognosis and diagnostic performance
for HCC based on the GEO and TCGA data sets. HCC-related genes obtained from the TCGA database overlapped
with miR-331-3p potential genes, and 501 target genes for miR-331-3p related to HCC were obtained. Based on
overlapping genes, the critical turquoise module and its eight key genes were screened by WGCNA. Genes in the
turquoise module were analyzed for enrichment analysis to explore their role in the BPs of HCC. Based on the genes
in the turquoise module, 48 genes with the degree of gene connectivity ≥8 were obtained by PPI analysis. Both genes
(COPZ1 EFTUD2) were obtained by overlapping the key genes and those obtained by PPI analysis. The relationship
between miR-331-3p targeting COPZ1 and EFTUD2 and HCC was explored from gene expression and DNA methy-
lation. The study of miR-331-3p may be helpful for understanding the genetic level of HCC progression and revealing
its potential molecular mechanisms and regulatory networks.

There are still some problems to be solved in the study. First of all, the data of existing databases for bioinformatic
analysis and data mining were applied in the study. We hope to verify our conclusions experimentally in the future
work. Second, there are few studies on the role of COPZ1 and EFTUD2 in HCC. The role of both genes in HCC was
required to be studied in detail. Third, the diagnostic performance of miRNA-331-3p could be better presented if the
expression level from serum samples was determined of HCC and analyzed. Fourth, the infiltration of immune cells
may be related to the progress of HCC. Taking immune infiltration into consideration will help us to further explore
the role of miR-331-3p in HCC.
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