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Osteoporosis (OP) is significant and debilitating comorbidity of chronic obstructive pul-
monary disease (COPD). We hypothesize that genetic variance identified with OP may also
play roles in COPD. We have conducted a large-scale relation data analysis to explore the
genes implicated with either OP or COPD, or both. Each gene linked to OP but not to COPD
was further explored in a mega-analysis and partial mega-analysis of 15 independently col-
lected COPD RNA expression datasets, followed by gene set enrichment analysis (GSEA)
and literature-based pathway analysis to explore their functional linked to COPD. A multi-
ple linear regression (MLR) model was built to study the possible influence of sample size,
population region, and study date on the gene expression data in COPD. At the first step
of the analysis, we have identified 918 genes associated with COPD, 581 with OP, and a
significant overlap (P<2.30e-140; 210 overlapped genes). Partial mega-analysis showed
that, one OP gene, GPNMB presented significantly increased expression in COPD patients
(P-value = 0.0018; log fold change = 0.83). GPNMB was enriched in multiple COPD path-
ways and plays roles as a gene hub formulating multiple vicious COPD pathways included
gene MMP9 and MYC. GPNMB could be a novel gene that plays roles in both COPD and
OP. Partial mega-analysis is valuable in identify case-specific genes for COPD.

Introduction
Chronic obstructive pulmonary disease (COPD) is a chronic, progressive condition driven by unresolv-
able inflammation in the airway wall and accompanied by extensive tissue remodeling [1]. Osteoporosis is
a systemic skeletal disorder recognized as one of the many extrapulmonary effects of COPD [2]. Epidemi-
ological research shows that that prevalence of osteoporosis in COPD is higher than that in healthy elderly
subjects and in some other chronic lung diseases [3,4]. A number of factors have been suggested to ac-
count for comorbid osteoporosis observed in COPD, such as confounding smoking, vitamin D deficiency,
hypoxia, systemic inflammation, and various medications [4–6]. Severity of osteoporosis increased with
the increase of the severity of COPD [7,8].

Both in osteoporosis and in COPD, many genes display aberrant expression patterns. It is plausible to
imagine that the factors driving these expression changes may fuel both of these diseases, even though
the etiology for their association remained unclear. For example, separate sets of studies analyzing the
pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, which are part of the senescence-associated secre-
tory phenotype, showed their role in deterioration of lung function in patients with COPD [9–11] and in
progressive resorption of the bone [12–14]. In COPD, an increase in soluble pro-inflammatory molecules
systemically tilts the balance of the osteoprotegerin (OPG)/RANKL axis toward RANKL, which propels
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the development of osteoporosis [15,16]. In turn, the elevated levels of RANKL provide a positive feedback to these
cytokines by supporting survival of the dendritic cells that exacerbate inflammation in peripheral tissues including
lungs [17], and by direct stimulation of MMP-9 [18]. This logic puts shared inflammatory milieu as the common
pathogenic factor underlining both of these diseases.

Here, we explore the hypothesis that genes overexpressed in peripheral immune cells and other tissues of individ-
uals with osteoporosis may contribute to the etiology or progression of COPD. To test this hypothesis, we compiled
the lists of genes implicated in COPD and, separately, in osteoporosis, and subtracted the genes previously impli-
cated in both of these phenotypes. In multiple independently collected COPD-related transcriptomics datasets, all
genes previously identified as osteoporosis-related, but not yet highlighted by any COPD studies, were subjected to a
mega-analysis of expression, followed by an enrichment analysis. We show that GPNMB, which encodes transmem-
brane protein capable of shedding its ectodomain into circulation, as a previously unrecognized factor promoting
the development of COPD. We also provide preliminary evidence that GPNMB may be targetable either through
RANKL or through MYC, or both.

Materials and methods
In the present study, the workflow was organized as follows. First, a large-scale literature-based mining effort for
COPD- and OP-related gene sets was undertaken. The overlaps of both group genes sets were studied. Then, for each
gene from the list implicated in OP alone, a mega-analysis and a partial mega-analysis were conducted in 15 publicly
available COPD expression datasets, which were qualified our filter standards and were retrieved from Gene Ex-
pression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). For these genes that showed significant expression
change across analyzed datasets, a Gene Set Enrichment Analysis (GSEA) and a literature-based functional pathway
analysis was conducted, then conclusions on their pathogenic significance in COPD were made. In addition, a mul-
tiple linear regression (MLR) model was employed to study possible influence of sample size, population region, and
study date on the gene expression levels in COPD.

Literature-based relation data
Relation data for both OP and COPD were extracted from existing literature and analyzed using Pathway Studio
(www.pathwaystudio.com) and then were downloaded into a genetic database OP COPD, hosted at http://database.
gousinfo.com. The downloadable format of the database in excel is available at http://gousinfo.com/database/Data
Genetic/OP COPD.xlsx. Beside the list of analyzed genes (OP COPD→OP Specific Genes, COPD Specific Genes,
and Common genes), the supporting references for each disease-gene relation are presented at database OP COPD
(OP COPD→Ref4 OP Specific genes, Ref4 COPD Specific genes, and Ref4 Common genes), including titles of
the references and the sentences describing identified disease–gene relationships. The information could be used
to locate a detailed description of an association of a candidate gene with OP and COPD. Please see Figure 1 for the
workflow of this study.

Data selection for mega-analysis
All expression datasets were searched at GEO through a keyword ‘chronic obstructive pulmonary disease’ (N=171).
Then, we applied the following standards to do the further filter: (1) The organism is Homo sapiens; (2) The data type
is RNA expression; (3) The sample size is no less than 10; (4) the studies are performed according to case–control
design; (5) the dataset and its format files are publically available. Finally, a total of 15 datasets remained available
for the mega-analysis (Table 1). The sample profile of the COPD cases and normal controls were extracted from
each dataset, and other samples were excluded for analysis. For instance, the GEO dataset GSE12472 included COPD
patients with/without squamous cell lung carcinoma and no COPD subjects with/without squamous cell lung carci-
noma. We only used the data of COPD patients and healthy controls without squamous cell lung carcinoma, resulting
in a sample size of 10/18 instead of originally 27/26, for COPD cases and healthy controls, respectively.

To note, the selection of the data covers all COPD expression array datasets from GEO, which is owned by National
Institute of Health (NIH of U.S.A.). The datasets are publicly available, and no permission or confirmation is needed
from any individual investigators. Moreover, the dataset extraction has no selection bias concerning publication jour-
nals, owner affiliations, and authors. Besides, the original data rather than the processed results of each dataset were
used to perform the analysis in the present study, which avoids possible noise caused by individual data process.
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Figure 1. Diagram of the workflow

Table 1 Datasets used for COPD-osteoporosis relation mega-analysis

Study name GEO ID #Control/#Case Country Sample source

Tilley et al., 2011 GSE11784 135/22 U.S.A. Airway epithelial cells

Raman et al., 2010 GSE11906 73/33 U.S.A. Large airway epithelial cells

Boelens et al., 2009 GSE12472 10/18 Netherlands normal bronchial epithelial and
lung LSCC tumor cells

Shaykhiev et al., 2009 GSE13896 58/12 U.S.A. Alveolar macrophages

Poliska et al., 2011 GSE16972 6/6 Hungary Alveolar macrophage and PBMC

Radom-Aizik et al., 2006 GSE1786 12/12 U.S.A. Vastus lateralis biopsy

Bosco et al., 2010 GSE19903 10/10 Australia Sputum cells

Kalko et al., 2013 GSE27536 24/30 U.K. Musculus vastus lateral

Kalko et al., 2014 GSE27543 6/10 U.K. Musculus vastus lateral

Bastos et al., 2016 GSE37768 20/18 Spain Peripheral lung tissue

Ezzie et al., 2012 GSE38974 9/23 U.S.A. Lung tissue

Bowler et al., 2013 GSE42057 42/94 U.S.A. PBMC

Tedrow et al., 2013 GSE47460 17/75 U.S.A. Whole lung

Vucic et al., 2014 GSE56341 14/8 Canada Small airway epithelia

Bhattacharya et al., 2008 GSE8581 19/16 U.S.A. Whole lung

Abbreviation: PBMC, peripheral blood mononuclear cell.

Mega-analysis models
Both the fixed- and random-effects model [19] were employed to study the effect size of OP-related genes in case of
COPD. For each expression dataset, the log fold change (LFC) was calculated for the COPD samples and used as the
index of effect size in mega-analysis. The expression data were normalized and log2-transformed if not done in the
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original dataset. Results from both models were reported and compared. The heterogeneity of the mega-analysis was
analyzed to study the variance within and between different studies. In the case that the total variance Q is equal to
or smaller than the expected between-study variance df , the statistic ISq = 100% × (Q − df )/Q will be set as 0, and
a fixed-effects model was selected for the mega-analysis. Otherwise, a random-effects model was selected. The Q–P
represents the probability that the total variance is coming from within-study only. All analyses were conducted by
an individually developed MATLAB (R2017a) mega-analysis package.

Partial mega-analysis models
To discover genes present significance in part (e.g., 50%) of the studies/datasets but not in all datasets, we performed
a partial mega-analysis, where 50% top studies/datasets were employed for the mega-analysis of a gene. We define
the ‘top datasets’ for a gene as these datasets that demonstrate the bigger absolute value of effect size than the rest
datasets. To note, the ‘top datasets’ for different genes could be different.

Results from both mega-analysis and partial mega-analysis were reported and compared, with significant genes
identified following the criteria: P<0.005 and effect size (LFC) > 0.59 or < −1. When a gene presents an effect size
LFC> 0.59 or <−1 in the mega-analysis, it means that the change of the expression level of the gene increased by more
than 50% or decreased by more than 50%. While we present all the mega-analysis results in the OP COPD→Mega
and OP COPD→Partial-Mega, the discussion will be focused on those genes that satisfy the significant criteria.

Multiple linear regression analysis
A multiple linear regression analysis was employed to study the possible influence of three factors on the gene expres-
sion change: sample size, population region, and study date. P-values and 95% confidence interval (CI) were reported
for each of the factors. The analysis was done in Matlab (R 2017a) with the ‘regress’ statistical analysis package.

Gene set enrichment analysis (GSEA)
A GSEA has been undertaken to test the overlapped genes as well as the genes that show significance in
the mega-analysis. The GSEA has been conducted using Pathway Studio. The 210 overlapped genes and the
mega-analysis-significant genes were used as input, and the GSEA is testing against the Gene Ontology (GO) terms.
The GSEA results were reported with enrichment p-value corrected using the original Bejnamini and Hochberg false
discovery ratio (FDR) procedure [20].

Literature-based pathway analysis
In additional to GSEA, which identify known GO terms to explore the functionality of the significant genes from the
mega-analysis, a literature-based functional pathway analysis was conducted with an aim to identify potential biolog-
ical linkage between COPD and the target genes. The investigation was performed using the ‘Shortest Path’ module
of Pathway Studio (www.pathwaystudio.com), which identifies molecules (e.g., genes and compounds) that connect-
ing two entities (e.g., a gene and a disease) in a directional manner. Each relationship/edge was supported by at least
one reference. We presented the supporting references and the related sentences in OP COPD→Pathway Analysis,
which could be used to evaluate the relationship identified.

Results
Genes linked to COPD and OP
Pathway Studio guided literature data-mining for the genes associated with osteoporosis yielded 581 genes, while
similar analysis performed for COPD resulted in a list of 918 genes. Despite a significant overlap of 210 genes between
OP-genes and COPD-genes (Fisher Exact P-value = 2.30e-140), over half of the OP-related genes (371 genes, 63.86%)
have not been yet implicated in COPD. Here, the Fisher Exact P-values were used to evaluate the significance of the
overlap of two groups of genes (https://david.ncifcrf.gov/content.jsp?file=functional annotation.html). The full list
of these OP specific genes and related supporting references are presented in OP COPD→OP Specific Genes and
Ref4 OP Specific genes, respectively.

Mega- and partial mega-analysis results
For the partial mega-analysis, only one gene, GPNMB, satisfied the significance criteria (LFC = 0.83, P-value =
0.0018, OP COPD→Mega). Within the Top 6 gene expression studies performed in samples collected from patients
with COPD, increases of GPNMB expression levels averaged at 78% as observed in more than 99% of the samples.
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Table 2 Analysis of GPNMP gene expression levels in 12 GEO datasets comprises COPD samples

Significant in
mega-analysis

Significant in
partial

mega-analysis Model #Study LFC P-value ISq (%) P-value–Q

No No Fixed effect 12 0.30 0.063 0 0.69

Yes Yes Fixed effect 6 0.83 0.0018 0 0.98

LFC: log fold change (the effect size); P-value represents the probability that the fold change is equal to 0. ISq = 100% × (Q − df )/Q represents the
percentage of between-variance over total variance; P-value–Q represents the probability that the variance is coming from within-study only.

Figure 2. The effect size, 95% confidence interval and weights for the gene GPNMB

(A) Mega-analysis results; (B) Partial mega-analysis results. Both results were from fixed-effects model. The bar plot on the right of

each figure represents the normalized weights for each dataset/study, ranged within (0, 1); the brighter (green) the color, the bigger

the weight (labeled right next to the bar). The star (in red) and lines (in blue) on the left are the mean of effect size (log fold change)

and 95% confidence interval (CI) of each dataset/study, respectively.

However, when all 12 expression dataset were analyzed, a magnitude of observed increases dropped to 23.22% along
with a share of affected samples. The effect sizes and related statistics are shown in Table 2.

Heterogeneity analysis indicated no significant between-study variance for both mega-analysis and partial
mega-analysis (ISq = 0, P-value-Q >= 0.69). Therefore, both types of analysis were performed in a fixed-effect
mode. For each study, effect sizes, 95% confidence intervals and weights are presented in Figure 2.

In mega-analysis, the expression fold changes of GPNMB were influenced by both population region (country) and
sample size (P-value = 0.00037 and 0.014, respectively). On the contrary, none of the three parameters (population
region, sample size and study date) contributed to the expression levels variance significantly, when only the Top 6
datasets employed in the partial mega-analysis were assessed.

GSEA analysis results
GSEA process identified 116 GO terms as significantly enriched (P<1e-25) by 211 genes implicated with both
COPD and OP, which were presented in OP COPD→GSEA. Table 3 presents the top 10 GO terms with en-
richment P-value<1.81e-52. Noteworthy, GPNMB is an integral component of 17 out of 116 pathways listed at
OP COPD→GSEA, and in one of the Top 10 pathways, namely, one for regulation of cytokine production (Table
3).
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Table 3 Top 10 GO terms enriched by 211 genes linked to both COPD and OP

GO ID GO Name # of Entities Overlap P-value Includes GPNMB

0070482 Response to oxygen levels 544 72 7.77e-60 /

0031667 Response to nutrient levels 730 79 7.77e-60 /

0009991 Response to extracellular stimulus 761 79 1.4e-58 /

0001666 Response to hypoxia 424 65 4.69e-58 /

0036293 Response to decreased oxygen levels 461 66 4.04e-57 /

0071407 Cellular response to organic cyclic compound 634 72 1.06e-55 /

0019221 Cytokine-mediated signaling pathway 676 73 4.73e-55 /

0001817 Regulation of cytokine production 789 76 5.79e-54 Yes

0007584 Response to nutrient 370 59 1.76e-53 /

0071396 Cellular response to lipid 767 74 1.81e-52 /

Figure 3. Functional analysis of the molecular pathways connecting COPD and the GPNMB

(A) Pathways linking GPNMB and COPD as reconstructed from analysis of previous literature. (B) Partial mega-analysis of the

expression levels of the genes included in the reconstructed pathways. (C) Control mega-analysis of the expression levels of the

genes included in the reconstructed pathways performed on datasets excluded from partial mega-analysis. The pathways in (A) was

generated in Pathway Studio environment (www.pathwaystudio.com). Each relation (edge) in the figure has one or more supporting

references. The colorbar is for the panels (B) and (C) only. Red represents increased expression level, and blue decreased.

Pathway Studio-guided analysis of existing literature
According to the de novo approach selected for the identification of novel COPD-related genes, no prior direct re-
lations to the pathogenesis of COPD were known for the gene GPNMB. To identify connecting genes that link GP-
NMB-encoded molecules to COPD in a unidirectional way, the ‘Shortest Path’ analysis was conducted. As evident
from Figure 3A, GPNMB may influence the pathogenesis of COPD through multiple pathways. For instance, as
knocking down GPNMB gene down-regulates the expression of MMP9 [21], and as GPNMB directly stimulates
expression of MMP9 in fibroblasts [22], one may infer that GPNMB would contribute to the tissue remodeling in
COPD airways through promoting secretion of MMP9, which is, indeed, dramatically elevated in COPD [23]. More
details of a GPNMB→MMP9→COPD pathway are described in OP COPD→Pathway Analysis, including types
of the relationship, underlying supporting references, and the related sentences where these relationships have been
identified and described.

For the six datasets included in partial mega-analysis, at the level of gene expression, the
COPD→MYC→GPNMB→MMP9→COPD circuit has been activated, with an observed expression LFCs of
0.83, 0.80 and 0.35 for GPNMB, MMP9, and MYC, respectively. In the 9 datasets which did not conform to partial
mega-analysis criteria, the same pathway showed as deactivated (averaged LFC<-0.021), mostly liked due to the
decreased expression level of MYC (LFC = -0.19). At the levels of gene expression performed in COPD samples,
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other circuits, namely, CSF2 and RANKL/TNFSF11, remained deactivated as evident from mega-analysis of both
Top 6 and control set of datasets (LFC< 0.085), OP COPD→Pathway Mega.

Discussion
In the present study, we attempted to identify novel, not-yet described molecular connections between OP and COPD.
In a large-scale literature lining effort, a total of 210 genes (P-value = 2.30e-140) were already highlighted by previous
research as commonly involved in both of these conditions, while a total of 371 OP-related genes were prioritized as
candidates suitable for further investigation as COPD contributors. In subsequent gene expression mega-analysis, the
connections between each of these genes and COPD were tested in 15 COPD related RNA array-expression datasets
acquired from GEO (Table 1). While expression levels of 15 genes were significantly changed in COPD as compared
with normal controls (P-value <0.05), none of these genes satisfied the pre-set significant criteria (P<0.005 and effect
size (LFC) > 0.59 or < −1). In a partial mega-analysis, which takes into consideration only top performing datasets
(N=6), a total of 43 OP-related genes were highlighted as displaying significant changes in expression in COPD as
well (see in OP COPD→Partial Mega). Nevertheless, only one OP-related gene, GPNMB, passed strict significance
of association criteria (Table 2 and Figure 3B). To note, GPNMB didn’t show significance when using 12 studies in the
mega-analysis (Figure 3A; LfC = 0.30, and P-value = 0.063). MLR analysis showed that sample size and population
region (country) were significant influential factors for the expression of GPNMB in COPD, with P-values of 0.014
and 0.00037, respectively (OP COPD→Mega). However, by using partial mega-analysis, it showed that the levels
of GPNMB mRNA were increased by more than 50% (LFC = 0.83; P-value = 0.0018) in 6 out of 12 studies. This
observation identifies GPNMB as a potential COPD biomarker, which awaits further validation.

As shown in Figure 3A, GPNMB activity in COPD lungs may be enhanced through many different routes. For
example, Granulocyte-macrophage colony stimulating factor (GM-CSF), which is encoded by CSF2, is well known
as an enhancer of COPD, and even considered as a target for therapeutic neutralization [24]. In fibroblasts, this
pleiotropic cytokine directly stimulates expression of GPNMB [25,26]. There is another, parallel regulatory circuit
that starts with expression levels of transcription factor MYC being required for the activation of the parabronchial
smooth muscle cells [27] and dynamically correlated with the pathogenetic progress of COPD [28]. In this loop, MYC
upregulates GPNMB indirectly, through stimulation of both CSF1 and epICD [29].

To note, some pathways presented in Figure 3A are supported by studies performed in tissues not relevant to studies
of COPD. For example, connections between RANKL/TNFSF11, a cytokine elevated in COPD [30], and GPNMB
were studied only in the precursors of osteoclasts. To test the relevance of the seven genes included in Figure 3A, we
conducted a mega-analysis for each of them with the datasets included in the partial mega-analysis (Figure 3B) or
excluded from this analysis (Figure 3C). Details of this mega-analysis are provided in OP COPD→ Pathway Mega.

When GPNMB was added to the set of 210 genes previously identified as involved in the pathogenesis of both OP
and COPD, a total of 116 enriched pathways were detected (OP COPD→GSEA) (P<1e−25). Many of these path-
ways have obvious connection to both diseases, such as response to hypoxia, which affects the bone marrow stem
cells differentiation in bone marrow cavity in osteoporotic patients [31] and induces oxidative stress, coagulation,
inflammation, and angiogenesis in COPD [32].

Novel OP-related gene, GPNMB, which has been identified as COPD biomarker and COPD pathogenesis contrib-
utor in present work, was also an integral part in 17 of these 116 pathways (Table 3). A majority of these enriched
pathways are related to the ‘regulation of cytokine production’ theme (GO ID: 0001817), previously implicated in
etiology of COPD [11,33,34]. While the roles of GPNMB in OP are well-described [35], no apparent connections
between this gene and COPD were reported so far. GPNMB gene encodes a type 1 transmembrane protein known
as glycoprotein non-metastatic melanoma protein B, osteoactivin, dendritic cell-heparin integrin ligand (DC-HIL),
or hematopoietic growth factor inducible neurokinin-1 type (HGFIN). Notably, an ectodomain of GPNMB may be
cleaved out by MMP-type protease ADAM10, known to promote emphysema of the lungs [36], and shed into circu-
lation as a soluble, biologically active molecule with angiogenic properties [37].

Here, we employed Pathway Studio-guided reconstruction of the pathways through which GPNMB could con-
tribute to COPD (Figure 3A). In particular, we identified a vicious circle: COPD→MYC→GPNMB→MMP9→
COPD, and, by applying partial mega-analysis technique, showed its consistent activation in COPD-related tissue
compartments (Figure 3B). Specifically, COPD progression could lead to significantly increased expression levels
of MYC [38]. When combined with the GPNMB→COPD branch [39], MYC up-regulation becomes a part of the
vicious circle that prevents COPD patients from achieving resolution of lung inflammation.
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Two other reconstructed pathways, GM-CSF/CSF2 and RANKL/TNFSF11, were not supported by partial
mega-analysis. This finding may be explained the fact that their sources are outside of the list of tissues typically pro-
filed in COPD-related research. For example, previous studies of osteoclasts precursors exposed to RANKL showed
that this cytokine causes hundreds-or even thousands-fold increase in GPNMB expression in this type of cells [40,41].
Sheer strength of induced GPNMB expression points that its effects may be felt outside of bone compartments, es-
pecially given that ectodomain may be easily shed and transported to other tissues. This molecular link may provide
possible mechanistic explanation for previously detected systemic increase in the levels of RANKL in patients with
COPD [30].

In addition to COPD-related insights, our study also revealed specific strengths and limitations of cross-datasets
mega-analysis and partial mega-analysis techniques. As human diseases may differ in the complexity of interplay
between various tissues and cells, either the most general (mega-analysis) or more localized (partial mega-analysis)
approaches may be found most suitable. Even if it seems that partial mega-analysis may lose at least some of the
power of its more generalized counterpart, this methodology allows extraction of additional insights. Closer look
at 6 top performing COPD datasets shows that a majority of the samples included in partial mega-analysis were
acquired from alveolar macrophages and airway epithelial cells, as well as from the bulk of lung tissue, while the
samples excluded from this analysis came predominantly from peripheral blood mononuclear cell (PBMC) and vastus
lateralis muscle. Even if previous studies have indicated that gene expression signatures in the peripheral blood of
patients with COPD do overlap with that of lung tissue or alveolar macrophages [42], and may yield novel, minimally
invasive biomarkers for this condition [43], the limitations of these tissue sources are plentiful, with predominant
concern of being influenced by a variety of external conditions and treatment modalities [44].

In conclusion, here we present results of systematic, large-scale literature data mining efforts and mega-analysis of
gene expression datasets, which allowed us to uncover novel OP-related gene, GPNMB, as a previously unrecognized
factors to the development of COPD. Analysis of pathway network built upon co-expression of GPNMB points that
it serves as a bridging factor, which is common for the pathophysiology of OP and COPD, responsive to RANKL and
possibly targetable either through RANKL or through MYC, or both.
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