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Serous ovarian cancer is one of the most fatal gynecological tumors with an extremely
low 5-year survival rate. Most patients are diagnosed at an advanced stage with wide
metastasis. The dysregulation of genes serves an important role in the metastasis pro-
gression of ovarian cancer. Differentially expressed genes (DEGs) between primary tu-
mors and metastases of serous ovarian cancer were screened out in the gene expres-
sion profile of GSE73168 from Gene Expression Omnibus (GEO). Cytoscape plugin cyto-
Hubba and weighted gene co-expression network analysis (WGCNA) were utilized to select
hub genes. Univariate and multivariate Cox regression analyses were used to screen out
prognosis-associated genes. Furthermore, the Oncomine validation, prognostic analysis,
methylation mechanism, gene set enrichment analysis (GSEA), TIMER database analysis
and administration of candidate molecular drugs were conducted for hub genes. Nine hun-
dred and fifty-seven DEGs were identified in the gene expression profile of GSE73168. After
using Cytoscape plugin cytoHubba, 83 genes were verified. In co-expression network, the
blue module was most closely related to tumor metastasis. Furthermore, the genes in Cy-
toscape were analyzed, showing that the blue module and screened 17 genes were closely
associated with tumor metastasis. Univariate and multivariate Cox regression revealed that
the age, stage and STMN2 were independent prognostic factors. The Cancer Genome Atlas
(TCGA) suggested that the up-regulated expression of STMN2 was related to poor prognosis
of ovarian cancer. Thus, STMN2 was considered as a new key gene after expression vali-
dation, survival analysis and TIMER database validation. GSEA confirmed that STMN2 was
probably involved in ECM receptor interaction, focal adhesion, TGF beta signaling pathway
and MAPK signaling pathway. Furthermore, three candidate small molecule drugs for tumor
metastasis (diprophylline, valinomycin and anisomycin) were screened out. The quantitative
reverse transcription-polymerase chain reaction (qRT-PCR) and western blot showed that
STMN2 was highly expressed in ovarian cancer tissue and ovarian cancer cell lines. Further
studies are needed to investigate these prognosis-associated genes for new therapy target.

Introduction
As one of the most prevalent malignancies in gynecology, ovarian cancer carries the highest mortality [1].
Most patients are diagnosed at an advanced stage with wide metastasis, leading to an extremely low 5-year
survival rate. Tumor metastasis is closely related with poor prognosis, and is also the main death reason
in patients with ovarian cancer [2,3]. Therefore, it is vital to explore new biomarkers to suppress tumor
metastasis.
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Because of the limitation of molecular biology research, bioinformatics has been widely utilized in screening and
analyzing the genes related to occurrence and progression of tumor [4,5]. A lot of genes with similar expression pattern
actually function within a whole network and affect each other [6]. Most of previous studies have only identified the
single gene or protein, but do not describe the association between genes and interaction pathways. Weighted gene
co-expression network analysis (WGCNA) is a biological network to describe the correlations between differentially
expressed genes (DEGs) [7]. This method identifies synergistically altered genomes and specific candidate biomarkers
based on the correlations between the genes and phenotype. WGCNA has been widely used to screen genes associated
with the phenotype of cancer, such as cervical cancer and pancreatic ductal adenocarcinoma [8,9]. In the present
paper, the DEGs were analyzed and biological network was constructed to verify hub genes implied in the metastasis
of ovarian cancer.

Methods and materials
Microarray data
To explore significant genes in linkage to the metastasis progression of ovarian carcinoma, the raw gene expres-
sion profiles of GSE73168 dataset were acquired from Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/). The mRNA expression profile of GSE73168 dataset was detected by using GPL570 platform
(Affymetrix Human Genome U133 Plus 2.0 Array). Twenty-four samples from eight patients were involved in the
GSE73168 profile, including primary tumor tissue samples with matching ascites tumor cell samples and metastatic
tumor samples.

Identification of differentially expressed genes
The flow diagram for the design of this research is displayed in Supplementary Figure S1. The raw dataset of GS73168
was analyzed with the GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/), a web tool using ‘limma’ package of R and
utilized to screen DEGs between primary and metastasis tumor tissues. The points with |logFC| ≥ 1 and P-value <

0.05 were defined to be statistically meaningful cut-off points. Gene annotation and corresponding data files of the
DEGs were extracted through R software.

Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes
analysis
To further systematically analyze the functional annotation of DEGs, the clusterProfiler package of R [10] was utilized
to perform [11] Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The P-value
was conventionally set at 0.05.

Protein–protein interaction network construction
To explore interactions between DEGs, a protein–protein interaction (PPI) was constructed by using the Search Tool
of the Retrieval of Interacting Genes Database (STRING) (https://www.string-db.org/), an authoritative database to
assess interactions between proteins. The cut-off value was set at a confidence score >0.7 and individual nodes were
filtered out.

Screening of hub module
String interactions were imported into Cytoscape plug-in cytoHubba to select the hub genes of biological network
analysis [12]. In our study, the top 20 genes were chosen as hub genes.

Co-expression and module functional analysis
Co-expression analysis is a multidirectional network, in which each node represents a gene. The DEGs of GSE73168
dataset were utilized to construct co-expression network after assessing the expression profile. The R package
‘WGCNA’ was used to build co-expression network of DEGs. In addition, Pearson’s correlation coefficient of genes
was calculated to obtain similarity matrix. To make the network conform to scale-free network distribution, an ap-
propriate weight value was selected and calculated. An appropriate soft threshold value was chosen to measure the
connectivity between genes. The adjacency matrix was converted into topological overlap matrix (TOM); meanwhile,
the WGCNA package was used to perform hierarchical clustering on the matrix. For the generated clustering tree,
Dynamic Tree Cut method was adopted to cut the gene clustering tree. Genes with similar expression patterns were
allocated to a branch, and each branch represented a co-expression module. In present study, the soft threshold was
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7 and the minimum size of module was set as 30. After analyzing the association between modules and clinical traits,
the hub module was selected, which is the most relevant to metastasis in ovarian cancer. Gene significance (GS) rep-
resents the association between the gene and clinical traits. Module membership (MM) reveals the relation between
module eigen genes and gene expression.

Venn diagram of hub genes
The intersection of PPI hub genes and blue module genes were considered as real hub genes, which are probably
associated with metastasis. To achieve that intersection, an online web tool (http://bioinfogp.cnb.csic.es/tools/venny/
index.html) was used to plot Venn diagram.

Prognostic signature of hub gene
The RNA sequencing data and the matching clinical characteristic data of patients with serous ovarian cancer were
obtained from The Cancer Genome Atlas (TCGA) database (https://Cancergenome.nih.gov/). R package ‘survival’
was utilized to conduct overall survival analysis. The Univariate Cox regression analysis was performed to investi-
gate the correlation between gene expression and overall survival. Genes with P-value <0.05 were considered to be
significant.

Validations and analysis of hub gene
Hub genes were further analyzed by using the data downloaded from Illumina Human Methylation 27 platform in the
TCGA database. The ONCOMINE database [13] (www.Oncomine.org), a publicly accessible online cancer database
integrating sequencing data from several database, was used to assess different expressions of STMN2 in ovarian
cancer tissues and ovarian normal tissues.

Gene set enrichment analysis
The samples of GSE73168 dataset have been placed into two groups according to the expression levels of hub genes.
Gene set enrichment analysis (GSEA) (https://software.broadinstitute.org/gsea/index.jsp) was conducted in order to
explore biological function. Terms with P < 0.05 were identified to be significant.

TIMER database analysis
Tumor Immune Estimation Resource (TIMER) is an integrated investigation for molecular characterization of im-
mune infiltration (https://cistrome.shinyapps.io/timer/) [14]. TIMER uses six previously published statistical mod-
ules to study the correlation between the gene expression and immune cell tumor-infiltration [15]. Gene expression
levels were visualized with log 2 RSEM.

Analysis of small molecule drugs
The Connectivity Map (CMap) database was established to explore the small molecule involved in tumor metastasis
[16]. The DEGs were inputted into CMap database. The enrichment scores ranging from −1 to 1 were analyzed. The
negative linkage score indicates that the drugs can reverse input characteristics. The connectivity score was evaluated
by the number of instances (N > 10) and P-value <0.05. The tomography of small molecule drugs was displayed by
using the Pubchem database (https://pubchem.ncbi.nlm.nih.gov/).

Patients and tissue samples
Twenty fresh ovarian tissue samples (10 normal and 10 ovarian cancers) were frozen in the liquid nitrogen after
washed by ice-cold PBS once removed from patients. In the present study, the usage of patients’ tissues and access to
patients’ information were approved by Ethics Committee of the First Affiliated Huai’an Hospital of Nanjing Medical
University.

Cell culture
The human normal ovarian epithelial immortalized cell line IOSE-80 was cultivated in M199 medium (KeyGEN,
Nanjing, China) supplemented with 10% fetal bovine serum (FBS, AusGeneX, AUS). The human ovarian cancer
lines SK-OV3, HO-8910 and A2780 (Shanghai Institute of Cell Biology) were cultivated in the McCoy’s 5A medium
(KeyGEN, Nanjing, China) and RPMI-1640 medium (Gibco BRL, Grand Island, U.S.A.) supplemented with 10% FBS
in incubator containing 5% CO2 at 37◦C.
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RNA extraction and quantitative polymerase chain reaction
RNA isolation of fresh ovarian tissue samples were conducted through TRIzol Reagent (Ambion, U.S.A.). The syn-
thesis of complementary DNA (cDNA) was conducted using HiScript III RT SuperMix kit (Vazyme, Nanjing, China)
through reverse transcription reaction. Quantitative polymerase chain reaction for STMN2 and β-actin were con-
ducted using ChamQ SYBR qPCR Master Mix kit (Vazyme, Nanjing, China). β-actin was selected as the internal
reference gene. The primer sequences were as follows: STMN2 forward 5′-GCTCTTGCTTTTACCCGGAAC-3′;
STMN2 reverse 5′-AGGCACGTTTGTTGATTTGCT-3′; β-actin forward 5′-CATGTACGTTGCTATCCAGGC-3′;
β-actin reverse 5′-CTCCTTAATGTCACGCACGAT-3′.

Western blot experiment
RIPA buffer (Tris 50 mmol/l, NaCl 150 mmol/l, EDTA 0.5 mmol/l, NP40 1%, Triton X-100 0.5%, glycerin 10%) sup-
plemented with protease inhibitor cocktail (MCE, Shanghai, China) and phosphatase inhibitors was used to extract
proteins from cells and fresh ovarian tissues. After using Bicinchoninic Acid Kit (Beyotime, Shanghai, China) for
protein quantification, the lysate was metallized with added loading buffer at 100◦C for 10 min to denature. The
protein was transferred to the PVDF membrane after sodium dodecyl sulfate/polyacrylamide gel electrophoresis.
After blocked with 5% defatted milk powder dissolved in TBST (pH 7.4, NaCl 8 g/l, KCl 0.2 g/l, Tris 3 g/l) at room
temperature for 1 h, the membrane was incubated with the primary antibody at 4◦C overnight, including STMN2
(1:1000, ab185956, Abcam, U.S.A.) and β-actin (1:1000, A5441, Sigma, U.S.A.). The membrane was incubated with
horseradish peroxidase-coupled secondary antibody at room temperature for 1 h after washed with TBST for four
times. Target protein bands were developed by Super ECL Plus kit (US Everbright INC, U.S.A.) and quantitatively
analyzed by Image J.

Statistical analysis
Statistical analysis was conducted using Graphpad Prism 6. Unpaired t test was utilized for comparing continuous
variables between two groups. P-value less than 0.05 was considered to be statistically significant.

Results
Identification and enrichment of DEGs in ovarian cancer
The GEO2R tool was utilized to analyze DEGs in GSE73168. P <0.05 and |logFC| ≥1 were included as the standards.
957 DEGs between primary sites and metastases of serous ovarian cancer were filtered, revealing 417 up-regulated
genes and 540 down-regulated genes. DEGs were displayed in the volcano map and heatmap based on the |logFC|
values (Figure 1). DEGs were mostly enriched in cell fate commitment, cell fate specification, neuron fate specifi-
cation, neuron fate commitment, anion transmembrane transporter activity, chloride transmembrane transporter
activity, chloride channel activity, inorganic anion transmembrane transporter activity, small GTPase binding, and
anion channel activity in the GO analysis (Suppementary Figure S2A). In the KEGG analysis, DEGs were enriched
in neuroactive ligand–receptor interaction, GABAergic synapse, and nicotine addiction (Suppementary Figure S2B).

Hub module selection
Through the STRING analysis, 957 DEGs were inputted into the PPI network, including 514 nodes and 842 sides
(Figure 2A). Then cytoHubba, which is a plugin to rank nodes by their network capabilities [12], was utilized to
offer 11 analysis methods including Density of Maximum Neighborhood Component, Maximal Clique Centrality,
Maximum Neighborhood Component, Degree, Edge Percolated Component, and six centralities (Bottleneck, Ec-
Centricity, Closeness, Radiality, Betweenness, and Stress). All of 11 analysis methods in the PPI network were used in
the present study to identify top twenty genes (Figure 2B–L). Eighty-two genes were selected according to 11 analysis
methods in CytoHubba. This finding may indicate that 82 genes play an important role in ovarian cancer.

Weighted gene coexpression network construction and analysis
A total of 16 clinical samples of GSE73168 were collected for analysis (Supplementary Figure S1B). The ‘WGCNA’
package in R was conducted, and the genes with highly related genes were grouped into one module. β = 7 (scale
free R2 = 0.90) was chosen to be appropriate soft-thresholding value in order to ensure a scale-free analysis (Supple-
mentary Figure S3). Seven modules were identified, and it was found that blue module was mostly related to tumor
metastasis (Figure 3A,B). All the genes were covered in the heat map (Figure 3C). Furthermore, intra-module analysis
of GS and MM in seven modules was performed. GS and MM were significantly associated, implying that 112 genes
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Figure 1. DEGs identified in GSE73168

(A) Volcano map of DEGs between primary tumors and metastases of serous ovarian cancer. The red plots in the volcano represent

up-regulation and the green points represent down-regulation. (B) Heatmap of the all DEGs according to the value of |log FC|. The

color in heat maps from green to red shows the progression from low expression to high expression cell. log FC: log fold change.

involved in blue module probably have significant association with metastasis among seven modules (Supplementary
Figure S4A).
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Figure 2. CytoHubba analysis of PPI network

(A) 957 DEGs were filtered into the DEGs PPI network complex that contained 514 node and 842 side. (B) Maximal Clique Centrality

methods in cytoHubba. (C) Betweenness methods in cytoHubba. (D) Bottleneck methods in cytoHubba. (E) Closeness methods in

cytoHubba. (F) Degree methods in cytoHubba. (G) Density of maximum neighborhood component methods in cytoHubba. (H) Ec-

Centricity methods in cytoHubba. (I) Edge percolated component methods in cytoHubba. (J) Maximum neighborhood component

methods in cytoHubba. (K) Radiality methods in cytoHubba. (L) Stress methods in cytoHubba.
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Figure 3. Hub module selection

(A) Dendrogram of all DEGs clustered based on a dissimilarity measure (1-TOM). (B) Correlation between modules and traits. The

upper number in each cell refers to the correlation coefficient of each module in the trait, and the lower number is the corresponding

P-value. Among them, the blue module was the most relevant modules with cancer traits. (C) A heatmap of all genes. The intensity

of the red color indicates the strength of the correlation between pairs of modules on a linear scale.
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Figure 4. Hub genes analysis

(A) Real key genes belonging to both the blue module and the PPI network. (B) Univariate Cox regression analysis to predict

prognostic factors associated with patient survival. (C) Expression boxplots of gene STMN2 in Oncomine database. (D) Survival

analysis of STMN2. (E) The expression of STMN2 was negatively correlated with DNA methylation.

Interestingly, similarities were observed in certain gene modules. To find out the connectivity among the seven
gene modules, interactions of eigengenes were further analyzed. Seven clusters were again divided into two clusters,
including two branches (Supplementary Figure S4B,C).

Hub genes identification
One hundred twelve genes in the blue module were chosen as hub genes. Eighty-two genes identified by cytoHubba
in the PPI network were defined as hub genes. Finally, intersection of PPI network and WGCNA analysis were 17
genes, which were considered to be ‘real’ hub genes (Figure 4A).

Prognostic analysis of hub gene
Next, the prognostic signature of 17 hub genes were analyzed. Univariate and multivariate Cox regression analyses
were employed to predict factors related with the prognosis (Table 1). The age, stage, and STMN2 expression were
significantly correlated to overall patient survival using TCGA database, except grade (Figure 4B). Univariate and
multivariate Cox regression analyses of the remaining 16 genes implied no correlation with overall patient survival
(Supplementary Table S1).

Hub gene validation
STMN2 expression was further verified in ovarian cancer by using FireBrowse and ONCOMINE database. ON-
COMINE analysis showed that STMN2 transcripts were 1.116-fold higher in cancer compared with normal samples
from Bonome Ovarian Statistics (P = 6.37E−5), indicating that the expression of STMN2 was up-regulated in ovarian
cancer (Figure 4C). The gene was further studied to understand the possible mechanism for abnormal expression. By

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/40/6/BSR
20194324/886037/bsr-2019-4324.pdf by guest on 23 April 2024



Bioscience Reports (2020) 40 BSR20194324
https://doi.org/10.1042/BSR20194324

Table 1 Univariate and multivariate Cox regression analysis for STMN2 and clinical features

Univariate analysis Multivariate analysis
Variables HR 95% CI P-value HR 95% CI P-value

Age 1.020 1.007–1.034 0.0036* 1.020 1.006–1.033 0.0041*

Grade 1.378 0.904–2.102 0.1360 1.271 0.832–1.944 0.2676

Stage 1.391 1.023–1.892 0.0351* 1.381 1.008–1.891 0.0443*

STMN2 1.345 1.027–1.762 0.0312* 1.050 1.002–1.101 0.0412*

HR, hazard ratio.
*P<0.05

Figure 5. STMN2 expression negatively correlates with immune cell infiltration levels in ovarian cancer through TIMER

Correlation between STMN2 expression and the abundances of six immune infiltrates (B cells, CD4+ T cells, CD8+ T cells, neu-

trophils, macrophages, and dendritic cells) are displayed. The purity-corrected partial Spearman correlation and statistical signifi-

cance are shown on the top right corners.

using the Illumina Human Methylation 27 platform, the expression of STMN2 was negatively correlated with DNA
methylation (Figure 4E). Survival analysis implied that higher STMN2 expression was correlated with poorer survival
rate (Figure 4D).

Gene set enrichment analysis
To explore underlying mechanism of STMN2 in ovarian cancer, GSEA analysis was performed to identify the en-
riched KEGG pathways. Four gene sets (n = 75), ‘ECM receptor interaction’, ‘focal adhesion’, ‘TGF beta signaling
pathway’, and ‘MAPK signaling pathway’ were enriched (P < 0.05) (Supplementary Figure S6A–D).

Pertinence of STMN2 expression and immune infiltration level in ovarian
cancer
The distribution of tumor-infiltrating lymphocytes is an important indicator of patients’ lymph node status and
prognosis[17,18]. The association of STMN2 expression level with immune infiltration abundance in ovarian tu-
mor was evaluated using TIMER database. STMN2 expression was negatively correlated with infiltration degree of B
cells, CD8+ T cells, macrophage, neutrophil, and dendritic cells (Figure 5).

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 2 The top three metastasis-related small molecules with highly significant correlations in results of CMap analysis

CMap name Mean N Enrichment P value

Diprophylline −0.511 5 −0.703 0.00505

Valinomycin −0.339 4 −0.641 0.03991

Anisomycin −0.41 4 −0.631 0.0455

Figure 6. The tomographs of the three candidate small molecule drugs for the metastasis

(A) Diprophylline, (B) valinomycin, and (C) anisomycin.

Related small molecule drug screening
All DEGs were explored in CMap database to analyze the small molecule drugs. Three small molecule drugs with
high connectivity scores are displayed in Table 2. Diprophylline, valinomycin, and anisomycin showed a negative
association with the tumor metastasis and implied great possibility in clinical application. The tomography of the
three molecules was displayed in the PubChem database (Figure 6).

Positive expression of STMN2 in ovarian cancer
The high expression of STMN2 in ovarian cancer tissue was verified in mRNA and protein level compared with
normal ovarian tissue, which is consistent with the results of Oncomine database (Figure 7A–C). Furthermore, the
expression level of STMN2 in ovarian cell lines was also explored through western blot. STMN2 was highly expressed
in ovarian cancer cell lines (SK-OV3, A2780, and HO-8910) compared with normal cell lines (IOSE-80) (Figure 7D).

Discussion
Ovarian cancer is the prevalent malignancy of female reproductive tract. The high rate of recurrence and metastasis
leads to an extremely low 5-year survival rate. Hence, it is vital to screen the markers for early diagnosis and regulatory
pathways involved in metastasis of ovarian cancer. Gene expression profile of GSE73168 containing eight primary
tumors and eight matched metastases of serous ovarian cancer was utilized to seek some biomarkers and figure out
the molecule mechanism of metastasis in ovarian cancer in this research.

957 DEGs were found to be related to tumor metastasis, including 417 up-regulated genes and 540 down-regulated
genes. The PPI and WGCNA analyses were used to choose the hub genes related to clinical metastasis. In addition,
the analysis of functions and pathways involved in ovarian cancer was performed.

In the GO analysis, DEGs were mostly enriched in the cell fate commitment, cell fate specification, neuron fate
specification, neuron fate commitment, anion transmembrane transporter activity, chloride transmembrane trans-
porter activity, chloride channel activity, inorganic anion transmembrane transporter activity, small GTPase binding,
and anion channel activities related to the cell cycle, which is consistent with characteristics of rapid proliferation and
fast growing in ovarian cancer [19]. In the KEGG, DEGs were mostly enriched in neuroactive ligand–receptor inter-
action, GABAergic synapse, and nicotine addiction. Neuroactive ligand–receptor interaction has been demonstrated
to be involved in some cancers, such as renal cell carcinoma [20], breast cancer [21], and lung adenocarcinoma [22].

WGCNA analysis indicated that seven modules possessed related expression patterns. 112 hub genes in the blue
module connected with metastasis were selected. Based on the plugin cytoHubba in Cytoscape, 17 genes were
screened. Univariate Cox regression of 17 genes was analyzed by the TCGA database, and STMN2 was finally ob-
tained.
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Figure 7. STMN2 is high expression in ovarian cancer tissue and cell lines

(A) qRT-PCR showed that STMN2 was overexpressed in ovarian cancer tissue campared with normal ovarian tissue. (B,C) Western

blot experiment showed that STMN2 was overexpressed in ovarian cancer tissue. (D) Western blot showed high expression of

STMN2 in ovarian cancer cell lines.

The expression of STMN2 was up-regulated in cancer group compared with the normal group. STMN2 was highly
expressed in ovarian cancer tissue and cell lines. STMN2 is a member of the stathmin gene family, and plays an impor-
tant part in human hepatoma cells [23,24]. Stathmin gene family members participate in microtubule polymerization
[25]. And it was reported that STMN2 is a new target ofβ-catenin/TCF-mediated transcription in hepatoma cell [23].
STMN2 is involved in TCF binding sites and participates in Wnt/β-catenin signaling [24].

Furthermore, our research showed that STMN2 expression levels were associated with CD4+ T cell, B cell, CD8+
T cell, macrophage, neutrophil and dendritic cell. Immune-related mechanisms involved in some cancer and im-
munotherapy strategy is a potential direction for the treatment of ovarian cancer [26]. This result indicated that
STMN2 participates in the recruitment and regulation of immune-infiltrating cells in ovarian cancer. However, func-
tions and pathways of STMN2 in tumor-infiltrating lymphocytes need further study.

Nowadays, paclitaxel/carboplatin combined with chemotherapy has been widely used for ovarian cancer patients.
In this research, three small molecule drugs were identified, which may serve as potential therapeutic targets. Dipro-
phylline, the most important small molecule in our study, has been reported to suppress proliferation and migration
of non-small cell lung cancer via down-regulating PI3K signaling pathway [27]. Valinomycin shows a potential ther-
apeutic effect when combined with cisplatin in vitro [28]. Anisomycin has been revealed to suppress proliferation
and invasion of ovarian cancer stem cell through regulating LncRNA BACE1-AS [29].
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Conclusion
In conclusion, through an integrated bioinformatics analysis, STMN2 was screened as a hub gene, mostly associated
with the metastasis of ovarian cancer, and its functions and pathways involved in the ovarian cancer were explored.
The gene deserves further exploration and analysis in combination with the clinical conditions of the patients. Further
studies to explore functions and mechanism of STMN2 in ovarian cancer metastatic process will be performed in
our future work.
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