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At present, the etiology and pathogenesis of recurrent early pregnancy loss (REPL) are not
completely clear. Therefore, identifying the underlying diagnostic and prognostic biomark-
ers of REPL can provide new ideas for the diagnosis and treatment of REPL. The chip data
of REPL (GSE63901) were downloaded from the NCBI Gene Expression Omnibus (GEO)
database. Weighted Gene Co-Expression Network Analysis (WGCNA) was used to construct
a co-expression module for studying the relationship between gene modules and clinical
features. In addition, functional analysis of hub genes in modules of interest was performed.
A total of 23 co-expression modules were identified, two of which were most significantly
associated with three clinical features. The MEbrown module was positively correlated with
cyclin E level and the out-of-phase trait while the MEred module was positively correlated
with the effect of progesterone. We identified 17 hub genes in the MEred module. The func-
tional enrichment analysis indicated that such hub genes were mainly involved in pathways
related to cellular defense response and natural killer (NK) cell-mediated cytotoxicity. In the
MEbrown module, we identified 19 hub genes, which were mainly enriched in cell adhesion
molecule production, regulation of cellular response to growth factor stimulus, epithelial cell
proliferation, and transforming growth factor-β (TGF-β) signaling pathway. In addition, the
hub genes were validated by using other datasets and three true hub genes were finally
obtained, namely DOCK2 for the MEred module, and TRMT44 and ERVMER34-1 for the
MEbrown module. In conclusion, our results screened potential biomarkers that might con-
tribute to the diagnosis and treatment of REPL.

Introduction
Recurrent early pregnancy loss (REPL), defined as two or more consecutive pregnancy losses at <10 weeks
of gestation, affects 5% of couples aimed at childbirth [1]. While fetal chromosomal abnormalities rep-
resent the major factor behind sporadic miscarriages, they account for a smaller fraction of miscarriage
events in REPL couples [2,3]. Currently available diagnostic procedures allow to identify clinical con-
ditions increasing their risk to pregnancy failure and to offer appropriate management options only in
50% of REPL couples [1,4]. The known risk factors for developing of REPL are maternal thrombophilic
disorders or antiphospholipid syndrome, uterine malformations, maternal immunological and endocrine
disturbances, parental-balanced chromosomal rearrangements [4–6]. So far, the unexplained REPL ac-
counts for more than half of REPL cases and its etiology is still not established despite years of investi-
gation. Early recognition of a potential risk to pregnancy loss and systematic monitoring has beneficial
effect in increasing live birth rates in REPL couples. The preferred medical supportive care includes deter-
mination of human chorionic gonadotrophin (hCG) rising serum concentrations in early pregnancy and
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frequent ultrasound examinations [7]. However, only a limited number of potential predictive biomarkers of threat-
ening miscarriage have been proposed. Nowadays, research on expression modules of REPL is limited, which restricts
the understanding of critical genes associated with the occurrence and recurrence of the disease. Although many stud-
ies have identified some important genes and pathways that have made great advances in the diagnosis and treatment
of REPL [8–10], however, the prognosis of REPL patients is still very poor. Therefore, it is urgent to develop new
markers to assess their malignant potential and prognosis.

Weighted Gene Co-Expression Network Analysis (WGCNA) is a method for exploring the correlation between
genes and a given feature, which is used to perform weighted correlation network analysis [11,12]. The unique ad-
vantage of WGCNA is the ability to convert the gene expression data into co-expression modules that reveal the
gene networks and signaling pathways [13,14]. WGCNA has been widely used in a variety of tumor research in-
cluding uveal melanoma [15,16], breast cancer [17,13], and adrenocortical carcinoma [18], which is very helpful in
identifying the candidate biomarkers. Furthermore, WGCNA not only helps compare the processes of differentially
expressed genes (DEGs), but helps to clarify the correlation between genes in the co-expression module. To the best
of our knowledge, the application of WGCNA in the identification of biomarkers of REPL has not been reported so
far.

In the present study, we used the expression data of REPL to construct a co-expression module and found a module
of interest specific to the recurrence of the disease. In addition, we identified the hub genes in the modules of interest
and performed functional enrichment analysis, which contributed to clarify the main functions of each gene in the
module. These findings may contribute to assess the prognosis of REPL and provide new insights into the treatment
of REPL.

Materials and methods
Data
Two normalized datasets of gene chips, GSE26787 and GSE63901, used in the present study were downloaded from
the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) in NCBI. The GSE63901, based
on the GPL10558 platform is a dataset from the study of Kosova et al. [19] in 2015, including 37 women of European
descent who have recurrent early pregnancy loss (REPL), defined as two or more records of unexplained miscarriage.
Thirty-seven patients were classified into four groups: (1) patients with out-of-phase endometrial histology dating
(n=10); (2) patients with abnormally elevated cyclin E levels (n=9); (3) patients with normal cyclin E levels and
in-phase histology dating; (4) patients with abnormally high cyclin E levels and treated with progesterone (n=5).
Two biopsy samples were collected from each patient in groups 1–3, while two biopsy samples were collected from
each patient before and after progesterone treatment in group 4. The dataset contained a total of 84 samples. Patients’
information is summarized in Supplementary Table S1. The GSE26787 dataset contained five normal, five repeated
implantation failures (IF), and five recurrent miscarriage (RM) samples and was based on the GPL570 platform [20].
The clinical information of patients included in the GSE26787 study was also summarized in the Supplementary Table
S1.

Weighted gene correlation network analysis and co-expression network
construction
In this experiment, WGCNA, a typical system biology algorithm, was used to perform gene co-expression analysis
on REPL [11]. First, using the hclustfunction to perform cluster analysis of the samples in the R WGCNA library, we
detected and eliminated the outliers. After excluding outliers, clustering was performed according to gene expression
levels in each sample to uncover the correlation between samples. The soft-thresholding power was determined ac-
cording to the rule of the scale-free network, and the minimum power value at the plateau was taken as the parameter
of the subsequent analysis, and the average connectivity of the gene under different Power values was counted. A gene
clustering tree was constructed based on the correlation of intergene expression levels, and the co-expression module
was identified by dynamic pruning method. The minimum number of genes in the module was set to 50. Modules
with similar expression patterns were then merged according to the similarity of the module eigenvalues (0.75). The
expression pattern of the module gene in each sample was shown by the module eigenvalue MEmagenta (the abscissa
was the sample and the ordinate was the module), and the sample eigenvalue was used to draw the sample expression
pattern heat map. The figure can be used to find out the modules that are significantly related to a particular clinical
trait.

Genes or proteins do not work alone in the process of disease, but work together. There are several ways to describe
the correlation between genes and genes. The degree of correlation between genes was calculated by WGCNA using
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the Topological overlap measure (TOM), which was more biologically significant [21,22]. The Pearson correlation
test was used to verify the statistical significance of the relation between the module and clinical trait, and P<0.05
was considered to be statistically significant. For the studied clinical traits of REPL, we chose the module with the
highest weighted correlation coefficient cor among all modules as the modules of interest for further analysis.

After screening out the interested modules, the weighted gene co-expression network was constructed using Cy-
toscape (v3.6.0) [23], and the hub genes were identified by the Molecular Complex Detection (MCODE) plugin. Each
node in the network represents a gene, and the edges represent the regulatory relationship between genes. Gene reg-
ulatory network could help us accurately screen candidate genes that were potentially involved in the regulation of
target genes, and could use the function of known genes to predict unknown gene function.

Function annotation of the hub genes
Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis
were performed on the Hub genes using the R-package clusterProfiler software [24]. GO annotation results can be
classified into three main bodies: Molecular function, Biological process, and Cellular component. After multiple test
calibration, with false discovery rate (FDR) ≤ 0.05 was set as the threshold, GO term and Pathway satisfying this
condition were defined as GO term and Pathway which were significantly enriched in module genes of interest and
the Hub genes.

The expression of hub genes in the interested modules
To further investigate the importance of these hub genes in the interested modules, we used the wilcox.test function of
the R package [25] to detect the expression status of these genes. P<0.05 was considered to be statistically significant.

Validation of hub genes
Differential gene expression analysis was performed on GSE26787 to detect genes differentially expressed between
REPL and non-REPL samples to validate the hub genes. Differential expression analysis was performed using the
edgeR package in R. Genes with log2FC (log of fold change) ≥2 and adjusted P-values <0.05 were considered as sig-
nificant DEGs. Module hub genes were merged with the DEGs and the common genes were further receiver operator
curve (ROC) analysis for final validation as true hub genes. The area under the curve (AUC) of the ROC was calcu-
lated to evaluate the diagnostic accuracy of the true hub genes. The AUC is the value of the Wilcoxon–Mann–Whitney
statistic [26]. The caTools package in R was used for ROC analysis and AUC at 95% confidence interval (CI) was com-
puted.

Results
Construction of co-expression modules of REPL
Subsequent to data processing, nine samples, namely GSM1560100, GSM1560101, GSM1560055, GSM1560056,
GSM1560057, GSM1560058, GSM1560033, GSM1560034, and GSM1560086 were excluded and the expression ma-
trix containing 15536 genes in 75 samples of REPL was used for WGCNA analysis. The Cluster tree displaying the
relationship among the biological replicates of REPL samples was as shown in Figure 1A. The soft-threshold power
is a key value used to power the correlation of the genes and affects the mean connectivity and the scale indepen-
dence of co-expression modules. As shown in Figure 1B, the soft-threshold power was β= 6. At this power value, the
scale independence was higher than 0.8 and the mean connectivity was higher. After generating the cluster dendro-
gram, 23 distinct gene co-expression modules, characterized by their unique module color, were identified in REPL
(Figure 2A). The Eigengene adjacency heatmap depicting the interaction of the identified modules was reported in
Figure 2B while the network heatmap plot of all of the genes was shown in Figure 2C. The heatmap depicting the
correlation between the clinical traits and the co-expression modules was depicted in Figure 2D. From this heatmap,
we observed that no co-expression module was significantly associated with the age of REPL patients. The modules
significantly associated with the BMI were the MEbrown, MEgrey60, and MEpurple modules. The MElightgreen
and the MEpurple co-expression modules were those influenced by the season of biopsy collection from the REPL
patients whereas the extraction order was associated with the MEgreen, MEbrown and MEroyalblue co-expression
modules. The modules significantly associated with the microarray chip were MEturquoise, MEdarkred, MEbrown,
and MElightgreen co-expression modules. The modules influenced by the level of cyclin E were MEbrown, MEred,
MElightcyan, MEdarkturquoise, MEmagenta, MEdarkgreen, MEpink, and MEgrey60 co-expression modules with
MEbrown module being the most significant. The ‘out-of-phase’ trait was significantly associated with the MEma-
genta, MEcyan, MEgrey60, MEbrown, and MEpink with the MEbrown as the most significant module. The effect
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Figure 1. Sample dendrogram and soft-thresholding values estimation

(A) Sample dendrogram and trait heatmap. (B) Scale independence and mean connectivity of various soft-thresholding values (β).

of progesterone was significantly associated the MEbrown, MEred, MEmidnightblue, MEgrey60, MEdarkturquoise,
MEtan, MElightyellow, and MEblue co-expression modules with the MEred module being the most significant mod-
ule. For subsequent analysis, we chose the MEred module which was the most significantly associated with the effect
of progesterone, and the MEbrown module due to the fact that it was significantly associated with the level of cyclin
E, the effect of progesterone, and the ‘out-of-phase’ trait.
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Figure 2. The module identification

(A) Cluster dendrogram of all filtered genes enriched based on the dissimilarity measure and the cluster module colors. (B) Eigengene

adjacency heatmap. (C) Network heatmap plot of all genes. (D) The module–trait relationships between the clinical traits and module

eigengenes of REPL patients.

Analysis of gene co-expression module associated with the effect of
progesterone
As stated above, the MEred module was the most significantly associated with the effect of progesterone on patients
with REPL. The MEred module was composed of 1275 genes. The correlation between the MEred module member-
ship and the gene significance of the effect of progesterone is shown in Figure 3A. The module co-expression net-
work constructed using the Cytoscape software was depicted in Figure 3B and showed strong interactions between
the genes in this module. The MCODE Cytoscape plugin was used to extract the hub genes and the results indicated
that two subnetworks could be extracted from the network. The first subnetwork contained 18 hub genes (nodes),
namely CD300A, KIR3DL3, CD3E, KIR2DL4, HCLS1, DOCK2, CD247, KIR3DL2, CD96, GPSM3, FGR, KIR3DL1,
KIR2DS3, FGR, CD247, AFAP1L2, and ITK. The boxplot of these genes was depicted in Figure 3C. It can be seen
that nine of the hub genes (DOCK2, CD247, FGR, CD300A, CD247, HCLS1, GPSM3, FGR, and AFAP1L2) were
significantly up-regulated following treatment with progesterone (Figure 3C). GO enrichment analysis was achieved
on the genes in MEred module. The hub genes of this module were significantly enriched in the biological processes
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Figure 3. Analysis of gene co-expression module associated with the effect of progesterone

(A) The scatter plot between the red module membership and the gene significance for effect of progesterone. (B) Construction of

a co-expression network by WGCNA and screening for 18 hub genes. (C) The mRNA expression of 18 hub genes in the before or

after treatment with progesterone.

of peptidyl-tyrosine phosphorylation, peptidyl-tyrosine modification, negative regulation of leukocyte-mediated im-
munity, and cellular defense response (Figure 4A). The most enriched terms in cellular component were T-cell recep-
tor complex, plasma membrane receptor complex, receptor complex, and secretory granule lumen (Figure 4B). The
most representative term in molecular function was SH3 domain binding (Figure 4C). In KEGG enrichment analysis,
we found that antigen processing and presentation, Natural killer (NK) cell-mediated cytotoxicity, Graft-versus-host
disease, PD-L1 expression and PD-1 checkpoint pathway in cancer, and Th1 and Th2 cell differentiation were the
most over-represented pathways (Figure 4D).

Analysis of gene co-expression module associated with cyclin E level and
out-of-phase trait
As stated above, the MEbrown module was the most significantly associated with the cyclin E level and out-of-phase
trait in REPL patients. The MEbrown module consisted of 204 genes. The correlations among the MEbrown mod-
ule membership and the gene significance of the cyclin E level and out-of-phase trait are shown in Figure 5A,B.
The module co-expression network was depicted in Figure 5C and showed strong interactions between the genes
in this module. The MCODE extraction of the hub genes indicated a subnetwork of 19 hub genes (nodes), namely
IL1B, IGFBP3, HTR2B, CTHRC1, left-right determination factor 2 (LEFTY2), EPYC, ADAMTS5, CAB39L, AJAP1,
ANOS1, ERVMER34-1, IL1A, Anthrax toxin receptor 1 (ANTXR1), BMPER, ARSG, TRMT44, GFRA2, BAMBI, and
IGFBP3 (Figure 5C). The boxplot of the expression of these genes was depicted in Figure 6A (for the cyclin E level) and
Figure 6B (for the ‘out-of-phase’ trait). Except for ADAMTS5 and ERVMER34-1, there was a significant difference in
the expression of the remaining genes between REPL samples with normal and abnormal cyclin E levels (Figure 6A).
These DEGs were all down-regulated in abnormal cyclin E level group compared with the normal group (Figure 6A).
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Figure 4. GO and KEGG pathway enrichment analysis of the MEred module genes

(A) Biological process (BP) analysis. (B) Cellular component (CC) analysis. (C) Molecular function (MF) analysis. (D) KEGG pathway

analysis.

Between out-of-phase and normal groups, four genes (IL1B, TRMT44, IL1A, and ADAMTS5) did not show signifi-
cant difference while the remaining genes were all markedly up-regulated in the out-of-phase group (Figure 6B). GO
enrichment analysis was achieved on the genes in MEbrown module. The hub genes of this module were significantly
enriched in the biological processes of fever generation, programmed cell death involved in cell development, positive
regulation of cell division, positive regulation of interleukin-2 biosynthetic process and heat generation among others
(Figure 7A). The most enriched terms in cellular component were extracellular matrix, and endoplasmic reticulum
lumen (Figure 7B). The most representative terms in molecular function were interleukin-1 receptor binding, frizzled
binding, glycosaminoglycan binding, cytokine receptor binding, integrin binding, and receptor ligand activity (Figure
7C). In KEGG enrichment analysis, we found that prion diseases, graft-versus-host disease, type I diabetes mellitus,
inflammatory bowel disease (IBD), pertussis, leishmaniasis, Salmonella infection, rheumatoid arthritis, transform-
ing growth factor-β (TGF-β) signaling pathway, hematopoietic cell lineage, and inflammatory mediator regulation
of TRP channels were the most over-represented pathways (Figure 7D).

Differential genes expression analysis
To detect genes that were differentially expressed among REPL and non-REPL samples from GSE26787, differential
expression analysis was performed. A total of 824 DEGs were identified and 600 of these DEGs were up-regulated
in REPL. The top 50 DEGs were depicted in the heatmap, which included SMYD4, MED9, WDR31, and CYP1A2
(Figure 8A). Furthermore, functional enrichment analysis indicated that the DEGs were mainly enriched in organic
hydroxyl compound metabolic process, cellular extravasation, receptor regulator activity, and Mucin type O-glycan
biosynthesis pathway (Figure 8B).

Validation of the hub genes
The intersection analysis of DEGs from GSE26787 and genes in the MEred module from GSE63901 allowed the
identification of one common gene (DOCK2). Meanwhile, the intersection of DEGs from GSE26787 and genes in
the MEbrown module from GSE63901 allowed the identification of two common genes (TRMT44, ERVMER34.1).
To further test the value of the candidate true hub genes as prognostic biomarkers of REPL, ROC curves were per-
formed and the AUCs (95% CIs) were calculated. As shown in Figure 9, the AUC of DOCK2 (the candidate true hub
gene associated with progesterone) in GSE26787 was 0.96, while that in GSE63901 was 0.79. Additionally, as shown
in Figure 10, the AUCs of TRMT44 and ERVMER34.1 (the candidate true hub genes associated with cyclin E and
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Figure 5. Analysis of gene co-expression module associated with the cyclin E level and out-of-phase trait

The scatter plot between the MEbrown module membership and the gene significance for cyclin E level (A) and out-of-phase trait

(B). (C) Construction of a co-expression network by WGCNA and screening for 19 hub genes.

out-of-phase) in GSE26787 were both 1, while those in GSE63901 were respectively 0.67 and 0.60. These results sug-
gested DOCK2, TRMT44, and ERVMER34-1 as potential biomarkers of REPL. Hence, these genes were regarded as
the true hub genes associated with REPL.

Discussion
In this work, WGCNA analysis was performed and 23 co-expression modules were generated based on 15536 genes
from the 75 REPL samples. The aim of the present study was used elucidate the molecular pattern involved in REPL
and the association of key genes with REPL features. The WGCNA approach was applied because of its advantages in
uncovering co-expression modules and their correlation with sample traits, and its higher reliability and biological
significance compared with other bioinformatics approaches. Our analysis allowed uncovering co-expression gene
modules associated to important REPL traits such as the cyclin E level, the effect of progesterone, and the out-of-phase.
The result of functional enrichment analysis indicated that there were significant differences in interactions among
different modules, which was associated with their different functions in large part.

The MEred module which was significantly associated with the effect of progesterone was found to be mainly en-
riched in pathways related to cellular defense response, NK cell-mediated cytotoxicity, and antigen processing and
presentation. All these pathways were related to immune response. Multiple studies have revealed that REPL is closely
related to the dysregulation of immune response [27,28]. Our result suggested that the hub genes in the MEred mod-
ule may regulate cellular defense response to affect the early embryo implantation. In addition, NK cells are a class of
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Figure 6. The mRNA expression of 19 hub genes in the MEbrown module

(A) The expression of the 19 hub genes in REPL samples with normal and abnormal cyclin E levels. (B) The expression of the 19

hub genes in REPL samples with the out-of-phase and the normal groups.
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Figure 7. GO and KEGG pathway enrichment analysis of the MEbrown module genes

(A) Biological process (BP) analysis. (B) Cellular component (CC) analysis. (C) Molecular function (MF) analysis. (D) KEGG pathway

analysis.

cytotoxic effector cells involved in the innate immune system that respond to a variety of cytokines such as type I in-
terferon and interleukins, which help the host to produce immune responses [29]. In lymph nodes, NK cell-mediated
killing of target cells affects T-cell responses, possibly by reducing antigen loading and/or target cell debris to promote
antigen cross-presentation to CD8+ cytotoxic T cells [30]. A previous meta-analysis demonstrated significantly higher
levels of NK cells (numbers and percentage) in REPL patients compared with healthy people [31]. We speculated that
NK cells may function in cytotoxicity for endometrial cell to increase the risk of adverse pregnancy outcome. These re-
sults suggested that progesterone treatment could possibly affect immunity related pathways, which may be the cause
of REPL pathogenesis. In addition, the MEbrown co-expression module was associated with cell adhesion molecule
production, regulation of cellular response to growth factor stimulus, epithelial cell proliferation, and TGF-β signal-
ing pathway. The TGF-β signaling has been shown to regulate cell growth, immune response, and inflammation [32].
Moreover, TGF-β is able to induce immature lymphocytes to maintain the homeostasis of the immune system [33].
This suggested that the genes influenced by cyclin E levels and the cycle phase are involved in cellular processes such
as proliferation and adhesion and immature process; thus, the dysregulation of these genes leads to REPL. Therefore,
we anticipated that MEbrown and MEred modules were the most important module in the pathogenesis of REPL.
Furthermore, the MEpurple module was mainly enriched in tissue homeostasis and melanosome membrane and the
MEgreen module was mainly enriched in cell projection that may corresponding to lead to the recurrence of REPL.

The two co-expression modules were constructed by the Cytoscape software and the hub gene were identified.
Killer cell immunoglobulin-like receptors (KIRs) are the major inhibitory receptors of NK cells, and binding to
MHC-I molecules can inhibit the killing of NK cells and protect normal cells from attack [34]. An allogeneic recogni-
tion system consisting of KIR and human leukocyte antigen C (HLA-C) can participate in human immune response
under the regulation of NK cells [35]. A number of studies have shown that KIRs are significantly associated with
transplant rejection, mainly related to their immune processes and associated with a variety of immune diseases, such
as kidney transplantation [36,37], ankylosing spondylitis [38], and psoriatic [39,40]. Previous studies have shown that
women with recurrent spontaneous abortion lack inhibitory KIRs (2DL1, 2DL2, and 2DL3) and cannot inhibit the
killing activity of NK cells, leading to miscarriage [41]. In the present work many KIRs were detected as hub genes
affected by the effect of progesterone in REPL patients. Another important class of genes was immune related genes
such as CD96, CD247, and CD3E. The proteins encoded by these genes belong to the immunoglobulin superfamily,
which may play important roles in the adhesion interaction between activated T and NK cells in the late stages of the
immune response and also function in antigen presentation.

10 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 8. Differential expression analysis of genes between the REPL and non-REPL samples in GSE26787

(A) Heatmap showing the top 50 DEGs. (B) Functional enrichment analysis of DEGs.

In the brown module, LEFTY2 and the ANTXR1 genes were the most relevant hub genes. LEFTY2 belongs to
the TGF-β superfamily and is highly expressed by decidual stromal cells in the late stage of the menstrual cycle
[42]. LEFTY2 has been shown to be involved in the progression of a variety of tumors including endometrial cancer
[43]. Moreover, patients with ‘unexplained infertility’ have elevated LEFTY2 in the endometrium during the receiv-
ing period, indicating that abnormal expression of LEFTY2 results in infertility [44]. ANTXR1, also known as tumor
endothelial marker 8 (TEM8), acts as a transmembrane receptor protein that activates its downstream signaling path-
way by binding to anthrax toxin ligands, which in turn mediates its toxic portion into the cell [45]. Previous reports
indicated that ANTXR1 is highly expressed in breast cancer tissues and is associated with prognosis [46,47].
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Figure 9. ROC curve analysis of the true hub genes associated with progesterone in two datasets

(A) GSE26787 dataset; (B) GSE63901 dataset.

Figure 10. ROC curve analysis of the true hub genes associated with cyclin E levels and out-of-phase in two datasets

(A) GSE26787 dataset; (B) GSE63901 dataset.

In addition, our study identified a set of true hub genes with high relevance in REPL, of which three, namely
DOCK2, TRMT44, and ERVMER34-1. DOCK2, a guanine-nucleotide-exchange factor, is predominantly expressed
in hematopoietic cells and regulates the activation and migration of immune cells. Several studies revealed that
DOCK2 is critical in the development of various inflammatory diseases and cancers [48–50]; however, its role in
REPL is unknown. DOCK2 regulates cytotoxicity, degranulation, and IFN-γ secretion of NK cells [51]. Seshadri et
al. have revealed that the levels of NK cells in REPL patients were significantly higher than those in healthy people
[31], thus we speculated that DOCK2 plays significant role in the pathogenesis of REPL by regulating NK cells. A
previous report indicated that TRMT44 plays a causal factor of partial epilepsy with pericentral spikes (PEPS) [52].
Thus, we inferred that TRMT44 may be associated with neurological troubles encountered in REPL, which needs
further clarifications. ERVMER34-1 is encoding a full-length retroviral protein which could be detected in blood
of pregnant women [53]. The study conducted by Heidmann et al. revealed that the expression of ERVMER34-1 is
observed as early as at the eight-cell stage and persists at all of the subsequent embryonic stages [54], but the possible
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role of ERVMER34-1 in pregnancy still to be uncovered. Furthermore, the ROC analysis indicated that the identified
three true hub genes are likely to be good biomarkers with high sensitivity and specificity for REPL prognosis. Thus,
these true hub genes could open new avenues for the diagnostic and treatment of REPL.

However, there are some limitations in the present study. On one hand, small sample size limits the statistical power
to identified the hub genes. On the other hand, further molecular biological experiments are needed to analyze and
validate these hub genes to determine if they may be beneficial in the diagnosis or treatment of RM.

In conclusion, our study indicated that diverse co-expression gene modules are involved in REPL pathogenesis. We
identified 17 hub genes which may be involved in the regulation of progesterone effect for REPL treatment, and 19
hub genes which played an important role in cyclin E level and out of phase for REPL development. Additionally, we
validated the hub genes and finally obtain three true hub genes, namely DOCK2, TRMT44, and ERVMER34-1. These
genes could serve as biomarkers for the diagnosis and treatment of REPL. The study opens new ways for the study of
REPL and its understanding. Further studies are needed to validate useful genes in the panoply of genes found in the
regulatory modules.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
The authors declare that there are no sources of funding to be acknowledged.

Author Contribution
Cuifang Hao contributed to conception, design, revision and supervision of the study. Xiaoxiao Li contributed in drafting the
manuscript and data analysis. Yuanqi He, Xiaona Li and Xiaoxiao Li contributed to the construction of WGCNA and data acqui-
sition.

Abbreviations
ANTXR1, Anthrax toxin receptor 1; AUC, area under the curve; CI, confidence interval; DEG, differentially expressed
gene; GO, Gene Ontology; IFN-γ , Interferon gamma; KEGG, Kyoto Encyclopedia of Genes and Genomes; KIR, killer cell
immunoglobulin-like receptor; LEFTY2, left-right determination factor 2; MCODE, Molecular Complex Detection; NK, natu-
ral killer; PD-L1 , programmed cell death-ligand 1; PD-1 , programmed cell death protein 1; REPL, recurrent early pregnancy
loss; ROC, receiver operator curve; RM, recurrent miscarriage; TGF-β, transforming growth factor-β; Th1 , T helper 1; WGCNA,
weighted gene co-expression network analysis.

References
1 Stephenson, M. and Kutteh, W. (2007) Evaluation and management of recurrent early pregnancy loss. Clin. Obstet. Gynecol. 50, 132–145,

https://doi.org/10.1097/GRF.0b013e31802f1c28
2 Elghezal, H., Hidar, S., Mougou, S., Khairi, H. and Saad, A. (2007) Prevalence of chromosomal abnormalities in couples with recourrent miscarriage.

Fertil. Steril. 88, 721–723
3 Turki, R.F., Assidi, M., Banni, H.A., Zahed, H.A., Karim, S., Schulten, H.-J. et al. (2016) Associations of recurrent miscarriages with chromosomal

abnormalities, thrombophilia allelic polymorphisms and/or consanguinity in Saudi Arabia. BMC Med. Genet. 17, 69,
https://doi.org/10.1186/s12881-016-0331-1

4 Garrido-Gimenez, C. and Alijotas-Reig, J. (2015) Recurrent miscarriage: causes, evaluation and management. Postgrad. Med. J. 91, 151–162,
https://doi.org/10.1136/postgradmedj-2014-132672

5 Larsen, E.C., Christiansen, O.B., Kolte, A.M. and Macklon, N. (2013) New insights into mechanisms behind miscarriage. BMC Med. 11, 154,
https://doi.org/10.1186/1741-7015-11-154

6 Toth, B., Jeschke, U., Rogenhofer, N., Scholz, C., Wurfel, W., Thaler, C.J. et al. (2010) Recurrent miscarriage: current concepts in diagnosis and
treatment. J. Reprod. Immunol. 85, 25–32, https://doi.org/10.1016/j.jri.2009.12.006

7 Practice Committee of American Society for Reproductive Medicine (2013) Medical treatment of ectopic pregnancy: a committee opinion. Fertil. Steril.
100, 638–644

8 Baek, K.H. (2004) Aberrant gene expression associated with recurrent pregnancy loss. Mol. Hum. Reprod. 10, 291–297,
https://doi.org/10.1093/molehr/gah049

9 Baek, K.H., Lee, E.J. and Kim, Y.S. (2007) Recurrent pregnancy loss: the key potential mechanisms. Trends Mol. Med. 13, 310–317,
https://doi.org/10.1016/j.molmed.2007.05.005

10 Polimanti, R., Piacentini, S., Lazzarin, N., Vaquero, E., Re, M.A., Manfellotto, D. et al. (2012) Glutathione S-transferase genes and the risk of recurrent
miscarriage in Italian women. Fertil. Steril. 98, 396–400, https://doi.org/10.1016/j.fertnstert.2012.05.003

11 Langfelder, P. and Horvath, S. (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

13

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/40/6/BSR
20193938/884435/bsr-2019-3938.pdf by guest on 09 April 2024

https://doi.org/10.1097/GRF.0b013e31802f1c28
https://doi.org/10.1186/s12881-016-0331-1
https://doi.org/10.1136/postgradmedj-2014-132672
https://doi.org/10.1186/1741-7015-11-154
https://doi.org/10.1016/j.jri.2009.12.006
https://doi.org/10.1093/molehr/gah049
https://doi.org/10.1016/j.molmed.2007.05.005
https://doi.org/10.1016/j.fertnstert.2012.05.003


Bioscience Reports (2020) 40 BSR20193938
https://doi.org/10.1042/BSR20193938

12 Liu, X., Hu, A.X. and Zhao, J.L. (2017) Identification of key gene modules in human osteosarcoma by co-expression analysis Weighted Gene
Co-Expression Network Analysis (WGCNA). J. Cell. Biochem. 118, 3953–3959

13 Shi, Z., Derow, C.K. and Zhang, B. (2010) Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms
associated with breast cancer progression. BMC Syst. Biol. 4, 74, https://doi.org/10.1186/1752-0509-4-74

14 Udyavar, A.R., Hoeksema, M.D., Clark, J.E., Zou, Y., Tang, Z., Li, Z. et al. (2013) Co-expression network analysis identifies Spleen Tyrosine Kinase (SYK)
as a candidate oncogenic driver in a subset of small-cell lung cancer. BMC Syst. Biol. 7, S1, https://doi.org/10.1186/1752-0509-7-S5-S1

15 Wan, Q., Tang, J., Han, Y. and Wang, D. (2018) Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal
melanoma. Exp. Eye Res. 166, 13–20, https://doi.org/10.1016/j.exer.2017.10.007

16 Shi, K., Bing, Z.T., Cao, G.Q., Guo, L., Cao, Y.N., Jiang, H.O. et al. (2015) Identify the signature genes for diagnose of uveal melanoma by weight gene
co-expression network analysis. Int. J. Ophthalmol. 8, 269–274

17 Zhao, Q., Song, W., He, D.Y. and Li, Y. Identification of key gene modules and pathways of human breast cancer by co-expression analysis. Breast
Cancer 25, 213–223, https://doi.org/10.1007/s12282-017-0817-5

18 Xia, W.X., Yu, Q., Li, G.H., Liu, Y.W., Xiao, F.H., Yang, L.Q. et al. (2019) Identification of four hub genes associated with adrenocortical carcinoma
progression by WGCNA. Peer J. 7, e6555

19 Kosova, G., Stephenson, M.D., Lynch, V.J. and Ober, C. (2015) Evolutionary forward genomics reveals novel insights into the genes and pathways
dysregulated in recurrent early pregnancy loss. Hum. Reprod. 30, 519–529, https://doi.org/10.1093/humrep/deu355

20 Ledee, N., Munaut, C., Aubert, J., Serazin, V., Rahmati, M., Chaouat, G. et al. (2011) Specific and extensive endometrial deregulation is present before
conception in IVF/ICSI repeated implantation failures (IF) or recurrent miscarriages. J. Pathol. 225, 554–564, https://doi.org/10.1002/path.2948

21 Li, A. and Horvath, S. (2007) Network neighborhood analysis with the multi-node topological overlap measure. Bioinformatics 23, 222–231,
https://doi.org/10.1093/bioinformatics/btl581

22 Yip, A.M. and Horvath, S. (2007) Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics 8, 22–20
23 Kohl, M., Wiese, S. and Warscheid, B. (2011) Cytoscape: software for visualization and analysis of biological networks. Methods Mol. Biol. 696,

291–303, https://doi.org/10.1007/978-1-60761-987-1˙18
24 Yu, G., Wang, L.-G., Han, Y. and He, Q.-Y. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16,

284–287, https://doi.org/10.1089/omi.2011.0118
25 Hui, T. and Ji, P. (2015) Using the statistical program R instead of SPSS to analyze data. ACS Symposium Series 1166, 135–151
26 Qin, G. and Hotilovac, L. (2008) Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic

test. Stat. Methods Med. Res. 17, 207
27 Bansal, A.S. (2010) Joining the immunological dots in recurrent miscarriage. Am. J. Reprod. Immunol. 64, 307–315
28 Lissauer, D., Goodyear, O., Khanum, R., Moss, P.A. and Kilby, M.D. (2014) Profile of maternal CD4 T-cell effector function during normal pregnancy and

in women with a history of recurrent miscarriage. Clin. Sci. (Lond.) 126, 347–354, https://doi.org/10.1042/CS20130247
29 Berghuis, D., Schilham, M.W., Vos, H.I., Santos, S.J., Kloess, S., Buddingh, E.P. et al. (2012) Histone deacetylase inhibitors enhance expression of

NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis. Clin. Sarcoma Res. 2, 8,
https://doi.org/10.1186/2045-3329-2-8

30 Sun, J.C., Madera, S., Bezman, N.A., Beilke, J.N., Kaplan, M.H. and Lanier, L.L. (2012) Proinflammatory cytokine signaling required for the generation of
natural killer cell memory. J. Exp. Med. 209, 947–954, https://doi.org/10.1084/jem.20111760

31 Seshadri, S. and Sunkara, S.K. (2014) Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum.
Reprod. Update 20, 429–438, https://doi.org/10.1093/humupd/dmt056

32 Fabregat, I., Fernando, J., Mainez, J. and Sancho, P. (2014) TGF-beta signaling in cancer treatment. Curr. Pharm. Des. 20, 2934–2947,
https://doi.org/10.2174/13816128113199990591

33 Li, M.O., Wan, Y.Y., Sanjabi, S., Robertson, A.K. and Flavell, R.A. (2006) Transforming growth factor-beta regulation of immune responses. Annu. Rev.
Immunol. 24, 99–146, https://doi.org/10.1146/annurev.immunol.24.021605.090737

34 Peruzzi, G., Masilamani, M., Borrego, F. and Coligan, J.E. (2009) Endocytosis as a mechanism of regulating natural killer cell function: unique endocytic
and trafficking pathway for CD94/NKG2A. Immunol. Res. 43, 210–222, https://doi.org/10.1007/s12026-008-8072-7

35 Varla-Leftherioti, M. (2004) Role of a KIR/HLA-C allorecognition system in pregnancy. J. Reprod. Immunol. 62, 19–27,
https://doi.org/10.1016/j.jri.2003.09.002

36 de Rham, C., Hadaya, K., Bandelier, C., Ferrari-Lacraz, S. and Villard, J. (2014) Expression of killer cell immunoglobulin-like receptors (KIRs) by natural
killer cells during acute CMV infection after kidney transplantation. Transpl. Immunol. 31, 157–164, https://doi.org/10.1016/j.trim.2014.08.002

37 Brochot, E., Desoutter, J., Presne, C., De Araujo, I., Flahaut, G., Castelain, S. et al. (2016) The association between killer-cell immunoglobulin-like
receptor (KIR) and KIR ligand genotypes and the likelihood of BK virus replication after kidney transplantation. Transpl. Int. 29, 1168–1175,
https://doi.org/10.1111/tri.12820

38 Jiao, Y.L., Ma, C.Y., Wang, L.C., Cui, B., Zhang, J., You, L. et al. (2008) Polymorphisms of KIRs gene and HLA-C alleles in patients with ankylosing
spondylitis: possible association with susceptibility to the disease. J. Clin. Immunol. 28, 343–349, https://doi.org/10.1007/s10875-008-9183-6

39 Chandran, V., Bull, S.B., Pellett, F.J., Ayearst, R., Pollock, R.A. and Gladman, D.D. (2014) Killer-cell immunoglobulin-like receptor gene polymorphisms
and susceptibility to psoriatic arthritis. Rheumatology (Oxford) 53, 233–239, https://doi.org/10.1093/rheumatology/ket296

40 Suzuki, Y., Hamamoto, Y., Ogasawara, Y., Ishikawa, K., Yoshikawa, Y., Sasazuki, T. et al. (2004) Genetic polymorphisms of killer cell immunoglobulin-like
receptors are associated with susceptibility to psoriasis vulgaris. J. Invest. Dermatol. 122, 1133–1136,
https://doi.org/10.1111/j.0022-202X.2004.22517.x

14 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/40/6/BSR
20193938/884435/bsr-2019-3938.pdf by guest on 09 April 2024

https://doi.org/10.1186/1752-0509-4-74
https://doi.org/10.1186/1752-0509-7-S5-S1
https://doi.org/10.1016/j.exer.2017.10.007
https://doi.org/10.1007/s12282-017-0817-5
https://doi.org/10.1093/humrep/deu355
https://doi.org/10.1002/path.2948
https://doi.org/10.1093/bioinformatics/btl581
https://doi.org/10.1007/978-1-60761-987-1_18
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1042/CS20130247
https://doi.org/10.1186/2045-3329-2-8
https://doi.org/10.1084/jem.20111760
https://doi.org/10.1093/humupd/dmt056
https://doi.org/10.2174/13816128113199990591
https://doi.org/10.1146/annurev.immunol.24.021605.090737
https://doi.org/10.1007/s12026-008-8072-7
https://doi.org/10.1016/j.jri.2003.09.002
https://doi.org/10.1016/j.trim.2014.08.002
https://doi.org/10.1111/tri.12820
https://doi.org/10.1007/s10875-008-9183-6
https://doi.org/10.1093/rheumatology/ket296
https://doi.org/10.1111/j.0022-202X.2004.22517.x


Bioscience Reports (2020) 40 BSR20193938
https://doi.org/10.1042/BSR20193938

41 Varla-Leftherioti, M., Spyropoulou-Vlachou, M., Keramitsoglou, T., Papadimitropoulos, M., Tsekoura, C., Graphou, O. et al. (2005) Lack of the
appropriate natural killer cell inhibitory receptors in women with spontaneous abortion. Hum. Immunol. 66, 65–71,
https://doi.org/10.1016/j.humimm.2004.10.005

42 Gellersen, B. and Brosens, J.J. (2014) Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr. Rev. 35, 851–905,
https://doi.org/10.1210/er.2014-1045

43 Papageorgiou, I., Nicholls, P.K., Wang, F., Lackmann, M., Makanji, Y., Salamonsen, L.A. et al. (2009) Expression of nodal signalling components in
cycling human endometrium and in endometrial cancer. Reprod. Biol. Endocrinol. 7, 122

44 Salker, M.S., Christian, M., Steel, J.H., Nautiyal, J., Lavery, S., Trew, G. et al. (2011) Deregulation of the serum- and glucocorticoid-inducible kinase
SGK1 in the endometrium causes reproductive failure. Nat. Med. 17, 1509–1513, https://doi.org/10.1038/nm.2498

45 Chaudhary, A., Hilton, M.B., Seaman, S., Haines, D.C., Stevenson, S., Lemotte, P.K. et al. (2012) TEM8/ANTXR1 blockade inhibits pathological
angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell 21, 212–226,
https://doi.org/10.1016/j.ccr.2012.01.004

46 Gutwein, L.G., Al-Quran, S.Z., Fernando, S., Fletcher, B.S., Copeland, E.M. and Grobmyer, S.R. (2011) Tumor endothelial marker 8 expression in
triple-negative breast cancer. Anticancer Res. 31, 3417–3422

47 Chen, D., Bhat-Nakshatri, P., Goswami, C., Badve, S. and Nakshatri, H. (2013) ANTXR1, a stem cell-enriched functional biomarker, connects collagen
signaling to cancer stem-like cells and metastasis in breast cancer. Cancer Res. 73, 5821–5833, https://doi.org/10.1158/0008-5472.CAN-13-1080

48 Yu, J., Wu, W.K.K., Li, X., He, J., Li, X.-X., Ng, S.S.M. et al. (2015) Novel recurrently mutated genes and a prognostic mutation signature in colorectal
cancer. Gut 64, 636–645, https://doi.org/10.1136/gutjnl-2013-306620

49 Liu, Z., Man, S.M., Zhu, Q., Vogel, P., Frase, S., Fukui, Y. et al. (2016) DOCK2 confers immunity and intestinal colonization resistance to Citrobacter
rodentium infection. Sci. Rep. 6, 27814, https://doi.org/10.1038/srep27814

50 Dobbs, K., Domı́nguez Conde, C., Zhang, S.Y., Parolini, S., Audry, M., Chou, J. et al. (2015) Inherited DOCK2 deficiency in patients with early-onset
invasive infections. N. Engl. J. Med. 372, 2409–2422, https://doi.org/10.1056/NEJMoa1413462

51 Sakai, Y., Tanaka, Y., Yanagihara, T., Watanabe, M., Duan, X., Terasawa, M. et al. (2013) The Rac activator DOCK2 regulates natural killer cell-mediated
cytotoxicity in mice through the lytic synapse formation. Blood 122, 386–393, https://doi.org/10.1182/blood-2012-12-475897

52 Leschziner, G.D., Coffey, A.J., Andrew, T., Gregorio, S.P., Dias-Neto, E., Calafato, M. et al. (2011) Q8IYL2 is a candidate gene for the familial epilepsy
syndrome of Partial Epilepsy with Pericentral Spikes (PEPS). Epilepsy Res. 96, 109–115, https://doi.org/10.1016/j.eplepsyres.2011.05.010

53 Jern, P. and Coffin, J.M. (2008) Effects of retroviruses on host genome function. Annu. Rev. Genet. 42, 709–732,
https://doi.org/10.1146/annurev.genet.42.110807.091501
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