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Objectives: The post-imaging, mathematical predictive model was established by com-
bining demographic and imaging characteristics with a pulmonary nodule risk score. The
prediction model provides directions for the treatment of pulmonary nodules. Many studies
have established predictive models for pulmonary nodules in different populations. However,
the predictive factors contained in each model were significantly different. We hypothesized
that applying different models to local research groups will make a difference in predicting
the benign and malignant lung nodules, distinguishing between early and late lung can-
cers, and between adenocarcinoma and squamous cell carcinoma. In the present study, we
compared four widely used and well-known mathematical prediction models.
Materials and methods: We performed a retrospective study of 496 patients from Jan-
uary 2017 to October 2019, they were diagnosed with nodules by pathological. We evaluate
models’ performance by viewing 425 malignant and 71 benign patients’ computed tomog-
raphy results. At the same time, we use the calibration curve and the area under the receiver
operating characteristic curve whose abbreviation is AUC to assess one model’s predictive
performance.
Results: We find that in distinguishing the Benign and the Malignancy, Peking University
People’s Hospital model possessed excellent performance (AUC = 0.63), as well as dif-
ferentiating between early and late lung cancers (AUC = 0.67) and identifying lung adeno-
carcinoma (AUC = 0.61). While in the identification of lung squamous cell carcinoma, the
Veterans Affairs model performed the best (AUC = 0.69).
Conclusions: Geographic disparities are an extremely important influence factors, and
which clinical features contained in the mathematical prediction model are the key to af-
fect the precision and accuracy.

Introduction
Pulmonary nodules are common. Referable to the characteristics of pulmonary nodules, computed to-
mography (CT) imaging is currently the most prior method for decreasing pulmonary nodules and
screening early-stage lung cancer in high-risk populations [1]. The pulmonary nodule can be separated
into solid nodules and subsolid nodules, usually, we divide subsolid nodules into pure ground glass nod-
ules and partial solid nodules. At the same time, if a nodule completely masks the entire lung parenchyma,
we can mention it as the solid nodule [2]. According to the size of the node, the pulmonary nodules
with ≤8 mm are defined as subcentimeter nodules. The lesion with straight diameter >3 cm is defined
as lung swelling (lung mass) rather than nodule. Based on previous research, the lung swelling with
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diameter >3 cm is usually malignant [3]. Consulting to the latest statistical data, among all diagnosed cancers, lung
cancer occupies the first place account for 11.6% of the total number of cases, which constitutes 18.4% of total cancer
deaths becomes the chief reason for cancer death; however, the different conditions of cancer in individual countries
and regions indicate that significant geographical differences still exist [4]. Globally, countries that started to smoke
early possessed high rate of smoking in the past, such as North America, Europe and so on. Interestingly, at present
the number of smokers is decreasing in most of the countries (such as Australia, United Kingdom and United States).
Unfortunately, smoking rates are rising in countries which began to smoke lately, especially for men. Above 50% of
lung cancer patients died were from low and middle income countries every year [5]. Thanks to the widely used
of CT scanning, there is a growing increase in the number of discovered pulmonary nodules, to a certain extent, it
increases the survival rate for lung patients that achieves early detection and treatment Strategy. The National Lung
Cancer Screening Test (NLST) revealed that via low-dose CT screening, we could roughly reduce 20% mortality of
lung cancer as we compared it with chest radiography [6], which mainly attributed to technological developments in
CT scanners and the employment of mainframe computer displays to display CT images.

There are two theories driving the purposes of lung nodule management. First, most lung nodules that are acci-
dentally discovered or screen-detected are benign. Second, the overall 5-year survival rate for all lung cancer patients
is approximately 18%, in which stage I account for 73–90% [7]. If CT finds that nodule density is benign calcifi-
cation, intranodular fat-like low density (such as hamartoma) or arteriovenous malformations, follow-up observa-
tion or no follow-up can be made to avoid unnecessary examination and reduce the economic burden of patients.
Accelerating-malignant nodules’ diagnosis and treatment and minimizing the detection of benign nodules are the
concerns of all. For patients, there are so many factors that affect the development of malignant tumors, including
age, gender and smoking history, as well as nodule size, location, shape, morphology, multiplicity and the presence
of potential emphysema or fibrosis. The relative utility of each trait in predicting cancer possibilities has been exten-
sively studied, but no single trait or combination has proven to be a reliable standard in this regard, this is partly due
to the lack of any consistent or repeatable method to quantify gross morphological features as well as a lack of data
regarding the clinical significance of the more subtle features [8]. Professional organizations have developed manage-
ment guidelines for both screening and incidentally encountered nodules that are based on nodule size, morphology,
and individual risk factors, and recommended intervals of computed tomographic (CT) follow-up to detect growth
[9]. Since early treatment is so important, the establishment of predictive models is very necessary. The most widely
verified models was Mayo Clinic Model. Veterans Affairs (VA) model, PKUPH Model, Brock Model. However, these
models don’t only have various limitations, but also have different predictive parameters for each model, which has
caused many problems for patients and clinicians. For example, the Mayo model does not suitable for patients diag-
nosed with cancer in the past 5 years or patients with the history of lung cancer [10]. Additionally, VA model does not
apply to patients whose nodules smaller than 7 mm [11]. The PKUPH Model excludes patients with intrapulmonary
and extrapulmonary malignancies within 5 years [12]. The Brock Model is suitable neither for screening low-risk
populations nor for patients with hilar or mediastinal lymphadenopathy [13].

Model for assessing the probability of malignancy is a model for estimating malignant pulmonary nodules that
was established by combining the current independent predictors of lung cancer and imaging features, and using
statistical knowledge.

The research design of the model is the most important factor affecting the accuracy of this model. It is always
a complicated problem to incorporate the characteristics of the patient into the prediction model. If a model can
achieve such an effect that observed results are consistent with the predicted results, as well as can distinguish be-
tween high-risk and low-risk groups, we can deem it as an excellent model. For researcher, we always use the AUC of
the receiver operating characteristic curve (ROC) to detect a new method’s performance. Usually, we evaluated it by
calculating AUC always, whose AUC is higher whose performance is better. Excellent models not only more accurately
distinguish between benign pulmonary nodules and malignant pulmonary nodules, but also have higher sensitivity
and specificity. In the following sections, we review the four most commonly used as well as widely validated proba-
bilistic models, they are Mayo Clinic, Peking University People’s Hospital (PKUPH), Department of Veterans Affairs
(VA) and Brock University. Table 1 summarizes these models’ characteristics [14–18]. The pulmonary nodules benign
and malignant four mathematical forecasting model of calculating process has been our detailed generalizations in
Table 2.
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Table 1 Models to estimate the probability of malignancy of patients with pulmonary nodules

Model (year of
publication) Diagnosis method

Number of
subjects

Prevalence of
malignancy

Nonsmokers
included Nodule size

Statistical
methods Calibration AUC

Mayo Clinic
(1997)

Malignant PNs from a TNAB,
bronchoscopy, thoracoscopy, or
thoracotomy.

629 23% Yes 4-30 Logistic
regression

Excellent*,** 0.833

VA (2007) Diagnosed by CTFDG-PET
scanning and needle biopsy.

375 54% Yes 7-30 Logistic
regression

Excellent*,** 0.790

PKUPH (2012) Surgical resection and clear
pathological diagnosis

371 54% Yes 9-28 Logistic
regression

NR 0.888

Brock (2013) Diagnosed by histopathological
examination or needle-aspiration
biopsy.

1871 5.5% No 1-86 Logistic
regression

Excellent**,*** 0.938

Abbreviations: AUC, area under the curve; CT, computed tomography; FDG-PET, 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging; LDCT, low-dose computed tomog-
raphy; NR, not reported; PKUPH, Peking University People’s Hospital; PN, pulmonary nodule; VA, Department of Veterans Affairs.
*The calibration curve plots the observed probability and predicted malignancy probability.
**Calibration refers to the internal verification samples obtained from the model.
***The calibration is assessed by analyzing the mean absolute error between the observed and predicted malignancy probabilities.

Table 2 Probability calculator estimating a pulmonary nodule being lung cancer

Risk variable Mayo VA PU BU

Demographical Age(Years) 0.0391 0.0779 0.07 N/A

Sex(F/M) N/A N/A N/A 0.6467

Ever smoker(Y/N) 0.7917 2.061 N/A N/A

Quit smoke(Years) N/A 0.0567 N/A N/A

Cancer history(Y/N) 1.3388 N/A N/A N/A

Family history of cancer(Y/N) N/A N/A 1.267 N/A

Radiological Upper lobe(Y/N) 0.7838 N/A N/A 0.6092

Diameter*(MM) 0.1274 0.112 0.0676 -5.5537*

Spiculation(Y/N) 1.0407 N/A 0.736 0.9309

Smooth border(Y/N) N/A N/A -1.408 N/A

Calcification(Y/N) N/A N/A -1.615 N/A

Model constant -6.872 − 8.404 -4.496 -6.6144

Abbreviations: BU, Brock University; PU, Peking University; VA, Veteran’s Affairs; F = female, M = male, Y = presence, N = absence
*In the BU model, diameter is defined by (nodule size/10)−0.5-1.5811
The resulting number is the x in the logistic equation ex/((1 + ex )) = risk prediction.
For example, performing the Brock University model prediction for a man and CT examination revealed pulmonary nodules in the lower lobe,
without spiculation, and nodules of a size of 10 mm would yield x = 0*0.6467 + 0*6092 -[(10/10)−0.5-1.5811]*5.5537 + 0*0.9309 − 6.6144
= − 3.3869; plugging into the logistic equation would yield a risk prediction = 0.0327.

Materials and methods
Participants
From January 2017 to October 2019, there were 542 patients from Central Hospital of Wuhan with pulmonary nodules
who had surgery and had a clear pathological diagnosis. Of the 46 patients who were not included in the study because
of incomplete data, we analyzed imaging data from 496 patients. Of the 496 patients with pulmonary nodules, 71
were other lung diseases that were not lung cancer, and 425 were malignant tumors. (Table 3) We usually diagnose
lung cancer by examining excised specimens or biopsy specimens histopathologically or cytopathologically. Benign
pulmonary nodules need to be stable for more than 2 years and biopsy or surgical resection is no seen in the nodules
or a clear diagnosis [19–21].

Variables
All patient information are collected from the hospital information system. Clinical data collected included the pa-
tient’s name, serial number, age, sex, history of smoking (smoking years, quit year), history of lung cancer, family his-
tory of cancer, nodule characteristics comprised calcification, spiculation, lobulation, clear border, air bronchogram
sign, ground glass change, the site of nodules, and nodules diameter. All CT nodule features were collected from the
CT reports. The pictures were displayed using lung window setting (width, 1500 HU; level, 600 HU).
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Table 3 Univariate analyses of potential and significant predictors of malignancy

Characteristics SD SE F 95%CI P

Gender (F/M) 0.457 0.021 <0.001 0.26–0.34 0.991

Upper lobe (Y/N) 0.495 0.022 7.883 0.53–0.62 0.387

Family history of cancer (Y/N) 0.288 0.013 0.750 0.07–0.12 0.911

Smoking history (Y/N) 0.492 0.022 8.374 0.36–0.45 0.982

Diameter (mm) 20.656 0.927 <0.001 22.35–25.99 0.028

Spiculation (Y/N) 0.402 0.018 4.880 0.17–0.24 0.290

Calcification (Y/N) 0.500 0.022 1.120 0.43–051 0.673

Ground glass change (Y/N) 0.374 0.017 0.977 0.13–0.20 0.323

Air bronchogram sign (Y/N) 0.219 0.010 0.854 0.03–0.07 0.356

Age (years) 0.005 3.57 25.421 1.068–6.045 <0.001

History of lung cancer (Y/N) −0.002 0.021 43.099 0.034–0.037 <0.001

Clear border (Y/N) −0.122 0.042 28.154 −0.203–0.040 <0.001

Lobulation (Y/N) 0.146 0.052 46.852 0.044–0.248 <0.001

Abbreviations: CI, confidence interval; P, significance test; SD, Standard Deviation; SE, Standard Error.

Statistical analysis
In the present study, we employed SPSS21.0 software for statistical analysis. All data sets were included in the single
factor analysis to determine the factors affecting the malignant probability of pulmonary nodules. The clinical data of
independent and relevant factors related to benign and malignant were screened by multivariate logistic regression.
The original prediction performance of the area evaluation model based on (ROC-AUC) with 95% confidence interval
is used. P value could help us to define whether it has statistically significant or not, when P < 0.05 it was normal
great. One-way analysis of variance is performed on all observations, and the variance is equal to the conditions of
use. If the assumptions are not met then use the Student’s t-test [22–25].

Results
Synopsis of the characteristics of the model
Compare these four models, we can directly see the Mayo model (patients from the Mayo clinic, 320 men and 309
women), VA model (patients from 10 geographically diverse Veterans Affairs sites in the United States, 367 men, 8
women), PKUPH model (patients from Peking University People’s Hospital in china, 197 men and 174 women), Brock
university model (patients from the Pan-Canadian Early Detection of Lung Cancer Study, 985 men, 886 women).
Depending on the population, the characteristics of the four models as predictors also show their differences. The
Mayo Clinic model focuses on predictive features such as age, smoking, nodule diameter, spiculation, over 5 years
related extrathoracic cancer, and upper lobe location. VA model includes smoking, age, nodule diameter and quit
time as features. PKUPH model comprises age, nodule diameter, calcification, spiculation, edges and family history
of cancer as factors. Brock university model incorporates gender, nodule size, upper lobe location, spiculation as
features.

A comparison of the four models
On account of Brock university’s model that is excellent in all aspects, we expected it to perform well, but by comparing
the diagnostic efficiency of the four models, we found that PKUPH model is more suitable for our patients. In the
data that we collected, during this period, 46 participators (8.45%) were lost to follow-up, and of the 425 patients (299
men, 126 women) with malignant pulmonary nodules, 150 had lung adenocarcinoma and 56 had lung squamous
cell carcinoma. The patient’s age ranged from 29 to 89 years (Figure 1A). In addition, there were 126 patients with
pulmonary nodules between 1.9 and 8 mm in diameter, 219 patients with pulmonary nodules between 8 and 30 mm
in diameter, and 151 patients with pulmonary nodules between 30 and 124 mm in diameter. (Figure 1B). We bring
the information of these collected patients into the model’s formula and calculate the results. We performed logistic
regression on the results obtained and compared their AUC. In the comparison of the four models, the value of AUC
of PKUPH model is 0.634, the value of AUC of Mayo model is 0.626, the value of AUC of VA model is 0.621, and the
value of AUC of Brock model is 0.600. (Figure 2A,C). In the comparison of the third and fourth phases of the first
and second phases of lung cancer. The value of AUC for PKUPH model is 0.670, the value of AUC for Mayo model
is 0.621, the value of AUC for VA model is 0.547, and the value of AUC for Brock model is 0.612. (Figure 2B,D). In
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Figure 1. Patient information visual map

(A) Age distribution of 496 patients. (B) Distribution of pulmonary nodules in 496 patients.

the comparison of lung squamous cell carcinoma, the value of AUC of PKUPH model was 0.606, the value of AUC
of Mayo model was 0.639, the value of AUC of VA model was 0.687, and the value of AUC of Brock model was 0.582.
(Figure 2E,G). When it comes to lung adenocarcinoma, the value of AUC of PKUPH model was 0.605, the value of
AUC of Mayo model was 0.583, the value of AUC of VA model was 0.552, and the value of AUC of Brock model was
0.593. (Figure 2F,H).

Evaluation of suitability
In the comparison of these models, we found that PKUPH model May show relatively better. It includes the diagnostic
efficiency of lung cancer and pulmonary nodules, lung adenocarcinoma and early and late lung cancer. But in the
comparison of squamous cell carcinoma, the VA model will be more suitable. In the supplementary material, we
also provide a detailed table of logistic regression for the four models, (Tables 4,5,6 and 7) and four kinds of logistic
regression model to compare (Table 8).

Discussion
Selection of mathematical prediction models for pulmonary nodules requires caution, radiologists should consider
in their area of lung cancer epidemiology, and verify it in the local population. It has brought many problems to the
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Figure 2. A comparison and evaluation of the four models

(A and C) A comparison of the four models, the value of AUC of PKUPH model is 0.634, the value of AUC of Mayo model is 0.626,

the value of AUC of VA model is 0.621, and the value of AUC of Brock model is 0.600. (B and D) A comparison of the third and fourth

phases of the first and second phases of lung cancer. The value of AUC for PKUPH model is 0.670, the value of AUC for Mayo

model is 0.621, the value of AUC for VA model is 0.547, and the value of AUC for Brock model is 0.612. (E and G) A comparison of

lung squamous cell carcinoma, the value of AUC of PKUPH model was 0.606, the value of AUC of Mayo model was 0.639, the value

of AUC of VA model was 0.687, and the value of AUC of Brock model was 0.582. (F and H) A comparison of lung adenocarcinoma,

the value of AUC of PKUPH model was 0.605, the value of AUC of Mayo model was 0.583, the value of AUC of VA model was

0.552, and the value of AUC of Brock model was 0.593.

clinic, since there are many factors affecting the benign and malignant lung nodules. Different prediction models
use different predictive factors, which greatly affects the applicability of the model. These models have their own
advantages, many studies have clarified them. At the same time, they also have some problems to be considered, and
their applicability in different region needs to be supported by more data. For example, the Mayo model is based on
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Table 4 Mayo Clinic Model Logistic Regression

B S.E Wals df P OR 95%CI
Lower Upper

Gender 0.761 0.738 1.063 1 0.303 2.140 0.504 9.087

Age 0.022 0.031 0.478 1 0.489 1.022 0.961 1.087

Upper 0.213 0.549 0.151 1 0.698 1.237 0.422 3.629

Family 2.947 1.920 2.357 1 0.125 19.051 0.442 820.388

History -18.432 7479.852 \ 1 0.998 \ \ \
Smoke 1.081 0.696 2.413 1 0.120 2.949 0.754 11.537

Diameter -0.002 0.013 0.013 1 0.908 0.998 0.972 1.025

Spiculation 0.154 0.706 0.048 1 0.827 1.167 0.292 4.656

Calcification 0.521 0.578 0.812 1 0.368 1,684 0.542 5.231

Clear border 1.486 0.727 4.172 1 0.041 4.418 1.062 18.384

Upper lobe -0.656 0.661 0.984 1 0.321 0.519 0.142 1.897

CTR -1.468 1.139 1.660 1 0.198 0.230 0.025 2.148

Quitsmoke 0.649 0.833 0.608 1 0.436 1.914 0.374 9.791

Abbreviations: B, degree of freedom; CI, confidence interval; df, degree of freedom; OR, odds ratio;
P, significance test; S.E., Standard Error; Wals, Chi-square value.

Table 5 Department of Veterans Affairs Model Logistic Regression

B S.E Wals df P OR 95%CI
Lower Upper

Gender 2.123 0.837 6.429 1 0.011 8.360 1.619 43.158

Age -0.006 0.033 0.038 1 0.846 0.994 0.932 1.060

Upper -0.114 0.571 0.040 1 0.842 0.892 0.291 2.733

Family 18.786 5750.353 \ 1 0.997 \ \ \
History -18.178 10381.213 \ 1 0.999 \ \ \
Smoke 2.195 0.872 6.336 1 0.012 8.981 1.626 49.618

Diameter -0.012 0.011 1.017 1 0.313 0.989 0.967 1.011

Spiculation 0.481 0.777 0.383 1 0.536 1.617 0.352 7.421

Calcification 0.627 0.646 0.944 1 0.331 1.872 0.528 6.638

Clear border 1.750 0.732 5.718 1 0.017 5.757 1.371 24.173

Upper lobe -1.302 0.868 2.253 1 0.133 0.272 0.050 1.489

CTR -32.974 8132.225 \ 1 0.997 \ \ \
Quitsmoke 0.338 0.715 0.223 1 0.637 1.402 0.345 5.696

Abbreviations: B, degree of freedom; CI, confidence interval; df, degree of freedom; OR, odds ratio;
P, significance test; S.E., Standard Error; Wals, Chi-square value.

chest X-rays, but for more sensitive and accurate screening of lung nodules, people now use CT as a screening method.
At the same time, the Mayo model is not suitable for people who have been diagnosed with cancer or Patients with
a history of lung cancer. The VA model does not contain radiological characteristics and is not suitable for nodules
smaller than 7 mm. The PKUPH Model excludes patients with intrapulmonary and extrapulmonary malignancies
within 5 years. The Brock Model is suitable neither for screening low-risk populations, nor for patients with hilar or
mediastinal lymphadenopathy. By comparing AUC, we found that the PKUPH Model is more suitable for patients
with PNs in the region, even if it was not specifically calibrated. The AUC value of the Mayo model is second only to
that of the PKUPH model. The VA model is more suitable for identifying patients with lung squamous cell carcinoma,
while the Brock model and the PKUPH model are more suitable for identifying patients with lung adenocarcinoma.
The reason for this result is because of different nationalities (the prevalence of tobacco and difference in the pattern of
the history of tobacco exposure) conditions together with geographic disparities differences. Most lung cancers (61%)
were diagnosed as stage III or IV; Only 21% of cases have been confirmed in stage I. As for stage I 5-year survival rates
were 57%, while stage IV was 4%. Almost 75% of lung cancer survivors are 65 years old and above, more than 60%
of patients diagnosed in five years, it is due to the low survival of lung cancer [26–31]. In the 2018 Cancer Statistics,
invasive cancer men (39.7%) and women (37.6%). In the 2019 Cancer statistics, invasive cancer men (39.3%) and

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

7

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/40/2/BSR
20193875/868800/bsr-2019-3875.pdf by guest on 10 April 2024



Bioscience Reports (2020) 40 BSR20193875
https://doi.org/10.1042/BSR20193875

Table 6 Peking University People’s Hospital Model Logistic Regression

B S.E Wals df P OR 95%CI
Lower Upper

Gender 0.896 0.491 3.334 1 0.068 2.451 0.936 6.414

Age 0.017 0.024 0.508 1 0.476 1.017 0.971 1.065

Upper 0.303 0.376 0.648 1 0.421 1.353 0.648 2.828

Family 0.492 0.881 0.312 1 0.577 1.636 0.291 9.203

History -19.092 6511.017 \ 1 0.998 \ \ \
Smoke 0.599 0.492 1.480 1 0.224 1.820 0.694 4.774

Diameter 0.014 0.010 1.929 1 0.165 1.014 0.994 1.035

Spiculation 0.282 0.452 0.389 1 0.533 1.326 0.547 3.215

Calcification 0.712 0.465 2.352 1 0.125 2.039 0.820 5.068

Clear border 2.034 0.698 8.487 1 0.004 7.645 1.946 30.038

Upper lobe -0.760 0.525 2.101 1 0.147 0.467 0.167 1.307

CTR -0.341 0.503 0.460 1 0.497 0.711 0.265 1.906

Quitsmoke -0.063 0.414 0.023 1 0.878 0.939 0.417 2.113

Abbreviations: B, degree of freedom; CI, confidence interval; df, degree of freedom; OR, odds ratio;
P, significance test; S.E., Standard Error; Wals, Chi-square value.

Table 7 Brock University Model Logistic Regression

B S.E Wals df P OR 95%CI
Lower Upper

Gender 0.646 0.724 0.796 1 0.372 1.908 0.461 7.890

Age -0.005 0.032 0.026 1 0.871 0.995 0.935 1.058

Upper 0.330 0.639 0.267 1 0.605 1.392 0.398 4.871

Family 2.599 1.782 2.127 1 0.145 13.454 0.409 442.574

History -18.806 10974.389 \ 1 0.999 \ \ \
Smoke 0.872 0.738 1.395 1 0.238 2.392 0.563 10.166

Diameter 0.004 0.014 0.093 1 0.761 1.004 0.976 1.033

Spiculation -0.225 0.715 0.100 1 0.752 0.798 0.197 3.238

Calcification 0.095 0.600 0.025 1 0.874 1.100 0.339 3.565

Clear border 0.831 0.801 1.075 1 0.300 2.295 0.477 11.034

Upper lobe -0.944 0.733 1.660 1 0.198 0.389 0.093 1.636

CTR -0.468 0.842 0.309 1 0.578 0.626 0.120 3.259

Quitsmoke -0.096 0.796 0.015 1 0.904 0.908 0.191 4.321

Abbreviations: B, degree of freedom; CI, confidence interval; df, degree of freedom; OR, odds ratio;
P, significance test; S.E., Standard Error; Wals, Chi-square value.

women (37.7%). It reflects to some extent the cause of the differences in environmental exposure [28,30]. So far, the
cancer of lung cancer is the biggest geographical differences, reflecting the state between smoking prevalence of huge
differences in history and continued. It can be also seen that in the United States, the occurrence of lung cancer in
men is decreasing (estimate the amount of new lung cancer cases at 12,1680 in 2018 and 11,6440 in 2019), while the
incidence of women is rising (estimate the amount of new lung cancer cases at 11,350 in 2018 and 11,710 in 2019).
It’s worth noting that there is no significant difference between females from Chinese (22.8 per 100,000) and some
Western European countries, (for instance, in France 22.5 per 100,000) although there are real differences in smoking
prevalence between the two types of people. The incidence and trend of lung cancer vary greatly depending on gender,
age, ethnicity, and socioeconomic status. In the United States, lung cancer mortality is highest among men of lower
socioeconomic status, especially in central and southern regions. Smoking rates are decreasing globally, especially
among men, such as the United States, the United Kingdom, and Australia. But in countries that started smoking late,
we are seeing an increase in smoking rates. Nowadays, there is more than 50% lung cancer patients died every year
in low income countries as well as middle income ones. [4,5,28,30].

Studies have shown that exposure to central bronchi by low molecular weight polycyclic aromatic hydrocarbons
produced by smoking can lead to small cell lung cancer, while nitrosamines in peripheral lung tissue exposed to
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Table 8 Comparison of Models’ Logistic Regression

B S.E Wals df P OR 95%CI
Lower Upper

PKUPH 1.875 0.703 7.110 1 0.008 6.524 1.644 25.896

Mayo 0.284 1.364 0.043 1 0.835 1.328 0.092 19.240

VA 0.546 0.876 0.388 1 0.533 1.726 0.310 9.618

Brock -1.219 1.369 0.792 1 0.374 0.296 0.020 4.329

Constant 0.637 0.301 4.479 1 0.034 1.891

Abbreviations: B, degree of freedom; CI, confidence interval; df, degree of freedom; OR, odds ratio;
P, significance test; S.E., Standard Error; Wals, Chi-square value.

tobacco smoke can cause lung adenocarcinoma. All histological types were closely related to smoking, the relative
risk of adenocarcinoma is much lower than that of small cell lung cancer and squamous cell carcinoma. The former
of which is the more common of non-smokers and women, while the latter of which are more common with the
time of smoke increased. In general, lung cancer in non-smokers are different from that in smokers at the molecular
as well as epigenetic levels. Histologically, cancer from never-smokers is also different from smoker patients’ cancer.
Never smokers and women are mainly influenced by lung adenocarcinoma, while male smokers are predominantly
squamous cell carcinoma [32–35].

There is increasing evidence to suggest recommendations to manage these patients, including how to define risk
for progression and how to how to analyze who can observe through continuous imaging. These imaging features
also assist to distinguish patients who may have early stage lung cancer that profit from local treatment. But this is
not enough, and this may require the creation of new models to meet the needs of patients and clinicians with lung
nodules in the region. Because the model is also constantly improving, by which kinds of indicators are included
in the calculation. Obtaining a more accurate formula is a difficult problem. At the same time, we found that it is
not rigorous to consider only smoking, but the time and amount of smoking. There are many factors influencing.
Different places may have different results due to different geographical environments, different living habits, and
different eating habits. This requires researchers to consider and verify whether other models can be directly used.
Looking through the literature reports in recent years, it is not difficult to find that more and more better models
have been established. More indicators or more sensitive molecular markers may be added (e.g. CEA and Cyfra21-1).
It is complex and challenging to evaluate lung nodules. At present, guidelines advocate a scheme of a system based
on clinical and radiographic features to evaluate the likelihood of malignancy. An externally validated clinical malig-
nancy probabilistic model can assist us to identify benign and malignant nodules and advise clinicians and patients
in making management decisions. As we apply the model to the clinic, it is significant to know the source population
of each model. Therefore, it is very important to establish a regional prediction model for the benign and malignant
pulmonary nodules, which might possess potential to help doctors to choose and interpret diagnostic and reduce the
cost and suffering of patients. The development of radionomics and molecular biomarkers is expected to enhance the
probability estimation of malignant tumors in the near future.
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