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Pancreatic ductal adenocarcinoma (PDAC) is a class of the commonest malignant carci-
nomas. The present study aimed to elucidate the potential biomarker and prognostic tar-
gets in PDAC. The array data of GSE41368, GSE43795, GSE55643, and GSE41369 were
downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed
genes (DEGs) and differentially expressed microRNAs (DEmiRNAs) in PDAC were obtained
by using GEO2R, and overlapped DEGs were acquired with Venn Diagrams. Functional en-
richment analysis of overlapped DEGs and DEmiRNAs was conducted with Metascape and
FunRich, respectively. The protein–protein interaction (PPI) network of overlapped DEGs
was constructed by STRING and visualized with Cytoscape. Overall survival (OS) of DEmiR-
NAs and hub genes were investigated by Kaplan–Meier (KM) plotter (KM plotter). Transcrip-
tional data and correlation analyses among hub genes were verified through GEPIA and Hu-
man Protein Atlas (HPA). Additionally, miRNA targets were searched using miRTarBase, then
miRNA–DEG regulatory network was visualized with Cytoscape. A total of 32 DEmiRNAs
and 150 overlapped DEGs were identified, and Metascape showed that DEGs were signifi-
cantly enriched in cellular chemical homeostasis and pathways in cancer, while DEmiRNAs
were mainly enriched in signal transduction and Glypican pathway. Moreover, seven hub
genes with a high degree, namely, V-myc avian myelocytomatosis viral oncogene homolog
(MYC), solute carrier family 2 member 1 (SLC2A1), PKM, plasminogen activator, urokinase
(PLAU), peroxisome proliferator activated receptor γ (PPARG), MET proto-oncogene, recep-
tor tyrosine kinase (MET), and integrin subunit α 3 (ITGA3), were identified and found to be
up-regulated between PDAC and normal tissues. miR-135b, miR-221, miR-21, miR-27a,
miR-199b-5p, miR-143, miR-196a, miR-655, miR-455-3p, miR-744 and hub genes pre-
dicted poor OS of PDAC. An integrative bioinformatics analysis identified several hub genes
that may serve as potential biomarkers or targets for early diagnosis and precision target
treatment of PDAC.

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic neoplasm, accounting for
approximately 90% of all pancreatic cancers (PCs), with a poor overall survival (OS) rate of 5–8% [1,2].
Over 52% of cases are diagnosed in a distal metastasis stage, with only 3% showing a 5-year OS benefit [3].
Currently, surgical extirpation is the primary curative strategy; however, most patients with PDAC do not
display any specific early signs of clinical disease, which causes missed opportunities for surgery due to
the progression of cancer without detection. The preferred and most promising strategy for PC treatment
is surgical resection, and the detection of PC during the surgically resectable stages has vast importance
for ameliorating the survival benefit of patients with PC [4]. Therefore, an exact, early diagnosis of PDAC
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is needed, and the discovery of molecular biomarkers and targets could be another promising strategy to promote
further developments in therapeutic modalities and strategies.

Various factors are associated with the growth and development of cancer and PDAC, including mutation, age,
sex, ethnicity, cigarette smoking, and viral and bacterial infections [5–9]. The association of infectious agents in the
etiology of different types of cancer has piqued the interest of scientists in recent years. Recent data have shown the
involvement of Mycoplasma hominis, Chlamydia pneumoniae, and Escherichia coli infection in the etiology of
prostate cancer, lung cancer, and colon cancer, respectively [9–12]. Recently, a wealth of previous studies have reported
that microRNAs (miRNAs), a class of noncoding RNAs characterized by approximately 22 nucleotides in length, can
inhibit the stability and translation of messenger RNAs (mRNAs) through binding to the specific sequence of genes,
which are used as potential biomarkers for different kinds of cancer. Su et al. (2018) [13] employed Weighted Gene
Co-Expression Network Analysis (WGCNA) to analyze 88 patients with PDAC and 19 healthy controls and reported
that five miRNAs (miR-3201, miR-890, miR-16-2-3p, miR-877, and miR-602) were defined as promising diagnostic
and prognostic biomarkers for PDAC. Additionally, miR-661 is up-regulated in PDAC and simultaneously promotes
the protein expression level of transcription factor 4, β-catenin, and cyclin D1, which are associated with the Wnt
signaling pathway in vitro, and can be used as a prognostic marker in suspicious pancreatic lesions [14]. Wei et al.
(2018) [15] demonstrated that the overexpression of miR-23b-3p decreased tumor volume or even prevented the
formation of tumors by directly down-regulating annexin A2 (ANXA2). Many biomarkers and therapeutic targets
play a vital role in the diagnosis and treatment of PDAC. However, no breakthrough in the conventional treatment
strategy has been investigated because of the difficulty in the early diagnosis and ominous prognosis of PDAC, and
there is urgent need to identify more genetic information about pivotal genes in the progression of this disease.

Several in silico bioinformatics tools are widely applied to assess gene expression levels, to screen unique genes
from RNA-sequencing and next-generation sequencing data, and to explore their possible implication in the growth
of different types of cancer [16–18]. Currently, microarrays have been widely employed to detect genetic alterations
during the initiation and progression of tumorigenesis. Accumulating data on malignancy are available at the author-
itative Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) genomics data repository that includes
microarray and high-throughput sequencing data [19]. In the present paper, we employed mRNA microarray data of
GSE41368 [20], GSE43795 [21], and GSE55643 [22] and miRNA microarray data of GSE41369 [20] to identify the
differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRNAs) and to explore the potential
therapeutic targets as well as the prognostic value of PDAC. Compared with a single expression profile, the bioinfor-
matics analysis of the overlapping DEGs in more chips could be more reliable. In the current study, we performed
a comprehensive bioinformatics analysis to identify hub overlapping DEGs, and GO terms and KEGG pathway en-
richment analyses of the DEGs and DEmiRNAs were performed. A protein–protein interaction (PPI) network and
a DEmiRNA target network were constructed to assess the interactions between the DEmiRNAs and hub genes.
Moreover, seven significant hub genes and ten DEmiRNAs were revealed to be associated with OS in PDAC by the
Kaplan–Meier (KM) plotter (KM plotter). In addition, the mRNA expression level, correlation analysis and protein
expression of the hub genes were validated with the GEPIA and Human Protein Atlas (HPA) databases. The current
research aimed to explore potential hub genes that may be highly correlated with the prognostic value of PDAC from
a multicultural perspective with systems biology. An integrated analysis of the DEGs in PDAC will provide further
insight into the mechanism of PDAC.

Materials and methods
PDAC dataset preprocessing
The gene expression profile data (GSE41368, GSE43795, GSE55643, and GSE41369) of PDAC were downloaded from
the public GEO database by searching with the following key terms: (‘microRNA’ OR ‘miRNA’ OR ‘mRNA’) AND
(‘pancreatic ductal adenocarcinoma’ OR ‘PDAC’). The publication time was not limited. All included chip datasets
have the same characteristics, that is, the comparison of human PDAC and normal specimens, and included at least
six corresponding samples as well as all the microarray data available to the public.

Data processing
GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) is an interactive online tool that can compare different groups in
a GEO series and can be employed to identify DEGs and DEmiRNAs. Subsequently, by default, the adjusted P-values
were selected to decrease the false-positive rate using the Hochberg false discovery rate and the Benjamini method. A
P-value <0.05 and an absolute log fold-change (FC) greater than 1 for the DEGs and 2 for the DEmiRNAs were used
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as the cut-off criteria. We also used the online tool Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/index.html) to
identify the overlapping DEGs that were up-/down-regulated in the GSE41368, GSE43795, and GSE55643 datasets.

Functional enrichment analysis of the overlapping DEGs and DEmiRNAs
GO terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses play a vital role
in identifying characteristic biological attributes for high-throughput transcriptome data. We used Metascape (http:
//metascape.org/), a gene annotation, and analysis resource [23], to perform a functional enrichment analysis, which
included cellular component (CC), molecular function (MF), and biological process (BP), and a KEGG pathway
analysis of the overlapping DEGs. Similarly, we also performed a functional enrichment analysis of the DEmiRNAs
using FunRich, which is also primarily used for the interaction network and the functional enrichment analysis of
genes and proteins [24]. Bubble diagrams and bar charts, respectively, were used to visualize the results of the GO
terms and KEGG pathway enrichment analyses of the overlapping DEGs and DEmiRNAs.

Construction of the PPI network of the overlapping DEGs
STRING (https://string-db.org/) is a user-friendly online system that provides predicted and experimental interac-
tions of proteins [25]. We used the STRING database to analyze functional interactions between the overlapping
DEGs with a confidence score of ≥0.4 for significant differences. The PPI network was visualized with Cytoscape
(version 3.6.0, www.cytoscape.org), and the properties of the network topology for nodes were calculated to identify
hub genes with a degree >5 in the present study. The degree indicates the number of edges connected with a specific
node, and nodes with a high degree were identified as hub genes (i.e., may contribute to vital biological behaviors).

Survival analysis of the DEmiRNAs and hub genes
We used the KM plotter (http://kmplot.com/analysis/) [26] to perform an OS analysis of the DEmiRNAs and hub
genes in 178 and 177 patients with PDAC, respectively. The plotter endows users with the ability to separate patients
divided into high and low expression groups on the basis of the gene transcriptional expression level of a given gene
and create KM plots. In addition, the hazard ratio (HR) with the 95% confidence interval and the log-rank P-value
were calculated and are shown on the chart, and the number-at-risk is displayed below the curves.

Expression levels and correlation analysis of the hub genes
GEPIA (Gene Expression Profiling Interactive Analysis) is a well-developed interactive online server applied to a
standard processing pipeline that analyzes the RNA sequencing expression data of 9736 tumors and 8587 normal
samples from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) projects [27]. We
used GEPIA to investigate the mRNA expression levels of hub genes in PDAC and normal tissues. Then, a boxplot was
generated to show the relation. The HPA (https://www.proteinatlas.org/) is an open access to enable scientists in both
industry and academia to freely access data for exploration of the human proteome [28]. The HPA database was also
used to validate the immunohistochemistry of the candidate hub genes. The direct link to these images in the HPA
are as follows: https://www.proteinatlas.org/ENSG00000136997-MYC/tissue/pancreas#img (v-myc avian myelocy-
tomatosis viral oncogene homolog, MYC, in normal tissue); https://www.proteinatlas.org/ENSG00000136997-MYC/
pathology/tissue/pancreatic+cancer#img (MYC in tumor tissue); https://www.proteinatlas.org/ENSG00000117394-
SLC2A1/tissue/pancreas#img (solute carrier family 2 member 1, SLC2A1, in normal tissue); https://www.proteinatlas.
org/ENSG00000117394-SLC2A1/pathology/tissue/pancreatic+cancer#img (SLC2A1 in tumor tissue); https://www.
proteinatlas.org/ENSG00000067225-PKM/tissue/pancreas#img (Pyruvate kinase muscle isozymes, PKM, in nor-
mal tissue); https://www.proteinatlas.org/ENSG00000067225-PKM/pathology/tissue/pancreatic+cancer#img (PKM
in tumor tissue); https://www.proteinatlas.org/ENSG00000122861-PLAU/tissue/pancreas#img (plasminogen ac-
tivator, urokinase, PLAU, in normal tissue); https://www.proteinatlas.org/ENSG00000132170-PPARG/tissue/
pancreas#img (peroxisome proliferator activated receptor (PPAR) γ, PPARG, in normal tissue); https://www.
proteinatlas.org/ENSG00000132170-PPARG/pathology/tissue/pancreatic+cancer#img (PPARG in tumor tissue);
https://www.proteinatlas.org/ENSG00000105976-MET/tissue/pancreas#img (MET proto-oncogene, receptor ty-
rosine kinase, MET, in normal tissue); https://www.proteinatlas.org/ENSG00000105976-MET/pathology/tissue/
pancreatic+cancer#img (MET in tumor tissue); https://www.proteinatlas.org/ENSG00000005884-ITGA3/tissue/
pancreas#img (integrin subunitα 3, ITGA3, in normal tissue); and https://www.proteinatlas.org/ENSG00000005884-
ITGA3/pathology/tissue/pancreatic+cancer#img (ITGA3 in tumor tissue). A correlation analysis presents pairwise
genes using the Pearson, Spearman, and Kendall correlation statistics based on GTEx and/or TCGA expression data
in GEPIA [18].
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Table 1 The data characteristics of the gene expression profiling studies

PMID Record mRNA/miRNA Tissue Normal Tumor Platfrom Reference

24120476 GSE41368 mRNA PDAC 6 6 GPL6244-[HuGene-1 0-st]Affymetrix
Human Gene 1.0 ST Array [transcript
(gene) version]

Frampton et
al., 2014

24072181 GSE43795 mRNA PDAC 6 6 GPL10558-Illumina HumanHT-12 V4.0
expression beadchip

Kim et al.,
2014

25415223 GSE55643 mRNA PDAC 8 45 GPL6480 Agilent-014850 Whole
Human Genome Microarray 4x44K
G4112F (Probe Name version)

Jamieson et
al., 2014

24120476 GSE41369 miRNA PDAC 9 9 GPL16142 NanoString nCounter
Human miRNA assay (v1)

Frampton et
al., 2014

Construction of the miRNA–mRNA network
The genes targeted by the DEmiRNAs were predicted using miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/), the
experimentally validated miRNA–target interactions database [29]. Next, the regulatory network of the predicted
genes and miRNAs that targeted them were visualized in Cytoscape.

Results
Identification of the DEGs and DEmiRNAs
The characteristics of the available profiles are presented and include the PubMed ID, GEO accession number, exper-
iment type, sample source, number of tumors and controls, platforms, corresponding author, and publication time
(Table 1). As shown in Table 1, 57 PDAC samples and 20 normal samples were applied for RNA-seq analysis, and 9
PDAC samples and 9 normal samples were employed for miRNA-seq analysis. For the GSE41369 dataset, a total of
32 DEmiRNAs (24 up-regulated and 8 down-regulated miRNAs, Figure 1A and Table 2) were extracted, and a total
of 1828, 3233, and 1144 genes were extracted from the GSE41368, GSE43795, and GSE55643 datasets, respectively
(Figure 1B–D); these miRNAs and genes were recognized as differentially expressed in PDAC samples compared with
normal samples. Among them, 150 DEGs overlapped; 76 were up-regulated (Figure 1E), and 74 were down-regulated
(Figure 1F). Additionally, based on the logFC value, we show the top 25 up- and down-regulated DEGs as a heat map
in Figure 1G.

Enrichment analysis of the overlapping DEGs and miRNAs
The BP analysis demonstrated that the overlapping DEGs were dramatically concentrated in cellular chemical home-
ostasis, carboxylic acid biosynthetic process, and the positive regulation of cell migration (Figure 2A). Regarding MF,
the overlapping DEGs were significantly enriched in cell adhesion molecule binding (Figure 2B). Regarding CC, the
overlapping DEGs were significantly enriched in the extracellular matrix and the external side of the plasma mem-
brane (Figure 2C). Additionally, the KEGG analysis indicated that the overlapping DEGs were significantly enriched
in pathways involved in cancer and the PI3K-Akt signaling pathway (Figure 2D).

To improve our understanding of the biological information of the 32 DEmiRNAs in PDAC, we also performed
GO annotation and KEGG pathway analyses. Regarding BP, the DEmiRNAs were significantly enriched in signal
transduction and cell communication as well as the regulation of nucleobase, nucleoside, nucleotide, and nucleic
acid metabolism (Figure 3A). Regarding MF, the DEmiRNAs were significantly enriched in transcription factor ac-
tivity and GTPase activity (Figure 3B). In addition, the most enriched GO terms in CC were nucleus, cytoplasm,
Golgi apparatus, and lysosome (Figure 3C). As shown in Figure 3D, the most enriched KEGG pathway terms for the
DEmiRNAs were related to VEGF and the VEGFR signaling network, the glypican pathway, LKB1 signaling events,
the ERBB receptor signaling network and the sphingosine 1-phosphate (S1P) pathway.

To explore the interactions of the overlapping DEGs, a PPI network based on the STRING database was con-
structed. In total, the PPI network of the overlapping DEGs comprises 83 nodes and 99 edges (Figure 4). The more
characteristic properties of node degree, the more significant influence it has on maintaining the stability of the PPI
network. Seven nodes were identified as hub genes with a degree > 5, namely, MYC (degree = 15), SLC2A1 (degree
= 7), PKM (degree = 7), PLAU (degree = 7), PPARG/PPARγ (degree = 6), MET (degree = 6), and ITGA3 (degree
= 6).
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Figure 1. Volcano plot of gene expression profile data in PDAC and normal samples and the heatmap of the overlapping

DEGs

(A) Volcano plot of GSE41369, (B) volcano plot of GSE41368, (C) volcano plot of GSE43795, (D) volcano plot of GSE55643, (E) Venn

diagram of the up-regulated overlapping DEGs, (F) Venn diagram of the down-regulated overlapping DEGs, and (G) heatmap of the

overlapping DEGs. Green represents a low FC value, and red represents a high FC value. Each column represents one dataset, and

each row represents one gene. The number in each rectangle represents the FC in PDAC samples compared with normal samples.

The gradual color change from red to green represents the changing process from up-regulation to down-regulation.

Survival analysis
KM plotter was employed to predict the prognostic values of the 32 identified DEmiRNAs and 7 hub genes. Among
the DEmiRNAs examined, our results showed that the high expression of hsa-miR-221, hsa-miR-135b, hsa-miR-21,
hsa-miR-199b-5p, hsa-miR-143, hsa-miR-27a, and hsa-miR-196a (P<0.05) was associated with worse OS for PDAC
patients (Figure 5A–G). Additionally, low expression levels of hsa-miR-655, hsa-miR-455-3p, and hsa-miR-744
(P<0.05) were associated with poor OS for PDAC patients (Figure 5H–J). Similarly, the high expression of MYC,
SLC2A1, PKM, PLAU, PPARG, MET, and ITGA3 may also be associated with the poor survival of patients with
PDAC (P<0.05) (Figure 6).

Transcriptional expression level of the hub genes and correlation analysis
As shown in Figure 7, the mRNA expression levels of seven genes were remarkably up-regulated in PDAC based
on data from the GEPIA database. In addition, we used the ‘HPA’ to examine the protein expression levels of these
hub genes and observed that the protein expression levels of the hub genes were noticeably up-regulated in tumor
tissues compared with normal tissues (Figure 8). The increase in SLC2A1, PKM, PLAU, PPARG, MET, and ITGA3
was strongly associated with the increase in MYC in PDAC (Figure 9).

miRNA–mRNA network
The network of DEmiRNAs and predicted targets is presented in Figure 10. Notably, hsa-miR-135b targeted 137 genes,
including MYC; hsa-miR-221 targeted 504 genes, including PKM; hsa-miR-21 targeted 686 genes, including MYC;
hsa-miR-27a targeted 467 genes, including PPARG and MET; hsa-miR-199b-5p targeted 111 genes, including ITGA3;
hsa-miR-143 targeted 595 genes; hsa-miR-196a targeted 507 genes, including MYC; hsa-miR-655 targeted 224 genes,
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Table 2 The up-/down-regulated DEmiRNAs in GSE41369

Up/down DEmiRNAs adj.P.Val P-value logFC

Up-regulated hsa-miR-135b 0.0000337 4.63E-08 2.819987

hsa-miR-221 0.0007128 1.96E-06 2.181648

hsa-miR-10a 0.0011033 4.87E-06 2.841119

hsa-miR-197 0.0011033 6.07E-06 2.192276

hsa-miR-145 0.0011327 7.79E-06 3.244704

hsa-miR-21 0.0019778 1.90E-05 2.992536

hsa-miR-223 0.0020383 2.80E-05 2.930734

hsa-miR-342-3p 0.0024343 4.02E-05 2.136132

hsa-miR-125a-5p 0.002574 4.60E-05 2.483418

hsa-miR-1975 0.0034239 6.74E-05 2.291544

hsa-miR-27a 0.0034239 7.06E-05 3.636233

hsa-miR-142-5p 0.0039221 9.87E-05 2.625738

hsa-miR-199a-5p 0.0070605 2.04E-04 3.264147

hsa-miR-142-3p 0.0159969 6.14E-04 2.892267

hsa-miR-129-3p 0.0159969 6.56E-04 2.073776

hsa-miR-199b-5p 0.0161787 8.32E-04 2.598735

hsa-let-7i 0.0161787 8.37E-04 2.073183

hsa-miR-150 0.0175298 9.44E-04 3.28386

hsa-miR-143 0.0175298 9.89E-04 2.713456

hsa-miR-100 0.0180691 1.08E-03 2.544108

hsa-miR-199a/b-3p 0.0194912 1.21E-03 2.445292

hsa-miR-23a 0.0215577 1.63E-03 2.265833

hsa-miR-125b 0.0233466 1.83E-03 2.846407

hsa-miR-196a 0.0413646 4.15E-03 3.586379

Down-regulated hsa-miR-630 0.0020383 2.80E-05 −4.218462

hsa-miR-216a 0.0161787 7.81E-04 −2.636217

hsa-miR-130b 0.0175298 9.84E-04 −2.612345

hsa-miR-217 0.0211921 1.52E-03 −3.572319

hsa-miR-655 0.0260153 2.08E-03 −2.216555

hsa-miR-455-3p 0.0301557 2.86E-03 −2.038336

hsa-miR-744 0.0492626 5.24E-03 −2.830606

hsa-miR-220a 0.0542844 6.66E-03 −2.109385

Table 3 The interactive relationship between hub genes and miRNAs

Hub genes DEmiRNAs

MYC hsa-miR-196a, hsa-miR-21, hsa-miR-135b, hsa-miR-744, hsa-miR-455-3p,
hsa-miR-655

SLC2A1 NA

PKM hsa-miR-221

PLAU NA

PPARG hsa-miR-27a

MET hsa-miR-27a

ITGA3 hsa-miR-199b-5p

The intersection of DEGs in the miRNAs–mRNA regulatory network
P4HB, RUNX2, MYC, BNIP3, PKM, PGM2L1, BTG2, SERPINB5, ACAT1, COBLL1, JADE1, SERPINI1, LIFR, OSBPL3, CXCL10, FGF12, ECT2, MET
PPARG, OSBPL10, CYB5A, LAMC2, ITGA3, HK2, ABAT, REEP3, PHGDH, ITGA2, PTTG1, LIPH, SLC25A15.

including MYC; hsa-miR-455-3p targeted 784 genes, including MYC; and hsa-miR-744 targeted 665 genes, including
MYC. As a group, a total of 31 of the 150 DEGs were contained in the miRNA–mRNA regulatory network (Figure 10
and Table 3).
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Figure 2. Functional and pathway enrichment analyses of the overlapping DEGs in PDAC

(A) BP, (B) MF, (C) CC, (D) and KEGG pathway analyses. The x-axis represents the q value (−log10), and the y-axis represents the

GO term. The GO terms were measured by the rich factor, q value and number of genes enriched. The greater the Rich factor is,

the greater the degree of enrichment and the greater the p value [0, 1]. The brighter the color of red is, the more significant the term.

Discussion
MiRNAs can be used as biological markers for PCs [4,30], and PC is becoming a common malignant disease with an
incidence that has continued to rise during the last few years [30,31]. Hence, specific biomarkers for accurate diag-
nostic tests and potential therapeutic targets for individualized therapy are yet to be fully determined in PDAC. In
the current study, the mRNA and miRNA expression data obtained from the GEO database yielded an overall total
of 150 genes (76 up-regulated and 74 down-regulated genes) and 32 miRNAs (24 up-regulated and 8 down-regulated
miRNAs) that were differentially expressed in PDAC samples and normal tissues. The 150 DEGs were significantly
enriched in cancer-related pathways. Moreover, 32 DEmiRNAs were significantly enriched in the glypican pathway.
The glypicans comprise a family of glycosylphosphatidylinositol (GPI)-anchored heparan sulfate proteoglycans that
has a remarkable effect on cell division and growth regulation. At present, six members (GPC1–6) of this family
are recognized in vertebrates [32]. The glypican pathway, which was indicated in the KEGG pathway analysis, in-
cludes glypican 1 (GPC1, Entry: k08107), which promotes the pathogenesis of many human cancers [33]. Research
shows that high levels of serum GPC1 indicate a poor prognosis in PDAC [34], suggesting that intervention of the
glypican pathway may be a promising strategy for PDAC treatment. The increased expression of seven DEmiRNAs
(miR-135b, miR-221, miR-21, miR-27a, miR-199b-5p, miR-143, and miR-196a) and seven hub genes (MYC, SLC2A1,
PKM, PLAU, PPARG, MET, and ITGA3) were associated with worse OS; however, hsa-miR-655, hsa-miR-455-3p, and
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Figure 3. Functional and pathway enrichment analyses of the DEmiRNAs in PDAC

(A) The BP analysis of miRNAs related to the DEGs, (B) the MF analysis of the miRNAs related to the DEGs, (C) the CC analysis

of the miRNAs related to the DEGs, (D) and the biological pathway analysis of the miRNAs related to the DEGs. The upper x-axis

represents the P-value (−log10), and the lower x-axis represents the percentage of genes (blue). The y-axis represents the GO

term. Yellow represents the P-value equal to 0.05 as reference, and red represents the specific P-value. The longer the rectangular

zone, the smaller the P-value is.

hsa-miR-744 had the opposite prognostic value. SLC2A1, PKM, PLAU, PPARG, MET, and ITGA3 were up-regulated
in PDAC compared with normal tissues and were closely related to an increase in MYC.

MiRNAs can function as competing endogenous RNAs (ceRNAs), causing the degradation and/or inhibition of
mRNA translation by binding to its 3′–untranslated region (3′-UTR) [35]. However, this function is not exactly con-
sistent with the aforementioned pattern between the DEmiRNAs and hub genes, which may also play a prominent
role in tumor onset and progression in PDAC. Munding et al. (2012) [36] showed that miR-135b was highly mis-
regulated and was preferable to miR-196a and miR-210 as an indicator for identifying PDAC. Similarly, Han et al.
(2017) [37] reported that miR-135b-5p was significantly up-regulated in PC tissue compared with adjacent tissue,
and the overexpression of miR-135b-5p advanced proliferation and migration by decreasing the transcriptional ex-
pression level of SFRP4 by directly targeting its 3′-UTR. Wang et al. (2016) [38] showed that miR-221 bound to the
3′-UTR of endothelial nitric oxide synthase traffic inducer (NOSTRIN) and inhibited its expression, and up-regulated
miR-221 expression correlated with unsatisfactory survival in PDAC, and another study demonstrated that miR-221
is an oncogenic miRNA that contributes to Capan-2 cell proliferation by regulating the PTEN-Akt pathway [39]. In
addition, miR-21 promotes epidermal growth factor (EGF)-induced proliferation, inhibits cell apoptosis, and accel-
erates cell cycle progression by targeting the PI3K/AKT and MAPK/ERK signaling pathways [40]; it is also asso-
ciated with poor OS and disease-free survival in PDAC [41]. Frampton et al. (2015) [42] identified three miRNAs
(miR-21, miR-23a, and miR-27a) with high tumor expression, and the inhibition of miR-23a, miR-21, and miR-27a
had promoting effects in decreasing the proliferation of PDAC cells in culture and the growth of xenograft tumors.
A fibrotic tumor-associated stroma (TAS), which is believed to aggravate the clinical biological symptoms of PDAC,
and miR-199a and miR-199b, which belong to the miR-199 family that is uniquely expressed in TAS cells, support
the stromal miRNA feature, suggesting that the tumor microenvironment contributes to miRNA changes, which con-
versely have mechanical effects on the TAS [43]. Compared with normal tissues, miR-143 was up-regulated in both
PDAC and PVAC tumor samples, which may reflect the histological features and biological behavior of different PCs
[44]. Accumulating evidence indicates that the serum miR-196a expression level is able to predict the median sur-
vival time of PDAC patients [45,46]. The OS analysis of the up-regulated DEmiRNAs was consistent with the results
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Figure 4. PPI network analysis of the overlapping DEGs

Red nodes, up-regulated genes; green nodes, down-regulated genes.

Figure 5. Overall survival analyses of differentially expressed microRNAs

KM curves depicting OS for PDAC patients with high and low expression of (A) hsa-miR-135b, (B) hsa-miR-221, (C) hsa-miR-21, (D)

hsa-miR-27a, (E) hsa-miR-199b-5p, (F) hsa-miR-143, (G) hsa-miR-196a, (H) hsa-miR-655, (I) hsa-miR-455-3p, and (J) hsa-miR-744.

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

9

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/39/8/BSR
20190625/847153/bsr-2019-0625.pdf by guest on 09 April 2024



Bioscience Reports (2019) 39 BSR20190625
https://doi.org/10.1042/BSR20190625

Figure 6. Prognostic value of seven DEGs in PC patients

Prognostic value of (A) MYC (log-rank P-value = 0.0061), (B) SLC2A1 (log-rank P-value = 4.4e-05), (C) PKM (log-rank P-value =
1.5e-05), (D) PLAU (log-rank P-value = 0.00086), (E) PPARG (log-rank P-value = 0.012), (F) MET (log-rank P-value = 1.2e-07), and

(G) ITGA3 (log-rank P-value = 7.5e-05).

Figure 7. Expression levels of seven hub genes in human pancreatic adenocarcinoma

(A) MYC; (B) SLC2A1; (C) PKM; (D) PLAU; (E) PPARG; (F) MET; and (G) ITGA3. The gray and red boxes represent normal and cancer

tissues, respectively. The expression data are first log2(TPM+1) transformed for differential analysis and the log2FC is defined as

median (Tumor, T)-median(Normal, N). *P<0.05, T vs N. Abbreviations: FC, fold change; TPM, transcript per kilobase million.
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Figure 8. Immunohistochemistry of the five hub genes based on the HPA

(A) Protein levels of MYC in normal tissue (staining: low; intensity: weak; quantity: >75%). (B) Protein levels of MYC in tumor tissue

(staining: medium; intensity: moderate; quantity: 75–25%). (C) Protein levels of SLC2A1 in normal tissue (staining: not detected;

intensity: negative; quantity: negative). (D) Protein levels of SLC2A1 in tumor tissue (staining: high; intensity: strong; quantity:

75–25%). (E) Protein levels of PKM in normal tissue (staining: low; intensity: weak; quantity: 75–25%). (F) Protein levels of PKM in

tumor tissue (staining: high; intensity: strong; quantity: >75%). (G) Protein levels of PLAU in normal tissue (staining: not detected;

intensity: negative; quantity: negative). (H) Protein levels of PLAU in tumor tissue (staining: low; intensity: weak; quantity: >75%). (I)

Protein levels of PPARG in normal tissue (staining: not detected; intensity: negative; quantity: negative). (J) Protein levels of PPARG

in tumor tissue (staining: medium; intensity: moderate; quantity: 75–25%). (K) Protein levels of MET in normal tissue (staining:

medium; intensity: moderate; quantity: >75%). (L) Protein levels of MET in tumor tissue (staining: medium; intensity: moderate;

quantity: >75%). (M) Protein levels of ITGA3 in normal tissue (staining: low; intensity: weak; quantity: >75%). (N) Protein levels of

ITGA3 in tumor tissue (staining: high; intensity: strong; quantity: >75%).
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Figure 9. Correlation analysis of SLC2A1, PKM, PLAU, PPARG, MET, ITGA3, and MYC in pancreatic adenocarcinoma

(A) SLC2A1, (B) PKM, (C) PLAU, (D) PPARG, (E) MET, and (F) ITGA3. TPM, transcript per million. The x-axis represents the TPM of

the hub gene, MYC (log2), the y-axis represents the TPM of the hub genes SLC2A1, PKM, PLAU, PPARG, MET, and ITGA3 (log2).

The expression levels of SLC2A1, PKM, PLAU, PPARG, MET, and ITGA3 were positively correlated with the MYC expression level.

of the present study. Epithelial-to-mesenchymal transition (EMT) has been reported to promote cancer progression.
Harazono et al. (2013) [47] reported that the overexpression of miR-655, which is an EMT-suppressive miRNA that
targets TGFBR2 and ZEB1, not only induced the up-regulation of E-cadherin and the downregulation of typical EMT
inducers but also inhibited the invasion and migration of mesenchymal-like cancer cells. Furthermore, the upregula-
tion of miR-655 inhibits cell invasion in esophageal squamous cell carcinoma [48], triple-negative breast cancer [49],
and hepatocellular carcinoma [50]. MiRNA-455 (miR-455) is recognized as a broadly conserved noncoding RNA that
has been implicated in various cancers. The function of miR-455 has been confirmed in prostate cancer [51], gastric
cancer [52], and oral squamous cancer cells [53]. However, the potential effect of miR-455-3p has rarely been explored
in PDAC. In the current study, the survival analysis demonstrated that the up-regulated expression of miR-455-3p
in PDAC patients was associated with prolonged OS. miR-744 was found to be significantly up-regulated in PC and
increased tumorigenicity by inhibiting multiple negative regulators of the Wnt/β-catenin pathway [54]. Furthermore,
a high level of plasma miR-744 contributed to the poor progression-free survival of nonoperable PC patients [55].
Interestingly, contradictory results regarding the survival analysis in this study demonstrate that further investigation
is needed to confirm the effect of miR-744.

MYC acts as a carcinogenic transcription factor that regulates at least 15% of genes involved in various cellular
processes, including the differentiation, cell proliferation, apoptosis, and metabolism of PC [56,57]. Additionally, the
KRAS/ERK/c-Myc axis is the major driving factor of tumorigenesis in PC. In normal cells, MYC is a transient pro-
tein that is present from 20 to 30 min and is uncontrollable in cancers. Hence, promoting the degradation of MYC
is a promising treatment strategy for PDAC [57]. Metabolic deregulation is a hallmark of human cancers. SLC2A1,
also named GLUT1, transports glucose and its analogs into cells. A previous study indicated that the up-regulation
of SLC2A1 accelerated tumor cell proliferation and metastasis [58]. Pyruvate kinase muscle isozymes (PKMs) play
an important role in adjusting metabolic changes during carcinogenesis. Cheng et al. (2018) [59] revealed that the
increased expression of PKM1 and PKM2 affected cell invasion and migration in PDAC cells. Lu et al. (2018) [60] an-
alyzed the related microarray datasets (GSE15471, GSE62452, GSE102238, GSE62165, and GSE16515) and identified
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Figure 10. Regulatory network of the predicted genes and their target miRNAs

Circle nodes indicate DEmiRNAs. Diamond nodes represent hub genes. Red nodes represent up-regulated DEmiRNAs, and green

nodes represent down-regulated DEmiRNAs. Yellow nodes indicate DEGs.

the top 21 genes with high connectivity degrees; among them, PLAU is a plasminogen activator, ITGA3 plays a vital
function in EMT, and the high expression of PLAU and ITGA3 is related to poor survival, consistent with the current
research. The peroxisome proliferator activated receptors (PPARs), a member of the NR1 (thyroid-like) subfamily of
NR, comprise PPARα (NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3). PPARγ, which is expressed in primary
PDAC and has proven to be of clinical value when used as an independent prognostic factor, is closely related to a
high clinical stage and has a close association with short OS [61]. MET, the receptor of hepatocyte growth factor, was
identified as a cancer stem cell marker in PDAC. Tomihara et al. (2017) [62] also revealed that patients with high
Met expression experienced a markedly shorter survival time than those with low Met expression, consistent with the
current research. Altogether, these data support that the DEmiRNAs and hub genes shed light on the clinical utility
of prognostic values in PDAC.

The combination of a multichip joint analysis and a bioinformatics analysis has a notable advantage in recognizing
and confirming possible biomarkers and targets for malignant tumors, although there are some limitations to the
current study. First, the number of samples in each microarray dataset was relatively small, which may have resulted
in a few false-positive results, and second, these results were not validated; therefore, further mechanistic studies of
larger samples are still needed in the future.

Taken together, the results of the bioinformatics analysis of four GEO microarray datasets of PC indicated that
cancer-related pathways (KEGG Entry: k05200) and the glypican pathway (KEGG Entry: k08107) probably par-
ticipate in the onset and development of PDAC. The high expression of miR-135b, miR-221, miR-21, miR-27a,
miR-199b-5p, miR-143, miR-196a, MYC, SLC2A1, PKM, PLAU, PPARG, and ITGA3, as well as the low expression
of miR-655, miR-455-3p, and miR-744, were observably related to unsatisfactory survival effects in patients with
PDAC. Bioinformatics analyses revealed that different miRNAs exhibited diverse potential functions that were as-
sociated with the DEGs. However, further studies need to be implemented to explore the molecular mechanisms
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and biological functions of the miRNA/target gene axis and to estimate whether they can serve as novel potential
biomarkers or therapeutic targets in PC patients.
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