Correspondence

Letter to the Editor: Comments on "Association between the ICAM-1 gene polymorphism and coronary heart disease risk: a meta-analysis"

Intersection of the section of th

¹Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ²Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ³Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

Correspondence: Morteza Gholami (biologygholami@gmail.com, gholamim@razi.tums.ac.ir)

Mahsa M. Amoli¹ and Farshad Sharifi³
er, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ²Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ³Elderly Health Research Center, lation Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ³Elderly Health Research Center, lation Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ³Elderly Health Research Center, lation Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ³Elderly Health Research Center, lation Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ³Elderly Health Research Center, lation Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ³Elderly Health Research Center, lation Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ³Elderly Health Research Center, lation Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ³Elderly Health Research Center, lation Sciences, Tehran, Iran; ³Elderly Health Research,

method, P-value of HWE test was calculated based on four following steps. (i) We calculated allele frequencies in control group: $K = [(2 \times KK) + KE]/(2 \times total)$, so E should be E = 1 - K. (ii) We calculated expected genotypes based on allele frequencies: $KK = K^2 \times \text{total}$, $KE = (2 \times K \times E) \times \text{total}$, and EE = $EE^2 \times \text{total.}$ (iii) We carried out chi-square test between observed and expected genotypes ($\chi^2 = \Sigma (\text{Ob} - \Sigma)$) Ex)²/Ex). (iv) Finally, results were interpreted based on chi-square routine distribution table (steps (i-iii) are shown in Table 2 and step (iv) in Table 3). Also regarding the study by Sarecka-Hujar et al. [2], the genotyping data were not correctly included in Table 1 of their meta-analysis, GG(EE) and AA(KK) genotypes and allele frequencies were displaced in both case and control groups. Correct data are shown in Table 1. Also, they [2] indicate that 'the distribution of ICAM1 genotypes was not compatible with HWE' which clearly violates inclusion criteria (iv) in Yin et al. [1] meta-analysis.

After deleting studies with deviation from HWE and meta-analysis of included articles, we found completely different results. Genotyping data related to seven finally included articles [2–8], involving 1582 coronary heart disease (CHD) cases and 1715 controls, are shown in Table 1 (shown in bold and black color), and meta-analysis results based on five different genetics models are presented in Table 4 and Figure 1. According to our observation, we did not find a significant result in different and overall ethnicity in any genetic model. Finally, in contrast with Yin et al. [1] study and based on meta-analysis of studies

Received: 06 March 2019 Revised: 29 April 2019 Accepted: 07 May 2019

Accepted Manuscript Online: 09 May 2019 Version of Record published: 17 May 2019

Table 1 Genotyping data and HWE results for studies in Yin et al. [1] meta-analysis

Studies	Case KK	KE	EE	Control KK	KE	EE	P-value	Adjusted <i>P</i> -value	Design
Shang, Q. (2005)	48	50	24	29	33	35	0.002	0.005	Exclude
Li, Y.J. (2010)	47	39	7	52	36	13	0.103	0.180	Include
Lu, F.H. (2006)	61	69	30	45	65	59	0.003	0.008	Exclude
Zhang, S.R. (2006)	111	52	10	69	59	13	0.940	0.973	Include
Rao, D. (2005)	84	41	20	59	19	66	< 0.001	< 0.001	Exclude
Wei, Y.S. (2006)	124	84	17	101	103	26	0.973	0.973	Include
Zhou, Y.L. (2006)	38	45	20	102	62	33	< 0.001	< 0.001	Exclude
Wang, M. (2005)	96	61	8	91	90	18	0.524	0.734	Include
Jiang, H. (2002)	202	226	100	60	66	87	< 0.001	< 0.001	Exclude
Milutinović, A. (2006)	47	72	33	65	109	41	0.695	0.811	Include
Sarecka-Hujar, B. (2009)	61	118	12	73	122	8	< 0.001	< 0.001	Exclude
Mohamed, A. (2010)	20	37	43	2	11	37	0.332	0.516	Include
Luo, J.Y. (2014)	339	278	57	461	273	45	0.587	0.747	Include
Yang, M. (2014)	305	251	48	266	160	42	0.015	0.029	Exclude

Table 2 Results of steps (i-iii) of manual HWE test

Studies	Ob = 0	Observed	genotype	es	Allele frequency		Ex = Expected genotypes			X ²	P-value
	КК	KE	EE	Total	к	Е	KK	KE	EE		
Shang, Q. (2005)	29	33	35	97	0.47	0.53	21.3	48.3	27.3	9.75	0.002
Li, Y.J. (2010)	52	36	13	101	0.69	0.31	48.5	43.0	9.5	2.66	0.103
Lu, F.H. (2006)	45	65	59	169	0.46	0.54	35.5	83.9	49.5	8.59	0.003
Zhang, S.R. (2006)	69	59	13	141	0.70	0.30	68.8	59.4	12.8	0.01	0.940
Rao, D. (2005)	59	19	66	144	0.48	0.52	32.6	71.8	39.6	77.90	<0.001
Wei, Y.S. (2006)	101	103	26	230	0.66	0.34	101.1	102.8	26.1	0.00	0.973
Zhou, Y.L. (2006)	102	62	33	197	0.68	0.32	89.8	86.4	20.8	15.73	<0.001
Wang, M. (2005)	91	90	18	199	0.68	0.32	92.9	86.1	19.9	0.41	0.524
Jiang, H. (2002)	60	66	87	213	0.44	0.56	40.6	104.8	67.6	29.19	<0.001
Milutinović, A. (2006)	65	109	41	215	0.56	0.44	66.4	106.2	42.4	0.15	0.695
Sarecka-Hujar, B. (2009)	73	122	8	203	0.66	0.34	88.5	91.1	23.5	23.37	<0.001
Mohamed, A. (2010)	2	11	37	50	0.15	0.85	1.1	12.8	36.1	0.94	0.332
Luo, J.Y. (2014)	461	273	45	779	0.77	0.23	458.3	278.4	42.3	0.30	0.587
Yang, M. (2014)	266	160	42	468	0.74	0.26	255.8	180.4	31.8	5.98	0.015

Table 3 Chi-square distribution table

P-value	χ^2 (df = 1)	
0.995	0.000	
0.975	0.000	
0.20	1.642	
0.10	2.706	
0.05	3.841	
0.025	5.024	
0.02	5.412	
0.01	6.635	
0.005	7.879	
0.002	9.550	
0.001	10.828	

Study	Experime Events			ontrol Total	Odds Ratio		OR	95%-CI	Weight (fixed)	Weight (random)
Ethnicity = Chinese					19					
Li YJ, 2010	86	93	88	101			1.81	[0.69; 4.77]	6.0%	11.3%
Zhang SR, 2006	163	173	128	141			1.66	[0.70; 3.90]	7.6%	12.5%
Wei YS, 2006	208	225	204	230	- <u>++ i=</u>	-	1.56	[0.82; 2.96]	13.6%	15.1%
Wang M, 2005	157	165	181	199	- : *		1.95	[0.83; 4.61]	7.6%	12.5%
Luo-JY, 2014	617	674	734	779			0.66	[0.44; 1.00]	34.0%	18.0%
Fixed effect model		1330		1450	_		1.07	[0.80; 1.42]	68.8%	
Random effects mode							1.32	[0.79; 2.22]		69.4%
Heterogeneity: $I^2 = 63\%$,	$\tau^2 = 0.2067,$	$\chi_4^2 = 1$	0.69 (<i>p</i> =	0.03)						
Ethnicity = Caucasian										
Milutinovic A, 200	119	152	174	215				[0.51; 1.42]		16.7%
Mohamed A, 2010	57	100	13	50	i : -	30		[1.79; 7.95]		13.8%
Fixed effect model		252		265				[0.90; 2.10]	31.2%	-
Random effects mode		2					1.75	[0.41; 7.52]		30.6%
Heterogeneity: $I^2 = 90\%$,	$\tau^{2} = 1.0043,$	$\chi_1^2 = 1$	0.4 (<i>p</i> <)	0.01)						
Fixed effect model Random effects mode		1582		1715				[0.91; 1.46] [0.89; 2.33]	100.0%	-
Heterogeneity: $l^2 = 73\%$,		$\chi_6^2 = 2$	2.02 (p <	0.01)			1.44	[0.03, 2.55]	-	100.076
			,		0.2 0.5 1 2	5				
(B)				C)		Oc	ds Ra	atio	OR	95%-C
(B)	NI		St	udy		Oc	lds Ra	atio	OR	95%-C
- 1			St	udy nitting l	i YJ, 2010	Oc	lds Ra	atio	1.40 [0.82; 2.38
- 1			Or	udy nitting L nitting 2	hang SR, 2006	Oc	lds Ra	atio	1.40 [0 1.42 [0	0.82; 2.38 0.83; 2.44
- [/			Or	nitting L nitting 2 nitting V	hang SR, 2006 Vei YS, 2006	Oc	lds Ra	atio	1.40 [0 1.42 [0 1.43 [0	0.82; 2.38 0.83; 2.44 0.82; 2.52
- 1			Or Or Or Or	nitting L nitting 2 nitting \ nitting \	Chang SR, 2006 Vei YS, 2006 Vang M, 2005	Oc	lds Ra	atio	1.40 [(1.42 [(1.43 [(1.38 [(0.82; 2.38 0.83; 2.44 0.82; 2.52 0.81; 2.35
- [/			Sti Or Or Or Or Or	nitting L mitting Z mitting V mitting V mitting N	Chang SR, 2006 Vei YS, 2006 Vang M, 2005 Milutinovic A, 2006	Oc		atio	1.40 [0 1.42 [0 1.43 [0 1.38 [0 - 1.62 [0	0.82; 2.38 0.83; 2.44 0.82; 2.52 0.81; 2.35 0.90; 2.88
- 0- - 0-	•		Sti Or Or Or Or Or	nitting L nitting 2 nitting 1 nitting 1 nitting 1 nitting 1	thang SR, 2006 Vei YS, 2006 Vang M, 2005 Milutinovic A, 2006 Mohamed A, 2010	Oc		atio	1.40 [(1.42 [(1.43 [(1.38 [(- 1.62 [(1.18 [(0.82; 2.38 0.83; 2.44 0.82; 2.52 0.81; 2.35 0.90; 2.88 0.79; 1.77
- [/	0 0		Sti Or Or Or Or Or	nitting L nitting 2 nitting 1 nitting 1 nitting 1 nitting 1	Chang SR, 2006 Vei YS, 2006 Vang M, 2005 Milutinovic A, 2006	Oc	lds Ra	atio	1.40 [(1.42 [(1.43 [(1.38 [(- 1.62 [(1.18 [(95%-C 0.82; 2.38 0.83; 2.44 0.82; 2.52 0.81; 2.35 0.90; 2.88 0.79; 1.77 1.07; 2.64
- [/	000		Sti Or Or Or Or Or Or Or	nitting L nitting 2 nitting V nitting N nitting N nitting L	thang SR, 2006 Vei YS, 2006 Vang M, 2005 Milutinovic A, 2006 Mohamed A, 2010	O c		atio	1.40 [(1.42 [(1.43 [(1.38 [(1.62 [(1.18 [(1.68 [0.82; 2.38 0.83; 2.44 0.82; 2.52 0.81; 2.35 0.90; 2.88 0.79; 1.77 1.07; 2.64
0.3 0.1	0	· · · · ·	Sti Or Or Or Or Or Or Or	nitting L nitting 2 nitting V nitting N nitting N nitting L	Chang SR, 2006 Vei YS, 2006 Vang M, 2005 Milutinovic A, 2006 Mohamed A, 2010 uo-JY, 2014	0.5		atio	1.40 [(1.42 [(1.43 [(1.38 [(1.62 [(1.18 [(1.68 [0.82; 2.38 0.83; 2.44 0.82; 2.52 0.81; 2.35 0.90; 2.88 0.79; 1.77

Figure 1. CHD risk associated with the K469E polymorphism for K/E + K/K versus E/E genotype Forest plot of CHD risk associated with the K469E polymorphism for K/E + K/K versus E/E genotype (**A**). Funnel plot (**B**) and forest plot (**C**) related to publication bias and sensitivity analysis.

Table 4 Meta-analysis of CHD risk associated with the K469E polymorphism based on different genetics models

Classification	Allelic (K vs. E) OR [95% Cl]	Q test P-value	K/E + K/K vs. E/E OR [95% Cl]	Q test P-value	KK vs. K/E + E/E OR [95% Cl]	Q test P-value	K/E vs. K/K + E/E OR [95% Cl]	Q test P-value
Chinese	1.23 [0.84–1.78]	0.01	1.32 [0.79–2.22]	0.03	1.25 [0.79–1.98]	0.01	0.89 [0.63–1.26]	0.01
Caucasian	1.79 [0.50–6.44]	0.01	1.75 [0.41–7.52]	0.01	2.14 [0.39–11.7]	0.03	1.26 [0.55–2.93]	0.06
Overall	1.33 [0.95–1.85]	0.01	1.44 [0.89–2.33]	0.01	1.32 [0.89–1.96]	0.01	0.95 [0.71–1.27]	0.01
Classification	K/K vs. E/E OR [95% CI]	Q test P-value	K/K vs. K/E OR [95% Cl]	Q test P-value	K/E vs. E/E OR [95% Cl]	Q test P-value		
Chinese	1.47 [0.75–2.88]	0.01	1.20 [0.78–1.83]	0.01	1.06 [0.78–1.43]	0.40		
Caucasian	2.48 [0.27–22.49]	0.01	1.19 [0.75–1.88]	0.24	1.49 [0.43–5.10]	0.01		
Overall	1.57 [0.88–2.80]	0.01	1.22 [0.86–1.74]	0.03	1.11 [0.86–1.42]	0.01		

in HWE, it can be concluded that ICAM-1 gene polymorphism E469K may not be related to the risk of CHD. More studies could help us to get a definitive result.

Competing Interests

The authors declare that there are no competing interests associated with the manuscript.

Abbreviations

CHD, Coronary heart disease; HWE, Hardy-Weinberg equilibrium.

References

- 1 Yin, D.L., Zhao, X.H., Zhou, Y., Wang, Y., Duan, P., Li, Q.X. et al. (2019) Association between the ICAM-1 gene polymorphism and coronary heart disease risk: a meta-analysis. *Biosci. Rep.* **39**, BSR20180923, https://doi.org/10.1042/BSR20180923
- 2 Sarecka-Hujar, B., Zak, I. and Krauze, J. (2009) Interactions between rs5498 polymorphism in the ICAM1 gene and traditional risk factors influence susceptibility to coronary artery disease. *Clin. Exp. Med.* **9**, 117–124, https://doi.org/10.1007/s10238-008-0022-0
- 3 Luo, J.Y., Ma, Y.T., Xie, X., Yang, Y.N., Li, X.M., Ma, X. et al. (2014) Association of intercellular adhesion molecule-1 gene polymorphism with coronary heart disease. *Mol. Med. Rep.* **10**, 1343–1348, https://doi.org/10.3892/mmr.2014.2360
- 4 Li, Y.J., Han, M., Zheng, B. et al. (2010) The relationship between K469E polymorphism of the intercellular adhesion molecule-1 gene and coronary heart disease [in chinese]. *Chin. J. Gerontol.* 23, 3494–3495
- 5 Zhang, S.R., Xu, L.X., Gao, Q.Q., Zhang, H.Q., Xu, B.S., Lin, J. et al. (2006) The correlation between ICAM-1 gene K469E polymorphism and coronary heart disease. *Chin. J. Med. Gene* 23, 205–207
- 6 Wei, Y.S., Tang, R.G., Yuan, X.H. et al. (2006) Association between polymorphism of intercellular adhesion molecule-1 gene K469E and coronary heart disease. *Chin. J. Immunol.* 22, 1056–1059
- 7 Wang, M., Li, Y., Zhang, P.A., Yang, C., Xiang, P.X., Wei, Y.S. et al. (2005) Study on the intercellular molecule-1 polymorphisms in an Chinese population with myocardial infarction. *Chin. J. Epidemiol.* **26**, 702–706
- 8 Milutinovic, A. and Petrovic, D. (2006) The K469E polymorphism of the intracellular adhesion molecule 1 (ICAM-1) gene is not associated with myocardial infarction in Caucasians with type 2 diabetes. *Folia Biol. (Praha)* **52**, 79–80