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Accumulating evidences have shown microRNAs (miRNAs) play important roles in the pro-
gression of human cancers including colorectal cancer (CRC). However, the biological func-
tion and molecular mechanism of miRNAs in CRC still remains to be further investigated.
Using microarray, we found and confirmed that miR-208a-3p was up-regulated in CRC tis-
sues. Its high expression was statistically associated with distant metastasis and TNM stage.
Functional assays revealed inhibition of miR-208a-3p suppressed proliferation, invasion and
migration, and induced cell apoptosis of CRC cells. Moreover, we identified programmed cell
death protein 4 (PDCD4), a well-known tumor suppressor, is a direct target of miR-208a-3p.
We also found that overexpression of PDCD4 suppressed cell proliferation, invasion, and
migration. Importantly, silencing of PDCD4 efficiently abrogated the promoting effects on
CRC cells proliferation, invasion, and migration caused by inhibition of miR-208a-3p. Our
findings confirmed the oncogenic role of miR-208a-3p via targeting PDCD4 in CRC, identi-
fying miR-208a-3p as a potential diagnosis and therapeutic biomarker for CRC.

Introduction
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and the third leading cause of
cancer-related deaths worldwide [1]. According to statistics, in China, there are approximately 376300
new CRC cases and 191000 deaths in 2015 [2]. Although much progress that has been made in diagnosis
and treatment of CRC in the last decades, CRC remains a highly fatal tumor due to tumor recurrence
and distant metastasis [3]. However, the molecular mechanisms underlying these processes are not well
understood.

MicroRNAs (miRNAs) are a class of small non-coding RNAs, which negatively regulate gene expres-
sion at post-transcription level by binding to the 3′-untranslated region (3′-UTR) of the mRNA of target
genes [4,5]. Recently, aberrant expression of miRNAs has been identified as effective tumor biomarkers
for CRC diagnosis, or (and) key oncogenes (or tumor suppressor) modulation [6–9]. For example, Ge et
al. [10] showed that miR-196a and miR-196b expressions are frequently up-regulated in CRC tissues and
to be associated with clinical stages and survival progression. Xu et al. [11] showed that miR-149 plays
an important role in suppressing tumor initiation and progression of CRC by directly targeting forkhead
box transcription factor FOXM1. Jiao et al. [12] showed that miR-4261 acted as a tumor suppressor and
could cause a significant decrease in tumor cell metastasis in vitro and tumor growth in a nude mouse
xenograft model. These indicate that miRNAs might play a crucial role in the progression of CRC. How-
ever, the understanding of the role and function of miRNAs in the CRC is still in the early stage. Likewise,
the roles of many other aberrantly expressed miRNAs in CRC development are still unknown.

In the present study, we first examined the expression profile of miRNAs in CRC tissues and inves-
tigated the prognostic value of miR-208a-3p in CRC. Moreover, the roles of miR-208a-3p in CRC pro-
gression and the underlying molecular mechanisms for miR-208a-3p to promote CRC progression were
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Table 1 Associations of miR-208a-3p expression with the clinicopathological characteristics of CRC

Clinical parameters All cases n=40 miR-208a-3p expression P-value
High (25) Low (15)

Gender 0.673

Male 15 10 5

Female 25 15 10

Age (years) 0.204

≥60 31 21 10

<60 9 4 5

Location 0.571

Proximal colon 26 14 12

Distal colon and rectum 24 11 13

Tumor size (cm) 0.087

≥5 28 17 11

<5 22 8 14

cTNM stage 0.024*

I + II 26 9 17

III + IV 24 16 8

Distant metastasis 0.038*

Absent 30 16 14

Present 10 9 1

Histological grade 0.414

Well and moderate 32 19 13

Poorly 8 6 2

Lymph node metastasis 0.045*

Present 27 14 13

Absent 13 11 2

*P<0.05.

explored. Our findings suggest that miR-208a-3p may serve a new diagnosis and therapeutic target for CRC treatment.

Materials and methods
Clinical specimens
A total of 40 resected tumor tissues and matched tumor-adjacent tissues were obtained from CRC patients with
pathologically diagnostic criteria between January 2015 and July 2016 in the First Affiliated Hospital of Soochow
University. The clinicopathological data are shown in Table 1. All human samples were collected in accordance with
protocols approved by the Ethics Committee of The First Affiliated Hospital of Soochow University, and all patients
gave their informed consent prior to surgery. After surgical removal, the tissues were immediately frozen using liquid
nitrogen and stored at −80◦C. We confirm that the research has been carried out in accordance with the World
Medical Association Declaration of Helsinki, and that all subjects provided written informed consents.

Microarray analysis
Total RNA was extracted from three tumor tissues and paired normal colorectal tissues using miRNeasy Mini kit
(Qiagen, Valencia, CA, U.S.A.). Purity and quantity of total RNA were evaluated by NanoDrop ND-1000 Spectropho-
tometry (Thermo Scientific, U.S.A.) and Agilent’s 2100 Bioanalyzer. miRNA microarray profiling was performed as
previously described [13]. Data analysis was performed using GeneSpring GX software (Agilent). Finally, the heat
map of the 57 microRNAs most obvious differences was created using a method of hierarchical clustering by Gene-
Spring GX, version 7.3 (Agilent Technologies, California, United States).

Quantitative real-time polymerase chain reaction
Total RNA was prepared using TRIzol reagent (Invitrogen) according to the manufacturer’s protocol. Purity of
RNA was obtained by checking the optical density (OD) 260/280 ratio using a nanodrop spectrophotometer. For
miRNA, cDNA was synthesized using a miScript II RT kit (Qiagen, U.S.A.). The reaction was incubated for 24
h at 37◦C, 5 min at 95◦C to inactivate miScript Reverse Transcriptase Mix, and placed on ice. For mRNA, 1.0
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μg of total RNA was reverse transcribed into cDNA using a PrimeScript RT Reagent Kit (Takara Bio, China) in
a 20-μl reaction system according to the manufacturer’s protocol. Real-time PCR for miRNA and mRNA were
performed on an ABI PRISM 7300 sequence detection system in an SYBR Green I Real-Time PCR kit (Applied
Biosystems; Thermo Fisher Scientific, Inc.). The reaction mixtures were incubated at 94◦C for 15 min followed by
40 cycles of 95◦C for 10 s, 56◦C for 30 s, and 70◦C for 30 s. Relative quantitation was determined by normalization
to U6 and GAPDH. The primers for quantitative real-time polymerase chain reaction (qRT-PCR) analysis were
as follows: miR-208a-3p forward primer: 5′-ATAAGACGAGCAAAAAGCTTGT-3′; miR-208a-3p reverse primer:
5′-GGAACGATACAGAGAAGATTAGC-3′; U6 forward primer: 5′-TGCGGGTGCTCGCTTCGCAGC-3′; U6
reverse primer: 5′-CCAGTGCAGGGTCCGAGGT-3′; programmed cell death protein 4 (PDCD4) forward primer:
5′-AAAGGGAAGGTTGCTGGATA-3′, PDCD4 reverse primer: 5′-CAAAGGAACTGTAGATTGTGTGC-3′;
GAPDH forward primer: 5′-CGGAGTCAACGGATTTGGTCGTAT-3′, GAPDH reverse primer:
5′-AGCCTTCTCCAGGTGGTGAAGAC-3′. The qRT-PCR assays were performed in triplicate and the change in
expression level was calculated using the 2−��C

t method [14].

Cell lines and cultures
The CRC cell lines including HCT116, SW480, SW620, and HT-29 were obtained from the American Type Culture
Collection (ATCC, Manassas, VA). A normal human colon mucosal epithelial cell line NCM460 was purchased from
Incell Corporation (San Antonio, TX, U.S.A.) and grown in F-12/Ham medium (Gibco) supplemented with 20% FBS,
0.29 g/l glutamine, and 1% penicillin/streptomycin. All cells were grown in a humidified atmosphere of 95% air and
5% CO2 at 37◦C.

Cell transfection
The miR-208a-3p mimics, mimics negative control (mimics NC), miR-208a-3p inhibitor, and inhibitor NC were
bought from GenePharm (Shanghai, China). The PDCD4 targeted small interfering RNAs (siRNAs) were synthesized
and purified by RiboBio Co. (Guangzhou, China). In addition, the coding domain sequences of PDCD4 mRNA were
amplified by PCR, and inserted into pcDNA 3.0 vector to enhance its expression (Invitrogen, Grand Island, NY,
U.S.A.), named as pcDNA-PDCD4. HCT116 and SW480 cells (1.0 × 106 per well) were seeded and grown overnight
in six-well plates. The next day, transfection was performed using Lipofectamine 2000 (Invitrogen; Thermo Fisher
Scientific, Inc.) following manufacturer’s instructions. The final concentration of miRNAs was 50 nM and the PDCD4
expression vector was 0.5 μg/ml. The transfected cells were incubated for 6 h, and normal medium was added, then
the cells were harvested for further analysis after 48 h.

Cell viability
The MTT assay was performed to measure cell viability as described before [15]. After transfection, HCT116 and
SW480 cells (3 × 103 per well) were seeded in 96-well plates overnight. At different time points (1, 2, or 3 days), 10
μl MTT solution (5 mg/ml; Sigma, U.S.A.) was added to each well, and the plates were incubated at 37◦C for another
4 h. Then the absorbance rates were measured at 450 nm using a microplate reader (Infinite M200; Tecan, Austria).
All experiments were performed in triplicate.

Cell apoptosis assay
Cells were harvested 48 h after transfection. HCT116 and SW480 cells were harvested and washed twice with PBS,
then the cells were stained with Annexin V and propidium iodide (PI). After incubation at room temperature in the
dark for 15 min, cell apoptosis was analyzed on an FACSCalibur flow cytometer (BD Immunocytometry Systems,
U.S.A.).

Cell invasion assays
Cell transwell assay was performed in a 24-well plate with 8-mm pore size chamber inserts (Corning Incorporated,
Corning, NY, U.S.A.). For the invasion assays, after transfection, 1 × 105 cells/well were placed into the upper chamber
with or without membrane Matrigel (BD Biosciences, Franklin Lakes, San Jose, CA, U.S.A.), respectively. A 500-μl
medium containing 15% FBS was added in the lower chamber. After 36 h of incubation at 37◦C in 5% CO2, the cells
on the upper surface of the membrane were removed, and the cells that had moved to the bottom of the chamber
were fixed with 100% methanol for 30 min and stained with 0.1% Crystal Violet for 30 min. The stained cells were
imaged and counted using an inverted microscope (Olympus Corporation, Tokyo, Japan).
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Wound healing assay
HCT116 and SW480 cells (1 × 106 per well) were plated on to six-well plates and incubated for 24 h at 37◦C. After
24-h transfection, the cells were scrapped with a 10-μl pipette tip and replaced with fresh serum-free medium. Initial
images were acquired as a reference and, after 24 h, secondary images were taken corresponding to the formerly
photographed region. Wound healing was evaluated by measuring the distance of the wounded region with an absence
of cells.

Prediction of miR-208a-3p target mRNAs
TargetScan (http://www.targetscan.org/) and miRanda (http://www.microrna.org) were used to predict the target mR-
NAs of miR-208a-3p. Those consistently identified by the two databases were regarded as potential target mRNAs.

Dual-luciferase reporter assay
For dual-luciferase reporter assays, the 3′-UTR of PDCD4 containing miR-208a-3p binding sites were cloned
into a pmirGLO dual-luciferase vector (Promega Corporation, Madison, WI, U.S.A.) to generate wild-type (WT)
pmirGLO-PDCD4 3′-UTR. The mutant (MUT) 3′-UTR of PDCD4 gene with miR-208a-3p target sites were gen-
erated using a Site-Directed Mutagenesis kit (Agilent Technologies, Inc., Santa Clara, CA, U.S.A.), and cloned into
a pmirGLO dual-luciferase vector (Promega Corporation) to generate MUT pmirGLO-PDCD4 3′-UTR. The WT
pmirGLO-PDCD4 3′-UTR and MUT pmirGLO-PDCD4 3′-UTR were co-transfected with miR-208a-3p mimics, in-
hibitor or negative control (NC) by using Lipofectamine 2000 (Invitrogen; Thermo Fisher Scientific, Inc.). Cells were
collected 48 h after the transfection, and the luciferase activities were analyzed with the Dual-Luiferase Reporter Assay
System (Promega, U.S.A.) according to the manufacturer’s instructions.

Indirect immunofluorescent assay
After 48 h transfection, miR-208a-3p-transfected or NC cells were fixed for 20 min with 4% paraformaldehyde, and
then washed three times with PBS. The cells were subsequently incubated with primary antibody against cleaved
caspase 3 (1:1000, cat no. #9664, Cell Signaling Technology Inc.) in PBS at 4◦C overnight. After washing three times
with PBS, the cells were incubated with FITC–conjugated goat anti-mouse IgG (Sigma, U.S.A.) for 1 h at RT. Finally,
the cells were imaged using a Leica AF6000 fluorescent microscope (Leica AF6000, Wetzlar, Germany).

Western blot analysis
Cells were lysed in the radio immunoprecipitation assay (RIPA) lysis buffer (Beyotime Biotechnology, Shanghai,
China), and the protein concentration was measured by using a BCA Protein Assay kit (Pierce, U.S.A.). Total protein
samples (30μg) were analyzed by 8% SDS/PAGE gel and transferred to polyvinylidene difluoride (PVDF) membranes
(GE Healthcare, Freiburg, DE) by electroblotting, which were blocked with 5% non-fat dried milk in TBS-T and then
probed with rabbit anti-PDCD4 antibody (1:1000, Abcam, U.K.) and mouse anti-β-actin (1:1000, Sigma, U.S.A.).
Then the membranes were incubated with horseradish peroxidase (HRP)–conjugated goat anti-rabbit IgG or goat
anti-mouse IgG (Boster BioTec, China). Membranes were then detected by using the enhanced chemoluminescence
(ECL) system (Clinx Science Instruments, China).

Statistical analysis
Statistical analysis was performed using the SPSS program (version 18.0; SPSS, Chicago, IL, U.S.A.). Data were pre-
sented as mean +− S.D. Student’s t test or one-way ANOVA were used to analyze the difference among/between sample
groups. Pearson’s correlation analysis was used to evaluate the correlations between the expression of miR-208a-3p
and PDCD4. P<0.05 was considered as statistically significant.

Results
Identification of miRNAs aberrantly expressed in CRC
In order to better understand the role of miRNAs in CRC progression, we performed miRNAs array on CRC tissues
and corresponding normal tissues. The miRNA microarray identified 32 miRNAs that were up-regulated in CRC
tissues and 25 miRNAs that were down-regulated compared with their matched tumor-adjacent tissues (Figure 1A).
Among them, miR-208a-3p is one of the most significantly up-regulated miRNAs and many studies revealed that
miR-208a-3p promotes tumorigenicity of various human cancers cells [16–19], but in CRC, the expression and pre-
cise function of this miRNA has not been systematically investigated. To confirm the results of the miRNA microarray
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Figure 1. miR-208a-3p was up-regulated in CRC tissues and cell lines

(A) Heat map of miRNA profiles represented the significantly regulated miRNAs. The color code in the heat maps is linear, with

green as the lowest and red as the highest. The miRNAs that were up-regulated were shown in green to red, whereas the miRNAs

that were down-regulated were shown from red to green. (B) miR-208a-3p expression was validated by qRT-PCR in CRC tissues

and matched tumor-adjacent tissues (n=40). P< 0.01 vs. adjacent tissue. (C) miR-208a-3p expression was measured in four CRC

cell lines HCT116, SW480, SW620, and HT-29, and a normal human colon mucosal epithelial cell line NCM460 used as a control

by qRT-PCR. Data represent the mean +− S.D. of three independent experiments. **P < 0.01 vs. NCM460 cells.

analysis, qRT-PCR analysis was used to detect the expression of miR-208a-3p in 40 pairs of fresh CRC tissues and
its adjacent non-tumor tissues. As shown in Figure 1B, miR-208a-3p expression in CRC tissues was clearly was note-
worthy higher than that of the adjacent non-tumor tissues. In addition, miR-208a-3p was also significantly increased
in the four CRC cell lines (HCT116, SW480, SW620, and HT-29) compared with that of normal human colon mu-
cosal epithelial cell line NCM460 (Figure 1C). All data suggest that the alteration in miR-208a-3p expressions may be
involved in the carcinogenesis of CRC.

To determine the clinical values of miR-208a-3p, we used the mean expression level of miR-208a-3p as a cut-off
value to divide 40 CRC patients into two groups: miR-208a-3p high expression group and miR-208a-3p low expression
group. The relationship between miR-208a-3p expression and clinicpathological features was summarized in Table
1. We found that the high miR-208a-3p expression was associated with distant metastasis, lymph node metastasis,
and TNM stage. However, there was no significant association between patients’ gender, age, location, tumor size,
and histological grade, and the expression patterns of miR-208a-3p. These results highlighted the potential role of
miR-208-3p as a novel diagnosis biomarker.

Inhibition of miR-208a-3p suppressed cell proliferation and promoted cell
apoptosis
To explore the biological functions of miR-208a-3p in CRC cell lines, HCT116 and SW480 cells which have the highest
miR-208a-3p level among the four CRC cell lines, were transfected with the miR-208a-3p inhibitor or inhibitor-NC
to induce down-regulation of miR-208a-3p expression. As shown in Figure 2A, the expression level of miR-208a-3p
in both HCT116 and SW480 cells was significantly decreased after transfection. The effect of miR-208-3p inhibi-
tion on cell proliferation was detected by MTT assay. The results showed that cell proliferation was significantly
reduced in miR-208a-3p inhibitor group compared with that in control group (Figure 2B,C). Next, we studied the
potential mechanism underlying the effect of miR-208a-3p on the CRC cell growth; we used flow cytometry to an-
alyze cell apoptosis in HCT116 and SW480 cells. It was found that miR-208a-3p inhibition markedly promoted the
apoptosis portion compared with that in control group (Figure 2D). Finally, the expression of apoptosis related pro-
tein, cleaved-caspase 3 was measured by indirect immunofluorescent assay (IFA). The results of IFA showed that
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Figure 2. Inhibition of miR-208a-3p suppressed cell proliferation and promoted cell apoptosis

HCT116 and SW480 cells were transfected with the miR-208a-3p inhibitor or inhibitor-NC for 48 h, and then cells were used for

analysis. (A) Transfection efficiency was assessed by qRT-PCR. (B,C) Cell proliferation was measured by MTT assay at indicated

times in HCT116 and SW480 cells. (D) The apoptosis was detected by flow cytometry. (E) The expression of cleaved caspase 3

was measured by IFA. Data represent the mean +− S.D. of three independent experiments. *P < 0.05, **P< 0.01 vs. inhibitor NC.

miR-208a-3p inhibitor obviously promoted the expression of cleaved caspase 3 compared with control group (Figure
2E). These results suggest that miR-208a-3p inhibitor diminished proliferation partially through inducing cell apop-
tosis.

Inhibition of miR-208a-3p suppressed cell invasion and migration
Next, we investigated the effects of miR-208a-3p inhibition on CRC cells invasion and migration ability using tran-
swell assays and wound healing assays. The transwell assay revealed that the invaded cell number was significantly
reduced in miR-208a-3p inhibitor-transfected cells compared with cells transfected with the NCs (Figure 3A,B). The
wound healing assay showed that miR-208a-3p inhibition clearly decreased the cell migration distance compared
with cells transfected with the NCs (Figure 3C,D). These data suggest that miR-208a-3p down-regulation acted as a
repressor in colorectal cell migration and invasion.

miR-208a-3p directly targets PDCD4 and inhibits its expression
To illustrate the molecular mechanism by which miR-208a-3p functions in CRC, we searched for candidate genes
of miR-208a-3p using TargetScan and miRanda databases. Bioinformatics analyses predicted that PDCD4 was a po-
tential target of miR-208a-3p (Figure 4A). Furthermore, qRT-PCR assay was performed to measure the expression
levels of PDCD4 in CRC tissues. As shown in Figure 4B, PDCD4 expression level was markedly down-regulated in
CRC tissues compared with the matched tumor-adjacent tissues. The correlation between the expression levels of
miR-208a-3p and PDCD4 was examined in CRC tissues. Pearson’s correlation analysis suggested that the expression
of PDCD4 was significantly inversely correlated with miR-208a-3p expression in CRC tissues (r = −0.7021, P<0.01,
Figure 4C). To further verify this direct targeting, we overexpressed/knocked down miR-208a-3p in HCT116 and
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Figure 3. Inhibition of miR-208a-3p suppressed cell invasion and migration

HCT116 and SW480 cells were transfected with the miR-208a-3p inhibitor or inhibitor-NC for 48 h, and then cells were used for

analysis. (A,B) Transwell assay was used to evaluate the effect of miR-208a-3p expression on the invasion ability of CRC cells.

(C,D) Wound healing assay was used to evaluate the effect of miR-208a-3p expression on cell migration capacity. Data represent

the mean +− S.D. of three independent experiments. **P< 0.01 vs. inhibitor NC.

Figure 4. PDCD4 was a direct target of miR-208a-3p

(A) Schematic of the PDCD4 3′-UTR containing the miR-208a-3p binding sites. (B) The relative expression level of PDCD4 was

detected by qRT-PCR in CRC tissues and matched tumor-adjacent tissues (n=40). P < 0.01 vs. Normal group. (C) The negative

correlation between PDCD4 and miR-208a-3p levels in CRC tissues (r = −0.7021, P<0.01). Then, HCT116 and SW480 cells were

transfected with the miR-208a-3p mimics, mimics-NC, miR-208a-3p inhibitor, or inhibitor-NC for 48 h, and then cells were used

for analysis. (D) The expression levels of PDCD4 protein was determined by Western blot. (E) Relative luciferase activity in HCT116

cells co-transfection with WT or MUT 3′-UTR PDCD4 reporter plasmids and miR-208a-3p or miR-NC. All data are expressed as

the mean +− S.D. **P<0.01 vs. mimics NC, ##P<0.01 vs. inhibitor NC.
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Figure 5. Overexpression of PDCD4 suppressed cell proliferation, invasion, and migration

HCT116 and SW480 cells were transfected with the pcDNA-PDCD4 vector or pcDNA3.1 vector for 48 h, and then cells were used

for analysis. (A,B) Transfection efficiency was assessed by Western blot. Data represent the mean +− S.D. of three independent

experiments. **P< 0.01 vs. Blank group (non-treated cells) and pcDNA-vector. (C,D) Cell proliferation was measured by MTT assay

at indicated times in HCT116 and SW480 cells. (E,F) Transwell assay was used to evaluate the effect of PDCD4 expression on

the invasive ability of CRC cells. (G,H) Wound healing assay was used to evaluate the effect of miR-208a-3p expression on cell

migration capacity. Data represent the mean +− S.D. of three independent experiments. *P<0.05, **P< 0.01 vs. pcDNA-vector.

SW480 cells and examined the protein levels of PDCD4 using Western blot analysis. We found that up-regulation
of miR-208a-3p expression led to a significant decrease in PDCD4 protein level, whereas inhibition of miR-208a-3p
resulted in an obvious elevation (Figure 4D).

To further evaluate whether the PDCD4 is the direct target of miR-208a-3p, we conducted a luciferase reporter
assay. The reporter assay showed that miR-208a-3p mimics significantly decreased the luciferase activity of PDCD4
3′-UTR (WT), whereas miR-208a-3p inhibitor increased the luciferase activity (Figure 4E). However, the luciferase
activity of the reporter containing the mutant binding site has no obvious change (Figure 4E). These data demon-
strated that PDCD4 was a functional target of miR-208a-3p in CRC.

Overexpression of PDCD4 suppressed CRC cell proliferation and
metastasis
Previous study showed that PDCD4 acted as a potent tumor suppressor in various tumors. For example, PDCD4 was
found to suppress cancer cell migration through degrading the collagenous substrates in pancreatic tumor [20]. A
previous research also showed that overexpression of PDCD4 has been shown to inhibit cell growth and invasion
in breast cancer cells [21]. Therefore, we investigated whether the up-regulation of PDCD4 expression has a similar
function in CRC. Then pcDNA-PDCD4 or NC plasmids were transfected into HCT116 and SW480 cells. As shown
in Figure 5A,B, PDCD4 protein levels were markedly increased in pcDNA-PDCD4-transfected cells than that in cells
transfected with the NC or the vector only. Using the transfected cells, MTT, transwell, and wound healing assays
were performed to examine the effects of PDCD4 on cell proliferation and invasion. The MTT assay revealed that
cell proliferation was significantly inhibited in pcDNA-PDCD4-transfected cells compared with cells transfected with
pcDNA-vector (Figure 5C,D). The transwell assay showed that the invaded cell number was significantly reduced
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Figure 6. Down-regulation of miR-208a-3p inhibited CRC cell proliferation, invasion and induced cell apoptosis by targeting

PDCD4

HCT116 and SW480 cells were co-transfected with the si-PDCD4 and/or miR-208a-3p inhibitor for 48 h, and then cells were used

for analysis. (A,B) The protein expression of PDCD4 was measured by Western blot. (C) Cell proliferation was measured by MTT

assay at indicated times in HCT116 and SW480 cells. (D) The apoptosis was detected by flow cytometry. (E) Transwell assay was

used to evaluate the invasive ability of CRC cells. (F) Wound healing assay was used to evaluate the cell migration capacity. Data

represent the mean +− S.D. of three independent experiments. *P<0.05, **P<0.01 vs. inhibitor NC; ##P<0.01 vs. miR-208a-3p

inhibitor.

in pcDNA-PDCD4-transfected cells compared with cells transfected with pcDNA-vector (Figure 5E,F). The wound
healing assay revealed that PDCD4 overexpression clearly decreased the cell migration distance compared with cells
transfected with pcDNA-vector (Figure 5G,H). These data suggest that PDCD4 acted as a tumor suppressor in CRC
cells.

Down-regulation of miR-208a-3p inhibited CRC cell proliferation,
invasion and induced cell apoptosis by targeting PDCD4
Then the question was raised: could miR-208a-3p affect the cellular functions of CRC cells by regulating the ex-
pression of PDCD4? To answer it, we knocked down PDCD4 by siRNA (si-PDCD4) in HCT116 and SW480
cells. Compared with control siRNA transfection, si-PDCD4 transfection significantly decreased the expression of
PDCD4 protein in both HCT116 and SW480 cells (Figure 6A). Meanwhile, the miR-208a-3p inhibitor-induced
increase in PDCD4 protein expression levels was significantly inhibited by transfection with si-PDCD4 (Figure
6B). Moreover, the results showed that the regulation of cell proliferation, apoptosis, migration, and invasion by
miR-208a-3p inhibitor transfection were reversed by co-transfection of si-PDCD4 (Figure 6C–F). These data sug-
gest that miR-208a-3p exerts its oncogenic role in CRC at least partially through targeting PDCD4.

Overexpression of miR-208a-3p promoted CRC cell proliferation and
invasion by down-regulating PDCD4
Next, we investigated whether overexpression of miR-208a-3p promoted CRC cell proliferation and invasion by
down-regulating PDCD4. To verify our hypothesis, SW620 and HT29 cells which have the lowest miR-208a-3p level
among the four CRC cell lines, were co-transfected with the miR-208a-3p mimics and pcDNA-PDCD4. As shown
in Figure 7A, the expression level of PDCD4 was significantly decreased in miR-208a-3p mimics transfected SW620
and HT29 cells, however, after co-transfecting with pcDNA-PDCD4 plasmid the level of PDCD4 significantly in-
creased. Moreover, we found that miR-208a-3p overexpression significantly promoted the cell proliferation, invasion,
and migration in both SW620 and HT29 cells, compared with mimics NC group. However, these promoting effects
of miR-208a-3p were obviously reversed by PDCD4 overexpression (Figure 7B–D). Collectively, these results sug-
gest that miR-208a-3p regulated CRC cells proliferation, invasion, and migration at least partially through targeting
PDCD4.
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Figure 7. Overexpression of miR-208a-3p promoted CRC cell proliferation and invasion by down-regulating PDCD4

SW620 and HT29 cells were co-transfected with the miR-208a-3p mimics and pcDNA-PDCD4 for 48 h, and then cells were used

for analysis. (A) The protein expression of PDCD4 was measured by Western blot. (B) Cell viability was measured by MTT assay in

SW620 and HT29 cells. (C) Transwell assay was used to evaluate the invasive ability of CRC cells. (D) Wound healing assay was

used to evaluate the cell migration capacity. Data represent the mean +− S.D. of three independent experiments. *P<0.05, **P<0.01

vs. mimics NC; ##P<0.01 vs. miR-208a-3p mimics.

Discussion
In the present study, miR-208a-3p was up-regulated in human CRC tissues and cell lines, and associated with distant
lymph node metastasis and TNM stage of CRC. Further experiments indicated that the effect of miR-208a-3p on CRC
cell proliferation, invasion, and migration was mediated by targeting PDCD4. Our results provided new potential
biomarkers and targets for CRC diagnosis and treatment.

Accumulating evidence has suggested that miRNAs play a crucial role in the development and progression of CRC
with potential diagnostic, prognostic, and therapeutic values in clinical [22,23]. For example, Wang et al. [24] showed
that miR-375 was frequently down-regulated in human CRC cell lines and tissues, and overexpression of miR-375
suppressed CRC cell proliferation and colony formation and led to cell cycle arrest. Li et al. [25] demonstrated that
miR-139-5p inhibited epithelial–mesenchymal transition (EMT) and enhanced the chemotherapeutic sensitivity of
CRC cells by regulating BCL2 expression. In this study, we screened the miRNA expression pattern in CRC tissues and
found miR-208a-3p was a CRC-associated miRNA. Further studies demonstrated that miR-208a-3p was commonly
up-regulated in CRC tumor tissues and cell lines. Importantly, miR-208a-3p expression was significantly correlated
with distant metastasis, lymph node metastasis, and TNM stage. These results indicated that aberrant expression of
miR-208a-3p may be crucial for CRC progression. It has been reported that miR-208-3p could participate in the tu-
morigenesis of pancreatic cancer (PC), human esophageal squamous cell carcinoma (ESCC), and hepatocellular car-
cinoma (HCC) [16–18]. However, its biological role and molecular mechanism in CRC remains poorly understood.
We next investigated the function and potential mechanisms underlying the effect of miR-208a-3p on regulating
the biological behavior of CRC cells. Inhibition of miR-208a-3p can suppress CRC cell proliferation, migration and
invasion, and induced cell apoptosis, which revealed the crucial role of miR-208-3p in CRC.

PDCD4 is a key protein involved in programmed cell death and has been known as a novel tumor suppressor in
several human cancers [20,26,27]. For example, Lankat-Buttgereit et al. [28] showed that PDCD4 basically exerts its
function through repressing cell cycle progression at G1 stage and PDCD4 loss results in cell cycle acceleration in
ovarian cancer. It also has been demonstrated that PDCD4 can induce the expression of cyclin-dependent kinase in-
hibitors, p21 and p27, resulting in the inhibition of cell cycle progression [29,30]. To date, a set of miRNAs have been
confirmed to target PDCD4, such as miR-21 in cervical cancer [31], miR-183-5p in breast cancer [32], and miR-96
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in glioma cancer [33]. Although the correlation of miR-208a-3p and PDCD4 has been demonstrated [34], the exact
mechanisms of miR-208a-3p/PDCD4 in CRC remain unknown yet. In our study, we demonstrated that PDCD4 was
down-regulated in CRC tissues and directly regulated by miR-208a-3p in CRC tissues and cells. Moreover, PDCD4
overexpression significantly inhibited proliferation, invasion, and migration in CRC cells. More importantly, PDCD4
overexpression (inhibition) abrogated the effects of miR-208a-3p mimics (inhibitor), suggesting that PDCD4 medi-
ated, at least in part, the oncogenic effect of miR-208a-3p in CRC cells.

In conclusion, we have provided new evidence suggesting that miR-208a-3p functions as an oncogene by targeting
PDCD4 in CRC. Our findings suggest that miR-208a-3p/PDCD4 could be an effective target for the development of
effective CRC therapies.
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