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Background H19 polymorphisms have been reported to correlate with an increased sus-
ceptibility to a few types of cancers, although their role in neuroblastoma has not yet been
clarified.
Materials and methods We investigated the association between three single polymor-

phisms (rs2839698 G>A, rs3024270 C>G, and rs217727 G>A) and neuroblastoma sus-
ceptibility in Chinese Han populations. Three hundred ninety-three neuroblastoma patients
and 812 healthy controls were enrolled from the Henan and Guangdong provinces. Odds
ratios (ORs) and 95% confidence intervals (CIs) were used to determine the strength of the
association of interest.
Results Separated and combined analyses revealed no associations of the rs2839698

G>A, rs3024270 C>G or rs217727 G>A polymorphisms and neuroblastoma susceptibility.
In the stratification analysis, female children with rs3024270 GG genotypes had an increased
neuroblastoma risk (adjusted OR = 1.61, 95% CI = 1.04–2.50, P=0.032).
Conclusion The rs3024270 GG genotype might contribute to an increased neuroblastoma
susceptibility in female Chinese children.

Background
Neuroblastoma is the most common malignant extracranial solid tumor in children, accounting for 7–10%
of all tumors in children [1,2]. Neuroblastoma originates from neural crest precursor cells of the sympa-
thetic nervous system and is mainly located on the adrenal medulla, paraspinal ganglia, and sympathetic
trunk [3–5]. The outcome of neuroblastoma is affected by several factors, such as age of onset, pathol-
ogy subtypes, International Neuroblastoma Staging System (INSS) stage, c-Myc status, DNA ploidy, and
structural chromosomal aberrations [3–5].

Genetic factors are critically important in neuroblastoma tumorigenesis. Approximately 1% of patients
have a family history of neuroblastoma, and these patients are carriers of certain gene mutations. For
example, the anaplastic lymphoma kinase (ALK) gene and paired-like homeobox 2b (PHOX2B) gene
have been identified as predisposing factors to familial neuroblastoma [6–8]. Evidence from genome-wide
association studies (GWASs) of sporadic cases also suggests that genetic factors might be involved in the
pathogenesis of neuroblastoma [9,10]. These studies indicate an important role of genetic characteristics
in the tumorigenesis of neuroblastoma. Single nucleotide polymorphisms (SNPs) or other gene mutations,
such as rare mutations in the ALK gene at locus 2p23 for familial neuroblastoma, common SNPs in cancer
susceptibility candidate 15 (CASC15) and neuroblastoma-associated transcript 1 (NBAT1) at 6p22 were
found to be involved in tumor initiation of neuroblastoma, and the bos taurus BRCA1 associated RING
domain 1 (BARD1) gene at 2q35, IL3, cholesterol-lowering factor (CFL), and lens intrinsic membrane
(LIM) domain only 1 (LMO1) were found to be related to the risk of sporadic neuroblastoma.
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H19 is a paternally imprinted gene that is located at chromosome 11p15.5 near the IGF2 gene. The expression of
H19 peaks during embryogenesis and is down-regulated after birth in most tissues. Increasing evidence has revealed
that H19 plays a critical role during tumorigenesis. H19 has been found to re-express during tumorigenesis in many
kinds of tumors, such as breast cancer [11], lung cancer [12], invasive cervical carcinomas [13], esophageal cancer [14],
and bladder cancer [15]. Smoking, exposure to the carcinogens, nitrosamine and diethylnitrosamine, and hypoxia are
risk factors for H19 overexpression [16]. The up-regulation of H19 enhances resistance of cancer cells to stress, such
as genome destabilization and hypoxia [17].

Recently, a GWAS revealed that SNPs in H19 are associated with cancer susceptibility [18], and the correlation
of H19 polymorphisms and cancers were confirmed in subsequent studies [19–21]. A study on colorectal cancer
reported that the SNPs rs2839698 G>A, rs3024270 C>G, and rs217727 G>A, which are located at exon 1, exon
5, and intron region of the H19 gene, respectively, have effects on the secondary structure of H19 [20], and these
SNPs were found to be associated with an increased cancer risk in Chinese populations [20,22–27]. However, few
studies have focused on neuroblastoma. Herein, we performed a two-center hospital-based case–control study using
data from 393 neuroblastoma patients and 812 control subjects to evaluate the association between the H19 gene
rs2839698, rs3024270, and rs217727 polymorphisms and neuroblastoma risk in Chinese children.

Materials and methods
Study subjects
The subjects enrolled were described in previous studies [28,29]. Briefly, a total of 393 neuroblastoma patients and
812 cancer-free controls from two provinces of China were enrolled in the present study. Two hundred seventy-five
neuroblastoma patients and 531 controls were recruited from the Guangzhou Women and Children’s Medical Center
in South China, and 118 neuroblastoma patients and 281 controls were recruited from the Henan province in North
China [30,31]. The diagnosis and clinical stages of neuroblastoma were made according to the INSS [32]. The healthy
controls had no history of malignancies and were matched to the neuroblastoma cases in terms of age (+−5 years),
sex, ethnicity, and geographical region [33–35]. Both neuroblastoma patients and controls were unrelated Chinese
Han individuals living in the Guangdong and Henan provinces of China. The present study was approved by the
Institutional Review Board of each hospital, and written informed consent was obtained from the participants’ parents
or legal guardians.

SNP selection and genotyping
The dbSNP database and SNPinfo were used for selecting candidate SNPs. Three widely investigated SNPs (rs2839698,
rs3024270, and rs217727) in the H19 gene were studied. SNP genotyping was performed by the TaqMan real-time
PCR system as previously reported [36–40]. To validate the accuracy of the genotyping results from TaqMan real-time
PCR, approximately 10% of the samples were randomly selected as quality control samples and genotyped using
sequencing. The concordance for the quality control samples was 100%.

Statistical analysis
All statistical tests were two-sided, with a significance level of P<0.05. All statistical analyses were performed using
SAS software (version 9.4; SAS Institute, Cary, NC, U.S.A.). Two-sided χ2 tests were used to analyze the demographic
data and genotype frequencies. The Hardy–Weinberg equilibrium was assessed by goodness-of-χ2 test. Odds ratios
(ORs) and 95% confidence intervals (CIs) were calculated to evaluate associations between H19 polymorphisms and
neuroblastoma susceptibility.

Results
Associations between H19 gene polymorphisms and neuroblastoma
susceptibility
In the present study, 392 patients and 810 controls were successfully genotyped. The genotype frequencies of all
the three selected SNPs were in Hardy–Weinberg equilibrium (rs2839698, P=0.090; rs3024270, P=0.159; rs217727,
P=0.470). The genotype frequencies of the three SNPs in the patients and controls are listed in Table 1. None of the
three SNPs were found to be associated with an increased neuroblastoma risk in the separate analyses of each SNP or
in the combined analysis on protective genotypes of the three SNPs.
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Table 1 Logistic regression analysis for the associations between H19 polymorphisms and neuroblastoma risk

Genotype Cases (n=393)
Controls
(n=810) P1

Crude OR (95%
CI) P

Adjusted OR
(95% CI)2 P2

rs2839698 (HWE = 0.090)

GG 179 (45.55) 365 (45.06) 1.00 1.00

AG 175 (44.53) 373 (46.05) 0.96 (0.74–1.23) 0.732 0.96 (0.75–1.24) 0.754

AA 39 (9.92) 72 (8.89) 1.11 (0.72–1.70) 0.650 1.11 (0.73–1.71) 0.624

Additive 0.797 1.01 (0.84–1.22) 0.890 1.02 (0.84–1.23) 0.858

Dominant 214 (54.45) 445 (54.94) 0.874 0.98 (0.77–1.25) 0.874 0.99 (0.77–1.26) 0.901

Recessive 354 (90.08) 738 (91.11) 0.561 1.13 (0.75–1.70) 0.561 1.14 (0.75–1.71) 0.541

rs3024270 (HWE = 0.159)

CC 99 (25.19) 213 (26.30) 1.00 1.00

CG 203 (51.65) 424 (52.35) 1.03 (0.77–1.38) 0.842 1.03 (0.77–1.38) 0.829

GG 91 (23.16) 173 (21.36) 1.13 (0.80–1.60) 0.486 1.14 (0.80–1.61) 0.472

Additive 0.764 1.06 (0.89–1.27) 0.494 1.07 (0.89–1.27) 0.480

Dominant 294 (74.81) 597 (73.70) 0.682 1.06 (0.80–1.40) 0.683 1.06 (0.81–1.40) 0.667

Recessive 302 (76.84) 637 (78.64) 0.480 1.11 (0.83–1.48) 0.480 1.11 (0.83–1.48) 0.470

rs217727 (HWE = 0.470)

GG 186 (47.33) 382 (47.16) 1.00 1.00

AG 164 (41.73) 342 (42.22) 0.99 (0.76–1.27) 0.907 0.98 (0.76–1.27) 0.888

AA 43 (10.94) 86 (10.62) 1.03 (0.68–1.54) 0.898 1.02 (0.68–1.53) 0.922

Additive 0.979 1.00 (0.84–1.20) 0.970 1.00 (0.84–1.20) 0.997

Dominant 207 (52.67) 428 (52.84) 0.956 0.99 (0.78–1.26) 0.956 0.99 (0.78–1.26) 0.932

Recessive 350 (89.06) 724 (89.38) 0.865 1.03 (0.70–1.52) 0.864 1.03 (0.70–1.52) 0.884

Combined effect of protective genotypes

0 258 (65.65) 551 (68.02) 1.00 1.00

1-3 135 (34.35) 259 (31.98) 0.410 1.11 (0.86–1.44) 0.410 1.11 (0.86–1.44) 0.411

1χ2 test for genotype distributions between neuroblastoma patients and cancer-free controls.
2Adjusted for age and sex.

Stratification analysis
We next analyzed the association of the three SNPs with neuroblastoma risk by stratification analyses (Table 2). Strat-
ification analyses were conducted based on age (≤18 months, >18 months), sex (female, male), site of origin (adrenal
gland, retroperitoneal, mediastinum, other sites), and clinical stage (I+II+4s, III+IV). We found that the increased
risk associated with the rs3024270 GG variant genotype was more pronounced in females (adjusted OR = 1.61, 95%
CI = 1.04–2.50, P=0.032). Regarding the risk genotypes, no significant associations between the 1–3 risk genotypes
and neuroblastoma risk were found.

Discussion
In the present study, we found the H19 gene rs3024270 C>G polymorphism was associated with neuroblastoma
susceptibility in females. This is the first study to report an association between the rs3024270 GG genotype and an
increased neuroblastoma risk in female Chinese children in a recessive model.

The association between these SNPs and cancer risk has been studied, while evidence of rs3024270 GG genotype
and cancer risk are relatively limited. A study by Li et al. [20] reported an increased risk of colorectal cancer in a
Chinese population with the rs3024270 GG genotype. A meta-analysis conducted by Lv et al. [21] investigated the
association between long noncoding RNA polymorphisms and cancer risk, and the rs3024270 C>G polymorphism
was reported to be correlated with an overall cancer risk. However, another study found a decreased risk of invasive
bladder cancer in patients with the rs3024270 CC genotype in the Chinese population [41]. Besides the rs3024270
C>G polymorphism, a series of studies reported the role of the rs2839698 G>A polymorphism in platinum-based
chemotherapy response in lung cancer [42], colorectal cancer [20], gastric cancer [24] and rheumatoid arthritis [22].
The rs217727 G>A polymorphism was also reported to be associated with a risk of oral squamous cell carcinoma
[19], osteosarcoma [43], bladder cancer [44], cervical cancer of the squamous carcinomas subtype [20], and breast
cancer [27]. Our study provides new evidence that the rs3024270 C>G polymorphism in the H19 gene might be
involved in the development of neuroblastoma.
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Table 2 Stratification analysis for association between H19 genotypes and neuroblastoma susceptibility

Variables
rs2839698 (pa-
tient/control)

Adjusted
OR1 P1

rs3024270 (pa-
tient/control)

Adjusted
OR1 P1

rs217727 (pa-
tient/control)

Adjusted
OR1 P1

Risk genotypes
(patient/control)

Adjusted
OR1 P1

GG/AG AA (95% CI) CC/CG GG (95% CI) GG/AG AA (95% CI) 0 1-3 (95% CI)

Age, months

≤18 110/276 15/29 1.29
(0.66–2.50)

0.452 95/240 31/65 1.21
(0.74–1.97)

0.454 116/270 10/35 0.67
(0.32–1.39)

0.278 85/205 41/100 0.99
(0.64–1.54)

0.962

>18 243/462 24/43 1.06
(0.63–1.79)

0.830 207/397 60/108 1.07
(0.75–1.52)

0.727 234/454 33/51 1.25
(0.79–2.00)

0.342 173/346 94/159 1.18
(0.86–1.62)

0.297

Sex

Female 148/317 20/24 1.79
(0.96–3.34)

0.068 123/278 45/63 1.61
(1.04–2.50)

0.032 152/302 16/39 0.83
(0.45–1.53)

0.546 107/239 61/102 1.35
(0.91–1.99)

0.137

Male 206/421 19/48 0.83
(0.48–1.45)

0.516 179/359 46/110 0.85
(0.57–1.25)

0.398 198/422 27/47 1.22
(0.74–2.02)

0.442 151/312 74/157 0.98
(0.70–1.37)

0.899

Sites of origin

Adrenal gland 140/738 13/72 0.97
(0.52–1.80)

0.915 115/637 38/173 1.23
(0.82–1.84)

0.327 133/724 20/86 1.24
(0.73–2.08)

0.430 94/551 59/259 1.33
(0.93–1.90)

0.122

Retroperitoneal 79/738 8/72 1.01
(0.47–2.18)

0.982 67/637 20/173 1.08
(0.64–1.83)

0.776 82/724 5/86 0.52
(0.21–1.32)

0.169 62/551 25/259 0.85
(0.52–1.39)

0.516

Mediastinum 98/738 11/72 1.16
(0.59–2.27)

0.661 89/637 20/173 0.84
(0.50–1.40)

0.493 95/724 14/86 1.25
(0.68–2.28)

0.478 75/551 34/259 0.97
(0.63–1.50)

0.901

Others 30/738 6/72 2.00
(0.81–4.99)

0.135 24/637 12/173 1.82
(0.89–3.73)

0.100 34/724 2/86 0.50
(0.12–2.13)

0.350 22/551 14/259 1.35
(0.68–2.69)

0.391

Clinical stage

I+II+4s 146/738 16/72 1.13
(0.64–2.00)

0.677 126/637 36/173 1.06
(0.70–1.59)

0.792 143/724 19/86 1.13
(0.66–1.91)

0.661 107/551 55/259 1.10
(0.77–1.57)

0.602

III+IV 190/738 21/72 1.17
(0.70–1.95)

0.561 160/637 51/173 1.19
(0.83–1.71)

0.335 187/724 24/86 1.06
(0.65–1.71)

0.821 135/551 76/259 1.20
(0.87–1.65)

0.259

1Adjusted for age and sex.
Values in bold inidicate P<0.05.
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SNPs studied in our research are all located in the H19 gene and were reported to have an impact on the folding
structure of H19 [20], which may affect the expression or functions of H19. The role of H19 in cancers has been widely
studied. The H19 gene is an imprinted oncofetal gene that is located on chromosome 11p15.5 near the IGF2 gene locus
[45]. Wada et al. [46] reported a maintenance of normal imprinting of the H19 and IGF2 genes in neuroblastoma.
The expression of H19 was significantly up-regulated in hepatic metastases of several types of cancers [47]. Growing
evidence indicates that H19 is involved in both the proliferation and differentiation processes of cancer cells. H19
promotes cell cycle progression in breast cancer, while the depletion of H19 RNA arrests breast cancer cells in the
pre-S-phase of the cell cycle [48]. The knockdown of H19 inhibits the growth of HCC and gastric cancer cells under
hypoxic recovery conditions [49].

The mechanisms by which these SNPs regulate H19 expression and are involved in cancer are unclear. A possi-
ble explanation is that SNPs may affect H19 gene expression and function. It was reported that rs3024270 C>G,
rs2839698 G>A, and rs217727 G>A dramatically altered the secondary structure of H19, and the rs3024270 GG
genotype was associated with an increased risk of colorectal cancer in a Chinese population. H19 was found to act
as a primary microRNA precursor, and H19 expression regulated specific mRNAs via post transcription [53]. Liang
et al. [54] reported that lncRNA H19 modulated the expression of multiple genes involved in colorectal cancer by
acting as a competing endogenous RNA, and H19 was also reported to produce antisense 91H, which increased the
stability in cancer cells, leading to the accumulation of 91H in cancer cell lines and breast cancer tissues [55]. SNPs
located in the introns and exons of the H19 gene might change the promoter activity and function of H19 by the
alteration of target miRNAs, such as hsa-miR-24-1-5p, hsa-miR-4486, and hsa-miR-566 [55]. Additionally, H19 was
also found to interact with other tumor suppressor genes, such as p53 and c-Myc. Increased expression of H19 during
hypoxic conditions was found in cell lines with a mutant p53 gene but not in cells with wild-type p53 gene [50], and
overexpression of H19 partially suppressed p53 activation in gastric cancer cells [51]. H19 expression was activated
by c-Myc via direct binding to the regulatory region of the H19 gene [52].

In our study, we found the GG allele pattern in 45/63 female NB patients and in 46/110 male NB patients. In the
stratification analysis based on sex, disequilibrium of the G allele and the C allele was found. H19 is an imprinted
gene that is expressed from the maternal chromosome, but not the paternal chromosome [45]. This fact might partly
explain the apparent disequilibrium of the analyzed SNPs. In the stratified analysis, no relation of H19 SNPs with
the susceptibility of neuroblastoma patients, the origin of the tumor and the clinical stage of the tumor were found.
In other studies, no relationship between rs3024270 and the susceptibility of cancer was found in stratified analyses,
including age, sex, smoking, drinking etc. Further studies with larger sample sizes of patients with neuroblastoma
and other tumors may provide more information.

There are several limitations of this case–control study. First, a potential selection bias would be induced because
the enrollment of cases and controls occurred in a hospital. Therefore, further studies with larger populations would
be of great value. Second, only three SNPs in the H19 were included in the current study, and other polymorphisms,
such as rs2735971 C>T, were not included. Furthermore, the biological functions of the three SNPs are not clear, so
functional studies are needed to provide more evidence. The sample size is relatively small in the present study due
to the difficulty in sample collection. We will continue our study on neuroblastoma and update the results in further
study.

Conclusion
In the present study, we reported the relationship between the rs3024270 GG genotype and the increased suscepti-
bility of neuroblastoma in female Chinese children. Further functional studies on rs3024270 and studies with larger
populations and different ethnicities would be valuable to clarify the role of H19 SNPs in neuroblastoma.
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