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Overexpressed genes in tumors usually contributed to aggressiveness in pancreatic duc-
tal adenocarcinoma (PDAC). Using Gene Expression Omnibus (GEO) profiles including
GSE46234, GSE71989, and GSE107610, we detected overexpressed genes in tumors with
R program, which were enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG),
Gene ontology (GO), and Reactome pathway databases. Then, we performed a survival
analysis of enriched genes based on TCGA profile. Our results revealed that high BUB1B,
CCNA2, CDC20, and CDK1 expression in tumors was significantly associated with worse
overall survival (OS) (Log rank P=0.00338, P=0.0447, P=0.00965, and P=0.00479, respec-
tively), which was validated using a Kaplan–Meier plotter with a median cutoff (Log rank
P=0.028, P=0.0035, P=0.039, and P=0.0033, respectively). Moreover, overexpression of
BUB1B, CCNA2, CDC20, and CDK1 in tumor tissues was significantly associated with
disease-free survival (DFS) in PDAC patients (Log rank P=0.00565, P=0.0357, P=0.00104,
and P=0.00121, respectively). BUB1B, CCNA2, CDC20, and CDK1 were significantly over-
expressed in deceased PDAC patients (all P<0.01) and in patients with recurrence/disease
progression (all P<0.05). In addition, PDAC patients with neoplasms of histologic grade
G3-4 had significantly higher BUB1B, CCNA2 and CDC20 levels (all P<0.05). In conclusion,
the up-regulation of BUB1B, CCNA2, CDC20, CDK1, and WEE1 in tumor tissues are asso-
ciated with worse OS and DFS in PDAC and is correlated with advanced tumor stage and
tumor development.

Introduction
Pancreatic ductal adenocarcinoma (PDAC) arises from the exocrine pancreas and accounts for 95% of
all pancreatic cancers [1]. Despite major improvements in its diagnosis and treatment, PDAC remains
an aggressive disease that carries a poor prognosis and a 5-year survival rate of approximately 8% in the
United States [2,3]. The genetic framework, early metastasis, a dense stroma, propensity for growth in a
nutrient-depleted environment, and immunomodulation, all underlie its aggressive nature and resistance
to treatment, which makes therapeutic progress a challenge [4]. Hence, it is essential to find predictive
biomarkers and novel therapeutic targets to improve the treatment outcome in PDAC patients.

Currently, few tumor markers have been externally validated to predict the survival of patients with
PDAC [5]. Novel biomarkers that predict PDAC prognosis and PDAC targets for treatment are urgently
required [6]. Recently, big data bioinformatics of molecular targets and networks have gained increased
attention [7,8], which is specifically due to the introduction of large-scale molecular analysis platforms
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Figure 1. Flow diagram of the analysis procedure

[9]. This tremendous amount of molecular data provide a rich source for a better understanding of the molecular
basis of PDAC and for the identification of novel genomic targets for therapeutic intervention.

Using the Gene Expression Omnibus (GEO) database, we identified up-regulated differentially expressed genes
(DEGs) between tumor tissues and nontumor tissues in PDAC patients, enriched potential pathways/biological pro-
cesses, and evaluated associations between up-regulated DEGs and PDAC outcomes. We hope our results provide
useful insights into potential candidate biomarkers and the pathogenesis and progression of PDAC.

Materials and methods
Study design and source of data
The flowchart of the procedure is described in Figure 1. GEO (https://www.ncbi.nlm.nih.gov/geo/) profiles with raw
data of the CEL file type and platforms of Affymetrix arrays with probe ID, Gene Symbol, and Entrez Gene ID were in-
cluded in this analysis. The gene expression profiles of GSE46234, GSE71989 and GSE107610 were downloaded from
the GEO database. The GSE46234 profile was composed of four healthy tissues and four PDAC tissues. GSE71989
included 8 normal pancreatic tissues and 14 PDAC tissues. Data from GSE71989 were generated from Affymetrix
arrays. In GSE107610, mRNA from 39 patient-derived PDAC tumors and 2 normal organs was extracted [10] and
hybridized to the GeneChip PrimeView Human Gene Expression Array and were scanned using a GeneChip Scanner
3000 7G.

Identification of up-regulated DEGs in PDAC
To investigate DEGs between tumor tissues and nontumor tissues in PDAC patients, the transcriptome gene ex-
pression data using the robust multiarray average (RMA) algorithm were explored. Bioconductor (http://www.
bioconductor.org) packages Affy and AffyPLM [11,12] were used for quality assessment of tumor and nontumor
samples in each GEO profile. The Limma package [13,14] in Bioconductor was used to identify DEGs (log2FC > 1,
adjusted P-value <0.05). To identify up-regulated DEGs, log2FC > 1 and adjusted P-values <0.05 were set for each
GEO profile. To identify shared DEGs amongst GSE46234, GSE71989, and GSE107610, the Venny 2.1 online service
(http://bioinfogp.cnb.csic.es/tools/venny/index.html) was used to generate a Venn diagram.
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Figure 2. Common up-regulation genes identification and gene functional enrichment

Identification of common up-regulated genes in GSE46234, GSE71989, and GSE107610 (A), function enrichment of common

up-regulated genes (B), and Venny diagram of genes enriched in cell cycle pathway/biological process (C).

Functional enrichment analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene ontology (GO), and Reactome enrichment analy-
sis of up-regulated DEGs was conducted using Gene Set Enrichment Analysis (GSEA). To investigate gene sets,
up-regulated DEGs were uploaded to the Molecular Signatures Database in GSEA. A false discovery rate P-value
cutoff of <0.05 was set as the screening condition. The shared up-regulated DEGs in common pathways en-
riched by KEGG, GO, and Reactome were determined for the Venn diagram using the Venny 2.1 online service
(http://bioinfogp.cnb.csic.es/tools/venny/index.html) [15].

Survival analysis
To identify potential candidate biomarkers for overall survival (OS) and disease-free survival (DFS) in PDAC patients,
the pancreatic adenocarcinoma (TCGA, Provisional) database in cBioPortal for Cancer Genomics web interface was
used [16,17]. A z-score threshold +−2.0 of mRNA expression was selected in genomic profiles, and 178 cases with se-
quenced tumors were included in the survival analysis. The mRNA expression levels of potential candidate biomarkers
that were calculated by log2 were compared based on clinical factors in PDAC patients. For validation of prognostic
candidates in PDAC survival, a Kaplan–Meier analysis (http://kmplot.com/analysis/) with a median cutoff was used
[18,19].

Statistical analysis
Differences of gene expression between the individual groups were analyzed using Mann–Whitney U test and Stu-
dent’s t test based on variables’ types. GraphPad Prism version 7.0 (GraphPad Software, San Diego, CA) was used. A
two-tailed P<0.05 were considered significant for all tests.

Results
Screening up-regulated expressed genes at the mRNA level
The quality assessments of GSE46234, GSE71989, and GSE107610 were conducted by Affy and AffyPLM packages
using relative log expression (RLE) and normalized unscaled standard errors (NUSE). As shown in Supplementary
Figures S1–S3, the quality of GSE46234, GSE71989, and GSE107610 was reliable. Amongst GSE46234, GSE71989,
and GSE107610, 632 common up-regulated DEGs were identified using a Venn diagram (Figure 2A).
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Figure 3. OS of PDAC patients grouped by BUB1B, CCNA2, CDC20, CDK1, and WEE1 in cBioPortal

Up-regulated gene functions and pathways
The KEGG pathway, GO biological process, and Reactome gene sets were analyzed for enrichment of up-regulated
gene functions and pathways [20,21]. We presented the top ten pathways/biological processes in our study. The cell
cycle was the most enriched pathway/biological process in KEGG, GO, and Reactome (Figure 2B). Additionally, 24
genes were enriched in KEGG pathways, 155 genes were enriched in GO biological processes, and 69 were enriched
in Reactome gene sets. Subsequently, we generated a Venn diagram and found that 21 genes including ART, BUB1B,
BUB3, CCNA2, CCNB1, CDC20, CDC23, CDC25B, CDC45, CDC7, CDK1, DBF4, MAD2L1, MCM2, MCM3,
MCM5, MCM6, MCM7, RAD21, SMC3, and WEE1 in the cell cycle pathway were shared in the three enrichment
databases (Figure 2C).

Up-regulated BUB1B, CCNA2, CDC20, and CDK1 predict worse survival
in PDAC
Using the pancreatic adenocarcinoma (TCGA, Provisional) database in cBioPortal for Cancer Genomics web inter-
face, we included the 21 enriched genes mentioned above to identify potential candidate biomarkers for OS and DFS
in PDAC patients. Only genes that were significantly associated with both OS and DFS were considered potential
biomarkers for PDAC prognosis. PDAC patients with high BUB1B, CCNA2, CDC20, CDK1, and WEE1 in tumors
experienced worse OS (Log rank P=0.00338, P=0.0447, P=0.00965, P=0.00479, and P=0.0212, respectively, Figure
3). Similarly, overexpression of BUB1B, CCNA2, CDC20, CDK1, and WEE1 in tumors was significantly associated
with DFS in PDAC patients (Log rank P=0.00565, P=0.0357, P=0.00104, P=0.00121, and P=0.00152, for BUB1B,
CCNA2, CDC20, CDK1, and WEE1, respectively, Figure 4).

For validation, we conducted a subgroup analysis using median cutoffs of BUB1B, CCNA2, CDC20, CDK1, and
WEE1 in a Kaplan–Meier plot. As shown in Figure 5, overexpression of BUB1B, CCNA2, CDC20, and CDK1 in
tumors was significantly associated with worse OS in PDAC patients (HR = 1.59, 95% CI = 1.05–2.4, P=0.028; HR
= 1.86, 95% CI = 1.22–2.84, P=0.0035; HR = 1.54, 95% CI = 1.02–2.33, P=0.039; HR = 1.86, 95% CI = 1.22–2.82,
P=0.0033; respectively, Figure 5). Unfortunately, no significance was found between WEE1 expression and OS in
PDAC patients (HR = 1.35, 95% CI = 0.89–2.04, P=0.15, Figure 5).

Considering the results above, we cautiously concluded that up-regulated BUB1B, CCNA2, CDC20, and CDK1 in
tumors predict worse survival of PDAC patients. In addition, we performed a protein–protein interaction network
analysis of BUB1B, CCNA2, CDC20, and CDK1. As shown in Figure 6, these four genes mostly interact with cell
cycle genes and should serve as a panel for the development of malignancies.

Associations between BUB1B, CCNA2, CDC20, and CDK1, and
clinicopathological characteristics of PDAC
As shown in Figure 7, BUB1B, CCNA2, CDC20, and CDK1 were significantly overexpressed in deceased PDAC
patients (all P<0.01, Figure 7A) and in patients who experienced recurrence/progression (all P<0.05, Figure 7B).
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Figure 4. DFS of PDAC patients grouped by BUB1B, CCNA2, CDC20, CDK1, and WEE1 in cBioPortal

Figure 5. OS validation of PDAC patients grouped by median cutoffs of BUB1B, CCNA2, CDC20, CDK1, and WEE1 in

Kaplan–Meier plotter

In addition, PDAC patients with neoplasms of histologic grade G3-4 had significantly higher BUB1B, CCNA2, and
CDC20 levels than those with grade G1-2 neoplasms (all P<0.05, Figure 8A), and high levels of BUB1B and CDC20
contributed to tumor formation (both P<0.05, Figure 8B). Similarly, BUB1B and CDC20 were both significantly
up-regulated in PDAC patients with new tumor development after initial treatment (both P<0.05, Figure 8C).

Discussion
PDAC is amongst the most important unresolved health problems worldwide and is a lethal disease partly due to a lack
of therapeutic treatment targets [22]. To identify prognostic factors that can stratify patients according to biological
markers may help in the discovery of novel therapeutic approaches and the selection of adequate treatment strategies
[23,24]. Unfortunately, amongst the current prognostic factors, few have been translated into clinical practice [5].

Consistent with previous reports [25,26], we found that when advanced tumor biological behaviors, including the
histologic grade of the neoplasm and tumor development, are considered, BUB1B, CCNA2, CDC20, and CDK1 were
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Figure 6. Protein-protein interaction analysis

Protein–protein interaction network of BUB1B (A), CCNA2 (B), CDC20 (C), and CDK1 (D).

Figure 7. BUB1B, CCNA2, CDC20, CDK1 and WEE1 expression by survival status

BUB1B, CCNA2, CDC20, CDK1 and WEE1 comparison by OS status (A) and DFS status (B).
*P<0.05; **P<0.01;***P<0.001.
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Figure 8. BUB1B, CCNA2, CDC20, CDK1 and WEE1 expression by clinico-pathological features

BUB1B, CCNA2, CDC20, CDK1, and WEE1 comparison by neoplasm histologic grade (A), tumor status (B), and new tumor event

status (C).
*P<0.05; **P<0.01.

enriched in the cell cycle biological process/pathway and were associated with OS and DFS in PDAC patients. This
indicates that, based on the data shown in the present study, BUB1B, CCNA2, CDC20, and CDK1 show prognostic
value for PDAC patients.

Encoded by BUB1B, BUBR1 expression is sufficient to predict poor prognosis in pancreatobiliary-type tumors [27].
Previous bioinformatics analyses showed that BUB1B was one of the hub genes with high degrees of connectivity to
PDAC and might be a potential target for PDAC diagnosis and treatment [25]. However, the role of BUB1B in other
types of cancer cells is still controversial. Low expression of BUB1B contributes to poor survival and metastasis in
human colon adenocarcinomas [28] and several lung cancer cell lines [29], while overexpression of BUB1B is related
to progression and recurrence of gastric cancer [30], bladder cancer [31], liver cancer [32], and many other cancers
[33–35]. CCNA2 belongs to a highly conserved cyclin family and is up-regulated in dozens of cancer types, which
indicates its potential roles in cancer transformation and progression [36]. It has been reported that a high CCNA2
expression promotes cell proliferation in hepatoma [37] and might help monitor chemotherapy efficacy in breast
cancer [38]. A bioinformatics analysis by Zhou et al. [26] revealed that CCNA2 overexpression was tightly related to
progression of PDAC. Considering the above findings, we believe that BUB1B and CCNA2 should be novel prognostic
biomarkers in PDAC.

Overexpression of CDC20 has been reported in various malignancies and high expression of CDC20 has been
associated with high tumor grade in bladder, cervical, colon, endometrial, gastric, liver, ovarian, prostatic, and re-
nal carcinomas [39]. CDC20 has been reported to be significantly associated with poor prognosis in pancreatic [40],
lung [41], bladder [42], colon [43], oral squamous cell carcinomas [44], and breast cancers [45]. In one study, overex-
pression of CDC20 enhanced cell proliferation and invasion, while down-regulation of CDC20 promoted anti-tumor
activity in pancreatic cancer cells [46]. Hence, CDC20 may represent a promising therapeutic target in cancer pa-
tients including those with PDAC [47]. CDK1 has been reported to be correlated with cancer growth and is a key cell
cycle regulator [48]. CDK1 expression and activity are elevated in colorectal cancer [49], prostate cancer [50], and
lymphomas [51,52]. Up-regulation of CDK1 is associated with poor prognosis in breast cancer [53] and epithelial
ovarian cancer [54,55]. In one study, CDK1 inhibitors contributed to a marked reduction in the proportion of cells in
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S and G2/M phases of the cell cycle in PDAC tumor cell models; targetting CDK1 also showed promising anticancer
activity in pancreatic cancer cells [56,57].

Conclusion
Our preliminary analysis showed that BUB1B, CCNA2, CDC20, and CDK1 were overexpressed in tumors in PDAC
patients. And these four genes were associated with advanced tumor stage and showed prognostic values for PDAC
outcomes. Based on our results, we cautiously concluded that BUB1B, CCNA2, CDC20, and CDK1 should comprise a
panel for PDAC development and that they might be novel treatment targets. Since the sample size in this preliminary
analysis was small, prospective studies with large samples should be considered for the validation of our results.
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