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The regenerative and immunomodulatory characteristics of mesenchymal stem cells (MSCs)
make them attractive in the treatment of many diseases. Although they have shown promis-
ing preclinical studies of immunomodulation and paracrine effects in inflammatory airway
disorders and other lung diseases, there are still challenges that have to be overcome before
MSCs can be safely, effectively, and routinely applied in the clinical setting. A good under-
standing of the roles and mechanisms of the MSC immunomodulatory effects will benefit the
application of MSC-based clinical therapy. In this review, we summarize the promises and
challenges of the preclinical and clinical trials of MSC therapies, aiming to better understand
the role that MSCs play in attempt to treat inflammatory airway disorders.

Introduction
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a variety of cell
types, including bone, fat cells, muscle, cartilage, and connective tissue. MSCs can readily be obtained
from adult tissues such as umbilical cord, bone marrow, and fat tissue [1,2]. In addition, MSCs derived
from pluripotent stem cells like induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs)
closely resemble conventional bone marrow or adipose-tissue derived MSC in terms of both phenotype
and function [3–5]. This alternative means of MSC generation could, in theory, provide an indefinite
supply of MSCs with well-defined phenotype and functions. MSCs are self-renewable, easily accessible,
and culturally expandable with exceptional genomic stability and only a few ethical issues, which make
the cells good candidates for cell therapy, regenerative medicine, and tissue repair [2]. MSCs have been
proven to possess anti-inflammatory capacity by secreting various cytokines/chemokines, which suppress
T-cell-mediated immune responses [6–8]. Due to their regeneration and anti-inflammatory capacities,
MSCs are attractive therapeutic cells for many diseases, such as bone and immune diseases. Here, we
review the role of MSCs in the treatment of inflammatory airway disorders, mostly focused on promises
and challenges of the preclinical and clinical trials of MSC therapies, aiming to better understand the role
that MSCs play in the inflammatory airway disorders.

Status of MSC therapies in airway inflammation
The immunomodulatory properties of MSCs make them a promising candidate for the treatment of
inflammatory airway disorders. A growing number of preclinical studies on immunomodulation and
paracrine effects of MSCs are being performed to provide evidence of safety and efficacy in animal mod-
els of asthma, allergic rhinitis (AR), bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary
disease (COPD), and other lung diseases [9]. More and more clinical trials are ongoing to examine the
MSC therapy in airway inflammation. However, MSC therapies for airway inflammation are still in its
infacy.
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Allergic airway inflammation
Allergic airway inflammation including asthma and AR is an abnormally exacerbated reaction toward common en-
vironmental factors, such as pollen grains, dust mites, or animal dander. The airway inflammation is characterized
by wheezing, reversible airway obstruction, airway hyper-responsiveness (AHR), infiltration of eosinophils and type
2 T cells into the airway submucosa, mucus hypersecretion, and airway remodeling [10,11]. Since the discovery of
T-helper (Th)1 and Th2 cells in the cluster of differentiation (CD)4+ T-cell subpopulations, it became evident rather
quickly that Th2 cells play the crucial role in the development of allergic inflammatory disorders by releasing their spe-
cific cytokines interleukin (IL)-4, IL-5, and IL-13. Evidence suggest that a Th type 1/2 imbalance with a Th2-dominant
response to inhaled allergens plays a critical role in the pathogenesis of allergic airway inflammation and identified
the Th2 cytokines as key effector molecules in this process [12–14]. This concept is well accepted today and has led to
the emergence of novel therapeutic approaches interfering with mechanisms of Th2 activation that have entered clin-
ics or showed promising results in clinical studies [15,16]. However, a variety of cell types, including airway epithelial
cells, Th2 cells, eosinophils, basophils, mast cells, and dendritic cells (DCs), have been identified that play specific
roles in the pathogenesis of allergic airway inflammation.

The airway epithelial cells act as a barrier and provide protection to the lung from inhaled allergens, pathogens, and
other noxious agents in the healthy airways [14,17,18]. When exposed to an antigen, allergen-specific immunoglob-
ulin (Ig)E binds to high-affinity Fcε receptors on the surfaces of basophils and mast cells present in the subepithelial
layer of the airways, results in the release of leukotrienes, prostaglandins, and histamine. These mediators will lead to
narrowed, constricted airways and further stimulate the recruitment of eosinophils, macrophages, neutrophils, and
T lymphocytes [10]. For instance, analysis of allergic airway inflammation using an ovalbumin (OVA) immunization
and airway exposure model indicates that eosinophils are required for the development of allergic airway inflam-
mation [19]. Further analysis found that the production of eosinophil-regulated chemokines is required to recruit
Th2 cells during the development of allergic asthma by causing prolonged bronchoconstriction and epithelial layer
damaging [20,21]. DCs were also demonstrated as necessary and sufficient for the induction of allergic airway inflam-
mation [22]. de Heer HJ et al. [23] found that plasmacytoid DCs were able to control exacerbated airway inflammation
through the induction of Tregs. CD11b+ classical type 2 DCs (cDC2s) mediated Th2 priming in response to house
dust mite (HDM) and Blomiatropicalis mites [24], leading to eosinophilic airway inflammation, mucus production,
and AHR. Upon lung fungal infection with Aspergillus fumigatus, CD11b+ cDC2s promote a Th17 response [25],
which contribute to neutrophilic inflammation associated with severe asthma [26]. Therefore, although there is a
propensity for type 2 cytokines in the lungs, allergic airway inflammation is a multifactorial disease with a variety of
immune cell types as described above.

The effects of MSCs on allergic airway inflammation
MSCs have held great promises in the treatment of allergic airway inflammation not only because of their genera-
tive ability to repair/replace the injured lung tissues [27], but also due to their immunomodulatory effect that could
increase the resistance of the patients to infections and other forms of allergy [28,29]. Recent research has shown
that administration of MSCs is associated with reduced symptoms during severe asthma. Bonfield et al. [30] have
emphasized the unique therapeutic potential of MSCs in chronic asthma as MSCs decrease airway inflammation and
remodeling in the OVA murine model. MSCs participate in decreasing extracellular matrix deposition by reversing
excess collagen deposition and changing hyaluronan levels in OVA-induced model [31]. Li et al. [32] showed the po-
tential of human placenta mesenchymal stem cells in suppressing airway inflammation in asthmatic rats. Sun et al.
[33] found that MSCs derived from both iPSCs and bone marrow-derived mesenchymal stem cells (BM-MSCs) pro-
tected the mouse from OVA-induced allergic inflammation by inhibiting the majority of allergy-specific pathological
changes. The local administration of MSCs was able to attenuate airway AHR, inhibit inflammatory cell infiltration
and mucus production in the lung, reduce eosinophil infiltration in the nose, and decrease inflammatory cell in-
filtration in both the bronchoalveolar and nasal lavage fluids in the OVA-induced allergic inflammation in mouse
[5,29,33–36]. MSCs significantly reduced serum OVA-specific IgE concentration, inhibited expression of Th2 cy-
tokines and elevated level of Treg cytokines [33,36,37]. Monocytes were also recruited by MSCs to secrete IL-10 that
lead to reduced airway inflammation and hyper-responsiveness during the process [38]. In addition, Hong et al. [39]
demonstrated that MSCs might also have a role in reducing neutrophilic airway inflammation by down-regulating
neutrophil chemokine production. By using a mouse model of neutrophilic airway inflammation, Fang et al. [40]
investigated the therapeutic potential of iPSC-MSCs in decreasing neutrophilic airway inflammation through the
regulation of Th17 cells, suggesting that the iPSC-MSCs could be applied in the therapy for asthma patients with
steroid-resistant neutrophilic airway inflammation.
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The effects of MSCs on T cells
Th1/Th2 cell imbalance is involved in the pathogenesis of allergic airway inflammation [41]. There are an increasing
number of studies showing that MSCs are able to protect the airways from allergen-driven pathology, by which to
reduce airway inflammation and allergen-specific IgE [33,34,42]. MSCs possess potent immunoregulatory properties
that could modulate the Th1 cytokine responses in benefit of Th2 types [43]. Administration of BM-MSCs effectively
reduced allergic symptoms and inflammatory parameters in the mouse model of AR [44]. BM-MSCs were found to
migrate to the nasal and lung tissues following intraperitoneal delivery, they ameliorated the airway remodeling and
airway inflammation both in the upper and lower airways via the inhibition of Th2 response. Cho et al. found that
adipose-derived mesenchymal stem cells (AD-MSCs) ameliorated allergic airway inflammation and improved lung
function through the induction of Treg expansion. The induction of Treg by AD-MSCs involves the secretion of sol-
uble factors such as indoleamine 2,3-dioxygenase (IDO), transforming growth factor-β (TGF-β), and prostaglandin
E2 (PGE2) and Treg might be involved in the down-regulation of Th2 cytokines and up-regulation of Th1 cytokine
production [45,46]. Fu et al. [47] found that iPSC-MSCs were also capable of modulating T-cell phenotypes, which
suppressed Th2 phenotype through inducing Treg expansion. MSCs are able to induce Treg cells in vivo to reduce
allergen-driven pathology. Multiple Treg dependent and independent mechanisms of therapeutic action are employed
by MSCs [34]. Not only the MSCs but also the secretome of the cells showed the capacity of inhibiting allergic airway
inflammation. Yu et al. [48] demonstrated that the culture supernatant of AD-MSCs is able to ameliorate allergic
airway inflammation via recruitment of CD4+CD25+Foxp3 T cells in the mouse AR model.

MSCs also showed enhancing effects on the proliferation of PBMCs from patients, and the magnitude of prolifera-
tive response differs among allergens [49,50]. Fan et al. found that, when iPSC-MSCs were co-cultured with quiescent
T cells, iPSC-MSCs promoted the proliferation of resting lymphocytes and activated CD4+ and CD8+ T cells without
any additional stimulation. Treg cells were activated at the same time to balance the biased Th1/Th2 cytokine levels
[49].

The effects of MSCs on DCs
DCs, the most potent antigen-presenting cells (APCs) in the immune systems, are critical for initiating and regulat-
ing immune responses by modulating antigen (Ag)-specific T-cell activation [51]. DCs have been demonstrated to be
necessary for the induction of aberrant immunity to allergens or self-antigens in allergic asthma and autoimmune dis-
eases [52]. Many studies have reported that human BM-MSCs inhibit DC differentiation and maturation and induce
differentiation of DCs into regulatory DCs [53–56]. Gao et al. found that iPSC-MSCs exert an inhibitory effect on DC
differentiation both by producing IL-10 and by direct cell contact, and induce the generation of an IL-10-producing
regulatory DC subset in the progress of Lipopolysaccharide-induced maturation mainly via cell–cell contact [57]. Co-
culture of MSCs with stimulated DCs will result in decreased expression of C-C motif chemokine receptor 7 (CCR7).
Similarly, MSC coculture will lead to DC maturation with significantly less migration to C-C motif ligand 19 (CCL19)
[58]. MSCs inhibited the up-regulation of CD1a, CD40, CD80, CD86, and HLA-DR during DC differentiation and
prevented the increase of CD40, CD86, and CD83 expression during DC maturation [55]. By inhibiting the activation
of mitogen-activated protein kinases (MAPKs) in DCs, MSCs can inhibit the antigen processing and presentation to
T cell functions of in vitro cocultured DCs. Furthermore, MSCs are able to down-regulate CCR7 and CD49d, two
molecules involved in DC homing to lymphoid organs, in DCs both in vitro and in vivo [59]. Therefore, MSCs play a
critical role in the treatment of allergic asthma and allergic rhinitis by regulating DC maturation and differentiation.

The effects of MSCs on epithelial cells
MSCs were found to protect lung epithelial cells exposed to pro-inflammatory cytokines [60–62]. Studies have
demonstrated that MSCs and MSC-conditional medium are able to induce repair and protect airway epithelium
against cell damage in ex vivo models [63,64]. Furthermore, MSCs reduced apoptosis in pulmonary cell cultures
derived from papain-treated mice and in cigarette smoke extract-stimulated endothelial cells [65,66]. This may be
due to the engraftment of MSCs in the bronchial epithelium or by paracrine secretions of keratinocyte growth factor
(KGF), IL-10, angiopoietin-1, interleukin-1 receptor antagonist, and PGE2 [67]. Islam et al. [67] found that mito-
chondrial transfer from BM-MSCs to pulmonary alveoli protects against acute lung injury. Li et al. [68] found that
iPSC-MSCs decrease the apoptosis of bronchial epithelial cells under hypoxic conditions. Further analysis demon-
strated that iPSC-MSCs donate their mitochondria to the dysfunctional mitochondrial epithelial cells, by which they
alleviate the asthma inflammation and protect the epithelial cells in the model mouse [29]. Similar results were ob-
served that mitochondrial transfer from MSCs to airway epithelial cells protected against cigarette smoke-induced
injury [69]. Therefore, MSCs exert immunomodulative effects on allergic airway inflammation by enhancing epithe-
lial cell proliferation and migration and by reducing epithelial cell apoptosis.
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Bronchopulmonary dysplasia (BPD)
In recent years, stem cells have emerged as potential candidates to treat BPD with MSCs being particularly promising
[70]. MSCs displayed pleiotropic effects and showed promising results in neonatal rodents in preventing or rescuing
lung injury without adverse effects [71]. BM-MSCs showed great potential in migration and homing capacity in BPD
models [72,73]. There is a plenty of laboratory evidence demonstrating a protective effect of MSCs in the lung, mostly
in hyperoxia-induced lung injury in neonatal rodents [74]. The promising laboratory studies in experimental neonatal
lung injury have already led to the first-in-human phase I of allogeneic cord blood-derived MSCs in infants at the risk
of developing BPD [75]. On the contrary, Popova et al. [76] showed that the presence of MSC in the tracheal aspirates
of preterm infants indicates an increased risk of developing BPD. The role of allogenic MSCs in the pathogenesis BPD
is still far away from clear. Although the first MSCs clinical trials in BPD are ongoing, multiple questions still remain.

Cystic fibrosis (CF)
Studies have reported the promising role of stem cells as a potential therapy for CF. MSCs have been proven as
an attractive therapeutic modelity in the murine model of CF lung infection and inflammation [77,78]. Allogenic
BM-MSCs engrafted into the lungs of cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice;
the cells were able to express epithelial phenotypes with CFTR mRNA expression [79,80]. The fight against CF has
taken a major step forward. Farrow et al. [81] showed that cells causing the debilitating genetic disorder could be suc-
cessfully replaced with healthy ones derived from stem cells. In 2017, the first stem cell study in the world for cystic
fibrosis opened, allogenic human BM-MSCs from healthy volunteers were infused into a 39-year-old man with CF.
The clinical application of stem cells for the treatment of CF certainly warrants further insight into preclinical models,
including large animals, organoids, decellularized organs, and lung bioengineering [82,83]. However, engraftment of
bone marrow-derived stem cells into the airways is a very inefficient process. Detailed knowledge of the cellular and
molecular determinants governing homing to the lung and transformation of MSCs into lung epithelial cells would
benefit this process.

Chronic obstructive pulmonary disease (COPD)
Both autologous and allogenic MSCs were widely investigated in the preclinical studies of COPD. Animal model
recipients tolerated the injected allogenic MSCs well [84–86]. MSCs were proven able to migrate to the lung and dif-
ferentiate into type II epithelial cells of the alveoli like cells [87,88]. MSC therapy resulted in the structural repair and
functional restoration of the damaged lung in COPD models [60,89,90]. The repair effects of MSCs in the lung with
COPD models were mainly caused by multiple paracrine factors secreted by exogenous MSCs. MSCs were also able to
replace the damaged structures and contribute to the restoration of lung function [84]. However, the engraftment and
survival rate of allogenic MSCs were very low in COPD models [80,91]. Therefore, the successful preclinical studies
have not led to the success of clinical trials so far [84]. The source and status of MSCs, dosage issues, patient scales
as well as the stage of the disease might contribute to the conflicting results between preclinical studies and clinical
trials. Great efforts must be made to figure out the mechanisms that will lead toward a curing solution for COPD
patients.

The mechanism of MSC action on airway inflammation
Human MSCs express low levels of major histocompatibility complex (MHC) class I molecules and have no MHC
class II molecules or costimulatory molecules, including CD40, CD40L, CD80, and CD86 on cellular surface, which
make the cells hypoimmunogenic [92]. Research found that MSCs do not provoke an immunological response even
if the MHC class I and MHC class II molecules were up-regulated by the presence of Interferon γ (IFN-γ) [93,94].
Also, the costimulatory molecules are tightly regulated by the inhibitory molecules on MSCs when up-regulated un-
der inflammatory conditions [95,96]. Khattar et al. [97] found that transcriptional reactivation of telomerase reverse
transcriptase (TERT) expression in MSCs may directly control immunomodulation related protein synthesis by reg-
ulating tRNA gene expression. And the mechanisms of activating transcription from TERT promoters in stem cells
could be vastly different depending on the status and microenvironment of the cells [98]. Moreover, MSCs are able
to inhibit T-lymphocyte proliferation in mixed lymphocyte culture or in the presence of activators, such as IL-2 and
phytohemagglutinin (PHA) [99]. Whereas MSCs were found to support T-cell survival and proliferation when these
cells are not activated [49,100,101]. Some studies have shown that MSCs reduced the expression of activation markers
on the lymphocytes [102,103], while others found no expression changes of these markers [104,105]. Therefore, the
mechanisms involved in the immunomodulatory effects of MSCs on immune cells include different cell–cell contact,
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Figure 1. Schematic illustration of mechanisms underlying the MSCs immunomodulatory effects

MSCs potentially modulate the immune cells (T cells and dendritic cells) and epithelial cells, which are involved in the airway

inflammation. The MSCs function their modulatory effects via cell–cell contact, (anti)-inflammatory cytokines and chemokines,

genomic regulation, and mitochondrial transfer, to improve lung tissue homeostasis.

soluble factors, genomic regulation, nuclear factor κB (NF-κB) signaling pathway and mitochondrial transfer etc. (see
Figure 1 for a schematic overview)

Cell–cell contact
MSCs have been demonstrated as expressing integrins (α1-6, αV, and β1-4), intercellular adhesion molecules
(ICAM-1, ICAM-2), vascular cell adhesion protein (VCAM)-1, CD72, and CD58 (LFA-3) on their surfaces, which
allow them to modulate both autologous and allogeneic T lymphocytes via cell-to-cell contact in vitro [99,106]. Ren
et al. demonstrated that ICAM-1 and VCAM-1 on MSCs positively correlate with the immunomodulatory effects
of MSCs toward various subtypes of T cells [107,108]. The immunomodulatory effects of MSCs can be significantly
reversed by the genetic deletion or functional blocking of adhesion molecules in the cells [109]. In addition, studies
claimed that cell–cell contact is necessary for the MSC-mediated inhibition of allogeneic Th17 differentiation, and
the expression of programmed death-1 (PD-1) ligand on the surface of MSCs is critical for this [110,111]. Similarly,
galectins were found to be constitutively expressed on MSCs and mediated the immunomodulatory effects of MSCs
[112]. For instance, CD4+ and CD8+ T cell proliferation were inhibited by galectin-1 and galectin-3 [112,113]. And
the expression of galectin-9 was found to be associated with the anti-proliferative effects that MSCs have on T cells
[114].

Soluble factors
Although cell–cell contact has been demonstrated as being necessary for the immunodulatory effects of MSCs, tran-
swell membrane experiments showed that MSCs can also exert their immunomodulatory functions through re-
leasing soluble factors [93,99]. The production of suppressive soluble factors is dependent on a cross-talk between
MSCs and activated immune cells, inflammatory cytokines secreted by antigen-presenting cells and T cells, including
interferon-γ (IFN-γ), IL-1α, IL-1β, and tumor necrosis factor-α (TNF-α) are required for the immunomodulatory
activities of MSCs. Researchers found that the use of supernatants from MSCs culture is not enough for T-cell suppres-
sion [115]. Whereas the supernatants from MSC-activated T-cell coculture system can suppress T-cell proliferation
[92,116]. It suggests that the immunomodulatory effects of MSCs rely on a combination of the complex interplay
between soluble factors and specific inflammatory microenvironment.

Many MSC-derived soluble factors have been identified to be associated with the immunomodulatory effects, such
as hepatic growth factor (HGF), TGF-β [99], nitric oxide (NO) [117], PGE2 [118], IDO [119], IL-6 [120], and IL-10
[121] etc. These soluble factors are able to ablate the recruitment, activation, and maturation of DCs in the lung and the
reactivation of Th2-cytokine–producing CD4+ Th2 cells, by which to ameliorate allergic airway inflammation. The
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immunomodulatory effects could be monitored by controlling the paracrine effects of MSCs. For example, rap 1 is a
key regulator for regulating inflammation [122,123]. Zhang et al. [124] revealed the reduction of pro-inflammatory
paracrine cytokines in rap-inhibited MSCs for the MSC-based treatments. Since they have been revealed as a poten-
tial link between physiological cues and human ailments [125], nuclear, casein kinase and cyclin-dependent kinase
substrate (NUCKS) were also found to be involved in the metabolism and paracrine effects of human MSCs [126,127].
Zhang et al. [128] presented up-regulated paracrine effects in NUCKS knockout MSCs. In addition, it is worth notic-
ing that there are some well acknowledged differences between MSCs derived from different species, which should
be considered carefully before interpreting the preclinical data. For instance, human MSCs suppress T-cell prolifera-
tion by IDO production, while inducible nitric oxide synthase (iNOS) is employed by mouse MSCs to exert the same
function [99,108,129].

Noncoding RNAs
Researches have shown that administration of MSCs after allergen challenge resulted in changes in gene expres-
sion in allergic airway inflammation. Tang et al. [130] identified different miRNA and mRNA profiles after asthma
induction and BM-MSC treatment, and the miR-21/Acvr2a axis was figured out as an important mechanism for
the induction of asthmatic inflammation. In addition, miR-21 was also found mediating the protective effects of
iPSC-MSCs in human bronchial epithelial cells under hypoxic conditions [68]. mRNA Ccl11, Ccl24, Il13, Il33, and
Ear11 were found being involved in the process of human embryonic stem cell derived MSC immunomodulation
in airway allergic inflammation [5]. Furthermore, Wang et al. [131] examined the long noncoding RNA (lncRNA)
expression after the induction of asthma, and the differentially expressed lncRNAs after iPSC-MSC treatment. lncR-
NAsMM9LINCRNAEXON12105+ and AK089315 were finally emphasized as the potential regulators of allergy and
the targets of iPSC-MSC treatment. By using various knockout mice, researchers could clearly investigate the genes
involved in the MSC immunomodulatory process.

Nuclear factor κB (NF-κB)
MSCs have been demonstrated to sense the inflammatory mediators such as IFN-γ, TNF-α, IL-1, chemokines and
leukotrienes, they are able to activate NF-κB to promote the immunomodulatory effects in the inflammatory mi-
croenvironment [132–134]. For instance, it has been demonstrated that TNF-α released by activated T cells binds
to TNF-R1 on MSCs, activating the NF-κB pathway and contributing to the immunomodulatory effects of MSCs
[135–138]. Studies have shown that MSCs inhibit the proliferation of cytotoxic T lymphocytes by B7-H4, which can
inhibit the NF-κβ activities [139]. Saldanha-Araujo et al. [140] demonstrated that MSCs are able to induce a shift
of NF-κB signaling in T-lymphocytes from canonical to noncanonical, by which they suppress the activation of the
T-lymphocytes in the coculture system. Whereas Fan et al. [49] found that MSCs up-regulate the proliferation and
activation of quiescent T cells of AR patients via NF-κB signaling pathway. In addition, MSCs promote the differentia-
tion of monocytes to M2 phenotype macrophages through NF-κB and signal transducer and activator of transcription
3 (STAT-3) pathways in the presence of IDO [141–143]. Human MSCs have also been proven to activate peritoneal
macrophages via toll-like receptor 2 (TLR2) NF-κB signaling by secreting TNF-stimulated gene 6 (TSG6), which
regulates TLR2 NF-κB signaling [144]. Therefore, NF-κB is tightly involved in the immunomodulatory function of
MSCs.

Mitochondrial transfer
Mitochondrial transfer is another significant application of MSCs in the treatment of diseases. It has been
well-demonstrated that MSCs can deliver function-normal mitochondria to the donor cells or tissues to alleviate
the oxidative stresses and cell apoptosis in cardiac diseases with mitochondria damage [145,146]. Recent research has
also presented the MSCs-mediated mitochondrial transfer in lung disease treatments. BM-MSCs have shown posi-
tive effects in treating mouse models of acute lung injury and allergic airway inflammation via mitochondrial transfer
[67,147]. Li et al. [69] presented that MSCs derived from iPSCs protected airway epithelial cells from smoke-caused
mitochondria damage by mitochondria transfer, which occurs via the tunneling of nanotubes (TNTs). Yao et al. [29]
further demonstrated that iPSC-MSCs attenuate asthma inflammation and protect epithelial cells by transferring
their mitochondria via TNTs. Li et al. [28] also presented that mitochondrial transfer prevented the oxidative stresses
caused by the damaged mitochondria in the airways. In addition, the transferred mitochondria can alleviate the in-
flammatory responses of the receptors [29,67]. Several known mechanisms have been revealed for the MSCs mediated
mitochondrial transfer in lung disease treatments. Mitochondrial Rho GTPase 1 (MIRO1) was confirmed playing a
critical role in the regulation of MSC mitochondrial transfer by MIRO1 overexpression in iPSC-MSCs [147,148].
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The microtubule motor protein kinesin family member 5B (KIF5B) is considered to be a regulator of mitochon-
drial transfer [149]. Furthermore, connexin 43 (CX43) has been found as vital for regulating the TNT formation and
mitochondrial transfer efficiency of iPSC-MSCs. Overexpression of CX43 in iPSC-MSCs enhanced the TNT forma-
tion between iPSC-MSCs and damaged epithelial cells, the mitochondrial transfer efficiency was also significantly
increased. Also, silencing CX43 reduced TNT formation and the immunomodulatory effects of iPSC-MSCs during
allergic airway inflammation [29].

Promises and challenges
Current advantages of MSC immunomodulation eventually would lead to a growing exploration of MSCs in clinical
trials of allergic airway inflammation. Clinical trials have clearly assessed the safety and feasibility of using MSC treat-
ment for the patients affected by moderate or severe acute respiratory distress syndrome and idiopathic pulmonary
fibrosis [150]. There are increasing number of completed and ongoing registered studies examining the effects of
MSCs on allergic airway inflammation in human clinical trials on ClinicalTrials.gov database. The number of regis-
tered clinical trials testing MSCs has become to 905 internationally, which was only 402 in 2015. However, the major
outcomes of clinical trials of MSCs in respiratory disorders have fallen far short of the theoretical potential of these
cells in preclinical studies [133]. There is insufficient clinical benefit apparent in early efficacy studies to warrant
further commitment of relatively scarce finances [151].

There are still obstacles to be overcome before MSCs becoming realistic in clinics, and the cure to inflammatory
airway disorders remains elusive. There is more and more evidence demonstrating the potential of MSC-derived
extracellular vesicles (EVs) in respiratory diseases such as asthma [152–155]. However, MSCs and their derived EVs
were observed provoking different effects and lung mechanics [154]. More information about the secretome of MSCs
is needed before use in therapy. In-depth studies of the mechanisms of MSCs in inflammatory airway disorders are
still needed, which to cover cell trafficking, clinical ethics, regulations, and practices in stem cell therapies.

On the other hand, it is still unclear how to develop high-quality, clinical-grade cell products. It is difficult for
quality control because different manufacturers produce the products at different sites probably according to different
protocols. In addition, even the consistency of the products from the same site is hard to maintain due to problems
with the source, batch or derived tissue of the MSCs. It is better for patients to utilize their own stem cell reserves to
create robust health and heal from diseases. Therefore, there are still meaningful differences in MSC cell preparation,
fitness, and functionality due to the MSC tissue source, culture methods, and expansion levels. It is clear that MSCs
are very promising with numerous potential benefits in the treatment of inflammatory airway disorders; however,
there are challenges that have to be overcome before stem cells can be safely, effectively, and routinely used in the
clinical setting.
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