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Diffuse large B-cell lymphoma (DLBCL) is the most common hematologic malignancy, how-
ever, specific tumor-associated genes and signaling pathways are yet to be deciphered.
Differentially expressed genes (DEGs) were computed based on gene expression profiles
from GSE32018, GSE56315, and The Cancer Genome Atlas (TCGA) DLBC. Overlapping
DEGs were then evaluated for gene ontology (GO), pathways enrichment, DNA methylation,
protein–protein interaction (PPI) network analysis as well as survival analysis. Seventy-four
up-regulated and 79 down-regulated DEGs were identified. From PPI network analysis, ma-
jority of the DEGs were involved in cell cycle, oocyte meiosis, and epithelial-to-mesenchymal
transition (EMT) pathways. Six hub genes including CDC20, MELK, PBK, prostaglandin D2
synthase (PTGDS), PCNA, and CDK1 were selected using the Molecular Complex Detec-
tion (MCODE). CDC20 and PTGDS were able to predict overall survival (OS) in TCGA DLBC
and in an additional independent cohort GSE31312. Furthermore, CDC20 DNA methylation
negatively regulated CDC20 expression and was able to predict OS in DLBCL. A two-gene
panel consisting of CDC20 and PTGDS had a better prognostic value compared with CDC20
or PTGDS alone in the TCGA cohort (P=0.026 and 0.039). Overall, the present study iden-
tified a set of novel genes and pathways that may play a significant role in the initiation
and progression of DLBCL. In addition, CDC20 and PTGDS will provide useful guidance for
therapeutic applications.

Introduction
Diffuse large B-cell lymphoma (DLBCL), the most frequently diagnosed subtype of hematological can-
cers, is a molecular heterogeneous disease with an annual incidence rate of over 100000 cases worldwide
[1,2]. Although DLBCL is a curable lymphoma [3,4], up to 40% of patients succumb to this cancer, thus
indicating the pathology and mechanism of DLBCL remains ambiguous. Deciphering the genes and sig-
naling pathways modulated during tumorigenesis will help guide therapeutic efficacy.

High-throughput sequencing including gene-chip and next-generation sequencing (NGS) is a rapid
and efficient method to obtain differentially expressed genes (DEGs) between tumor and normal tissues
[3,4]. At present, the high-throughput data of various genomic alterations in various cancers have been
generated and archived in public databases. Recent studies have identified hundreds of DEGs in DLBCL
[5]. However, the results of these studies have contradictory or inconsistent data due to small sample
size [6], tissue heterogeneity or produced from single cohort studies [7]. Integrating and re-analyzing
published sequence data may help resolve these issues. Gene Expression Omnibus (GEO) and The Cancer
Genome Atlas (TCGA) are two available public databases that provide the opportunity to investigate new
research based on gene sequencing data mining with large-scale clinical samples from multiple cohorts.
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In the current study, we initially identified 153 overlapping DEGs from GSE32018 [8], GSE56315 [9] and TCGA
DLBC datasets. Gene ontology (GO) and pathways enrichment, as well as protein–protein interaction (PPI) net-
work of these DEGs were performed. Based on Molecular Complex Detection (MCODE) algorithm, hub genes were
selected and their prognostic role was evaluated based on TCGA DLBC. In addition, we successfully validated the
prognostic signature of these hub genes using an independent cohort from GSE31312 [10]. We also constructed a
two-gene combined panel and confirmed this model as a more sensitive predictive tool.

Materials and methods
Gene expression profile datasets and DEGs identification
The DLBCL and noncancerous tissues gene expression profile datasets GSE32018 and GSE56315 were obtained
from NCBI-GEO (https://www.ncbi.nlm.nih.gov/geo/). GEO datasets platforms were GPL570 (Affymetrix Human
Genome U133 Plus 2.0 Array, Affymetrix, Santa Clara, CA, U.S.A.) for GSE56315 and GPL6480 and (Agilent-014850
Whole Human Genome Microarray 4x44K G4112F, Agilent Technologies, Santa Clara, CA, U.S.A.) for GSE32018.
GSE56315 dataset included 89 DLBCL tissues and 33 normal tonsil tissues. As for the GSE32018 dataset, 22 DL-
BCL tissues and 7 normal lymph nodes were profiled. High-throughput data of RNA-Seq for patients diagnosed
with DLBCL were downloaded from TCGA (https://tcga-data.nci.nih.gov/tcga/). RNA-Seq data from Illumina HiSeq
RNASeq platform comprised 48 DLBCL tissues.

The R language package DESeq was used for determining DEGs between DLBCL samples and noncancerous tissues
(adjusted P<0.01 and [logFC] > 1 as the cut-off criterion), respectively. The FunRich [11] software was used for
analysis of DEGs that overlapped between the two GEO datasets.

GO and pathway enrichment analysis
Candidate DEGs function and pathway enrichment were analyzed using the Database for Annotation, Visualization
and Integrated Discovery (DAVID, version 6.7, https://david.ncifcrf.gov/) and FUNRICH Software. P<0.05 was de-
fined as the cutoff for significant function and pathway analysis.

Integration of PPI network, hub genes, and significant pathway
identification
The Search Tool for the Retrieval of Interacting Genes (STRING) database (version 10.0, http://string-db.org) was
used to predict candidate DEG-encoded PPI. Afterward, Cytoscape software (version 3.4.0, http://www.cytoscape.
org/) was used to construct the PPI network. In addition, MCODE was used to analyze PPI network modules [12].
DAVID and FUNRICH were used to perform pathway enrichment analysis of gene modules. At last, hub genes were
identified using the MCODE plug-in, and was used to calculate node degree, i.e. the number of interconnections to
filter hub genes of PPI.

Validation of the diagnostic effectiveness of the identified hub genes for
DLBCL
The receiver operating characteristic (ROC) curve was used to assess the diagnostic effectiveness of the identified
hub genes between DLBCL and normal tissue, and was based on the GSE56315 dataset.

Bioinformatics analysis of the association between hub gene expression
and overall survival in patients with DLBCL
The association between the identified hub gene expression and overall survival (OS) for DLBCL patients was as-
sessed using data from TCGA DLBC and GSE3131. Data for hub gene expression and OS from TCGA DLBC were
downloaded from the UCSC Xena browser (https://xenabrowser.net). Forty patients with complete clinical stage and
OS data were selected and analyzed using SPSS 20. (SPSS Inc., Chicago, IL, U.S.A.) and P-values <0.05 were con-
sidered statistically significant. The R2 web-based application (http://r2.amc.nl) was used to generate Kaplan–Meier
survival curves from data in GSE31312. The optimal cutoff was selected by scan model. Kaplan–Meier curves for OS
were generated using the auto-select best cutoff.

In addition, the prognostic potential of the two-gene panel was determined by combining CDC20 and
prostaglandin D2 synthase (PTGDS) and compared with CDC20 or PTGDS alone using ROC analysis. All statistical
analyses were performed using SPSS 20 (SPSS Inc., Chicago, IL, U.S.A.). P-values <0.05 were considered statistically
significant.
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Figure 1. Volcano plots and Venn diagram for microarray data on DEGs between DLBCL and noncancerous tissues

(A) Based on GSE32018 and (B) GSE56315, red dots indicate up-regulated and green dots indicate down-regulated DEGs. Blue dots

denote genes that are not differentially expressed. The x-axis represents the value of log2FC and the y-axis represents transformed

(−log10) FDR. (C) Venn diagram of DEGs for GSE32018 genes that are up-regulated and down-regulated; GSE56315 up-regulated

and down-regulated genes. The cross areas denote overlapping DEGs.

Bioinformatics analysis of the association between CDC20 and PTGDS
methylation and OS in DLBCL patients
RNA-seq and Illumina 450 K methylation array datasets were downloaded using the UCSC Xena browser for TCGA
DLBC. The CDC20 and PTGDS mRNA expression and their DNA methylation levels were obtained by data mining
the TCGA DLBC. The association between CDC20 and PTGDS mRNA expression, CDC20 and PTGDS methylation
status and OS in DLBCL patients were analyzed using SPSS 20 (SPSS Inc., Chicago, IL, U.S.A.) and P-values <0.05
were considered statistically significant.

Results
Identification of overlapping DEGs in DLBCL
Based on the cut-off criteria of P<0.01 and [logFC] > 1 for selecting DEGs, a total of 295 and 3017 up-regulated
DEGs, 387 and 6613 down-regulated DEGs were identified from GSE32018 and GSE56315, respectively (Figure
1A,B). As shown in Figure 1C, 74 up-regulated genes and 79 down-regulated genes overlapped between the two
datasets.
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Figure 2. Significantly enriched GO and pathway terms of the DEGs in DLBCL

(A–C) were significantly enriched for BP, MF, and CC for the up-regulated and down-regulated DEGs in DLBCL. (D) Significant

enriched pathways of the up-regulated and down-regulated DEGs in DLBCL.

Functional enrichment analysis of DEGs in DLBCL
As shown in Figure 2A and Table 1, GO enriched functions for the 74 overlapped up-regulated genes and 79 over-
lapped down-regulated genes were involved in a number of biological processes (BP), including cell cycle phase, M
phase, mitotic cell cycle, cell cycle process, and cell division for the up-regulated genes, and muscle system process,
purine nucleotide metabolic process, negative regulation of cell proliferation, regulation of RNA metabolic process,
and transcription for the down-regulated genes. With regard to molecular function (MF), the top six MFs of the
up-regulated DEGs were microtubule motor activity, ATP binding, adenyl ribonucleotide binding, purine nucleoside
binding, nucleoside binding, and ribonucleotide binding, and the top four MFs of the down-regulated DEGs were
transcription factor activity, DNA binding, transcription regulator activity, and cAMP binding (Figure 2B and Table
1). For the cellular component (CC) terms, majority of the up-regulated DEGs were enriched for spindle, microtubule
cytoskeleton, condensed chromosome, kinetochore, cytoskeletal part, cytosol, cytoskeleton, and microtubule. For the
majority of the down-regulated genes were enriched for ‘intrinsic to membrane’ and ‘integral to membrane’ (Figure
2C and Table 1). Furthermore, the up-regulated genes were largely enriched for cell cycle, glycolysis/gluconeogenesis,
oocyte meiosis, cell cycle mitotic, cell cycle checkpoints, APC-Cdc20-mediated degradation of Nek2A and cdc20:
p-APC/C-mediated degradation of cyclin A pathways. The down-regulated genes were significantly enriched for
epithelial-to-mesenchymal transition (EMT) pathway (Figure 2D and Table 2).
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Table 1 GO analysis of DEGs associated with DLBCL

Term Description Count P-value

Up-regulated

GO:0022403 Cell cycle phase 21 2.69E-15

GO:0000279 M phase 19 9.84E-15

GO:0000278 Mitotic cell cycle 19 7.50E-14

GO:0022402 Cell cycle process 22 8.22E-14

GO:0003777 Microtubule motor activity 5 3.33E-04

GO:0005524 ATP binding 17 3.58E-04

GO:0032559 Adenyl ribonucleotide binding 17 4.17E-04

GO:0001883 Purine nucleoside binding 17 8.80E-04

GO:0001882 Nucleoside binding 17 9.49E-04

GO:0005819 Spindle 14 2.04E-14

GO:0015630 Microtubule cytoskeleton 16 3.56E-09

GO:0000793 Condensed chromosome 9 5.24E-08

GO:0044430 Cytoskeletal part 17 8.49E-07

GO:0000776 Kinetochore 7 7.19E-07

GO:0005874 Microtubule 8 1.28E-04

Down-regulated

GO:0006163 Purine nucleotide metabolic process 4 0.023786

GO:0008285 Negative regulation of cell proliferation 5 0.031481

GO:0051252 Regulation of RNA metabolic process 12 0.032176

GO:0006350 Transcription 13 0.038040

GO:0003700 Transcription factor activity 9 0.022489

GO:0003677 DNA binding 15 0.032567

GO:0030528 Transcription regulator activity 11 0.041292

Table 2 Signaling pathway enrichment analysis of DEGs associated with DLBCL

Pathway Name Gene count P-value Genes

Up-regulated DEG

REACTOME: REACT 152 Cell cycle, mitotic 16 5.20E-08 GINS1, KIF23, CDK1, SGOL2,
DBF4, NUF2, CDC20, MCM10,

KIF2C, CDCA8, MAD2L1, ZWINT,
RRM2, PCNA, BUB1B, SKA1

KEGG: hsa04110 Cell cycle 7 2.36E-05 CDK1, MAD2L1, DBF4, PCNA,
BUB1B, TTK, CDC20

REACTOME: REACT 1538 Cell cycle checkpoints 6 0.004610 CDK1, MAD2L1, DBF4, BUB1B,
CDC20, MCM10

KEGG: hsa04114 Oocyte meiosis 3 0.010084 CDK1, MAD2L1, CDC20

REACTOME: REACT 8017 APC-Cdc20-mediated
degradation of Nek2A

3 0.021560 MAD2L1, BUB1B, CDC20

REACTOME: REACT 6850 Cdc20:p-APC/C-mediated
degradation of Cyclin A

4 0.027276 CDK1, MAD2L1, BUB1B, CDC20

KEGG: hsa00010 Glycolysis/gluconeogenesis 3 0.034518 LDHA, PGAM1, GAPDH

Down-regulated DEG

FUNRICH biological pathway EMT 4 0.007158 PTGDS, FCER2, TPO, IL11RA

Hub genes and pathway identification with PPI network and modular
analysis
Using the STRING online database and Cytoscape software, a total of 120 DEGs (69 up-regulated and 51
down-regulated DEGs) of the 153 commonly altered DEGs were filtered into the DEGs PPI network, and contained
120 nodes and 1226 edges (Figure 3A). Thirty-three of the 153 DEGs did not fall into the DEGs PPI network. The
entire PPI network was analyzed using MCODE, afterward, the most significant module was selected (Figure 3B).
Pathway enrichment analysis showed that the most significant module consisted of 37 nodes and 651 edges (Figure
3B), and were mainly associated with cell cycle, oocyte meiosis, and EMT (Figure 3C and Table 3). The six most sig-
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Figure 3. DEGs PPI network complex and modular analysis

(A) Based on STRING and Cytoscape analysis, 69 up-regulated and 51 down-regulated DEGs were filtered into the PPI network

complex. The black circle areas were the most significant modules. (B) The most significant module was identified using the

Cytoscape MCODE plug-in, which consists of 37 nodes and 651 edges. (C) Significantly enriched pathway terms of the DEGs in

the most significant module was associated with cell cycle, oocyte meiosis, and EMT. The size and color of the circles represent

gene counts and Q values, respectively.

Table 3 Pathway enrichment analysis of the most significant gene function modules

Term Description Count P-value

KEGG cfa04110 Cell cycle 7 5.36E-09

FUNRICH biological pathway EMT 5 0.007158

KEGG cfa04114 Oocyte meiosis 3 0.012116

nificant nodes from MCODE were CDC20, MELK, PBK, PTGDS, PCNA, and CDK1, and were identified as hub
genes. All hub genes were up-regulated, except PTGDS.

Validation of the diagnostic effectiveness of the six hub genes using
GSE56315
ROC analysis was performed from the six aberrantly expressed hub genes from GSE56315. The ROC curves of these
six hub genes all indicated favorable diagnostic values for BLBCL (Figure 4 and Table 4). In addition, the area under
ROC curve (AUC) of PTGDS and CDC20 were 1.000 (P<0.01, Figure 4A and Table 4) and 0.999 (P<0.01, Figure
4D and Table 4), respectively.
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Figure 4. Validation of ROC results of the six hub genes in DLBCL based on GSE56315

(A-F) ROC curves of CDC20, MELK, PBK, PTGDS, PCNA and CDK1 in GSE56315. Red represents sensitive curves, green indicates

identify lines. The x-axis shows the false positive rate, and is presented as ‘1-Specificity’. The y-axis indicates true positive rate,

and is shown as ‘Sensitivity’.

Table 4 AUC of the six hub genes based on the GSE56315 dataset

Gene AUC 95% CI P-value

CDC20 0.999 0.997–1.000 <0.01

MELK 0.895 0.832–0.958 <0.001

PBK 0.786 0.676–0.896 <0.001

PTGDS 1.000 1.000–1.000 <0.01

PCNA 0.995 0.987–1.000 <0.01

CDK1 0.861 0.784–0.939 <0.01

Abbreviation: CI, confidence interval.

High CDC20 and low PTGDS expression may be an indicator for poor OS
and a combined panel of these two genes is a superior sensitive
predictive tool
By mining data from TCGA DLBC, we estimated the association between the expression of these six hub genes and
OS in DLBCL patients using SPSS 20.0 (Figure 5). Our analysis demonstrated that high CDC20 expression and low
PTGDS expression were significantly associated with poor OS (P=0.042 and 0.033, respectively, Figure 5A,D), while
the other four hub genes were not associated with OS (Figure 5B,C,E,F). To confirm our findings, data from GSE31312
(n=470) was analyzed using R2. Kaplan–Meier survival curves showed that CDC20 and PTGDS had the same prog-
nosis values as that observed for TCGA DLBC (P=0.012 and 0.016, respectively, Figure 6).

To develop a more sensitive predictive tool, we assembled a two-gene panel combining CDC20 and PTGDS based
on the cohort from TCGA DLBC. Combination of CDC20 and PTGDS had a better prognostic value compared with
CDC20 or PTGDS alone (AUC: 0.72 [95% confidence interval (CI): 0.61–0.79] compared with 0.62 [0.53–0.68],
P=0.026; AUC: 0.72 [95% CI: 0.61–0.79] compared with 0.65 [0.57–0.72], P=0.039; Figure 7).
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Figure 5. Kaplan–Meier curves of OS for patients with high or low hub gene expression in TCGA DLBC

(A–F) Kaplan–Meier curves of OS for DLBCL patients with high or low CDC20, MELK, PBK, PTGDS, PCNA, and CDK1 expression

in TCGA DLBC. Analysis was performed using SPSS 20.0.

Figure 6. Kaplan–Meier curves of OS for DLBCL patients based on expression of the six hub genes in GSE31312

(A–F) Comparative OS between CDC20, MELK, PBK, PTGDS, PCNA, and CDK1 higher and lower expression levels in GSE31312.

Analysis was performed using R2.
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Figure 7. Comparisons of the sensitivity and specificity for survival prediction using the combined CDC20 and PTGDS

model, the CDC20 alone model, or the PTGDS alone model

Figure shows the ROC curves in the DLBCL cohort based on TCGA. P-values indicate the AUC of the combined CDC20 and

PTGDS model compared with that of the CDC20 alone model or the PTGDS alone model.

Figure 8. The methylation levels of CDC20 and PTGDS in the TCGA DLBC

(A,B) For methylation array data, the β-value for CDC20 is illustrated as box plot and bar chart. (C,D) The box plot and bar chart

for PTGDS methylation levels based on β-value(s).

CDC20 expression is negatively regulated by DNA methylation
We analyzed the 450 K methylation array data from TCGA DLBC to verify whether CDC20 or PTGDS expression
may be regulated by their DNA methylation status. By comparing CDC20 and PTGDS DNA methylation levels, we
found that the CDC20 gene was hypomethylated in the DLBCL dataset (β-value: 0.0375 +− 0.0132, Figure 8A,B), while
PTGDS was hypermethylated (β-value: 0.4744 +− 0.1676, Figure 8C,D). Furthermore, we confirmed that CDC20
expression was reduced with increasing DNA methylation (Figure 9A,B), but PTGDS expression was not regulated
by its DNA methylation status (Figure 9C,D).
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Figure 9. The DNA methylation levels of CDC20 and PTGDS and their prognostic value in TCGA DLBC

CDC20 expression is negatively regulated by DNA methylation: Heatmap of (A) CDC20 expression and (B) CDC20 DNA methylation

from TCGA DLBC. Heatmap of (C) PTGDS expression and (D) PTGDS DNA methylation from TCGA DLBC. High CDC20 methylation

may be an indicator of favorable OS in patients with DLBCL. Associations between (E) CDC20 and (F) PTGDS DNA methylation

levels and OS show that high CDC20 methylation may be an indicator for favorable OS in TCGA DLBC.

High CDC20 methylation may be an indicator of favorable OS in patients
with DLBCL
Based on the above results, high CDC20 or low PTGDS expression may be a predictor for poor OS in DLBCL pa-
tients. We hypothesized that their methylation status may be associated with OS. Hence, we examined whether their
methylation status was associated with OS. Compared with low CDC20 methylation, patients with high CDC20
methylation had significantly better OS (P=0.041) (Figure 9E). However, we failed to identity significant association
between PTGDS methylation levels and OS (Figure 9F).

Discussion
Abundant basic and clinical studies have tried to decipher the cause and underlying mechanisms for DLBCL. This
has led to a serious challenge for the diagnosis and treatment of DLBCL. This may be due to the majority of the
studies having focussed on a single molecular event [13] or that the results generated from single cohorts with ge-
netic heterogeneity [14]. In this study, we integrated three DLBCL cohorts profile datasets covering different peri-
ods and countries. We utilized bioinformatics methods to comprehensively analyze these databases, and identified
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153 overlapping DEGs with 74 up-regulated and 79 down-regulated genes. Furthermore, GO analysis indicated that
the overlapped genes were mostly involved in cell cycle process, cell division, M phase, transcription, regulation of
RNA metabolic process and purine nucleotide metabolic process at the BP level. Furthermore, the signaling pathway
enrichment analysis revealed that the majority of the overlapped DEGs were enriched for cell cycle check points,
APC-Cdc20-mediated degradation of Nek2A, cell cycle, EMT, oocyte meiosis, and hematopoietic cell lineage sig-
naling pathway. Cell cycle, oocyte meiosis, and EMT were identified as the major pathways for the most significant
module of the overlapped DEGs. Our study offers new insights into the molecular mechanisms of tumorigenesis and
progression of DLBCL and identified hub genes that may be potential therapeutic or diagnostic targets for DLBCL.

In recent years, integrated bioinformatics analysis has been progressively used for understanding cancer pathogen-
esis, development of potential biomarkers and molecular target therapies for diagnosis, and for the prognostication
and treatment for various cancers. Ma et al. [15] identified CXCR4 as a potential biomarker for glioblastoma multi-
forme using integrated bioinformatics analysis and found that low expression of CXCR4 may indicate favorable OS
for GBM patients. In addition, another study showed that the expression of BUB1B and CENPF were up-regulated
in nasopharyngeal carcinoma and their high expression was associated with poor OS [16]. Similar studies have also
been reported for DLBCL. Song et al. demonstrated that CD59 could predict response and outcome of DLBCL pa-
tients treated with R-CHOP in a single cohort study [14]. Another study identified a single molecular biomarker
for the diagnosis and treatment of DLBCL using bioinformatics analysis [13]. However, compared with our study,
their studies only analyzed gene expression profiles or only identified a single biomarker to predict survival. In our
study, hub genes were selected by the degree of connectivity. We integrated three gene expression profiles, and then
combined the results of MCODE and PPI to identify hub genes. Furthermore, we developed a CDC20–PTGDS com-
bination panel to predict OS with more sensitively. Finally, our model was validated using TCGA DLBC and another
independent cohort GSE31312 to increase confidence of our model.

In our study, six hub genes, i.e. CDC20, MELK, PBK, PTGDS, PCNA, and CDK1 were narrowed down, of which,
CDC20 and PTGDS were the most significantly associated with OS. A number of these genes have been reported
as biomarkers in previous studies. CDC20 is an oncogene that plays a pivotal role in mitotic progression. Suppress-
ing the activity of CDC20 regulates the cell cycle and promotes apoptosis [17]. Wu et al. [18] reported that CDC20
was highly expressed in colorectal cancer and concluded that CDC20 was a predictor for adverse clinical outcomes
and an independent prognostic factor. Kidokoro et al. [19] demonstrated that CDC20 repression mediates the tumor
suppressive function of p53. These findings are in-line with p53 inactivation observed in various cancer tissues in-
cluding glioma, lung cancer, and breast ductal carcinoma and is likely due to CDC20 up-regulation [19]. In human
adult T-cell-leukemia (ATL) cells, studies have demonstrated that APCCDC20 is a physiological E3 ligase that pro-
motes the ubiquitination and destruction of the tumor suppressor, Bim, thus conferring resistance of cancer cells to
chemoradiation.

Our study provides a rationale for developing specific CDC20 inhibitors as efficient anticancer agents [20]. Al-
though several studies have assessed the role of CDC20 for the initiation and progression of several human cancers
including colorectal cancer, lung cancer, glioma, and ATL, few have studied the role of CDC20 in DLBCL. We veri-
fied the expression of CDC20 in DLBCL tissue was significantly higher compared with normal tissue, and patients
with high CDC20 levels had an adverse prognosis. The expression level and clinical function of CDC20 in DLBCL
is consistent with previous studies.

Several recent studies have demonstrated that PTGDS has important vascular functions [21] as well as being as-
sociated with cancer [22,23]. Several other studies have reported that PTGDS expression is lower in gastric cancer
tissues compared with PTGDS, which was associated with better prognosis [24]. Similar results have also been ob-
served in lung cancer [25]. Our study is the first to demonstrate the expression pattern of PTGDS and its prognostic
value for DLBCL patients. In-line with previous studies, the expression level of PTGDS in our study was significantly
lower in DLBCL compared with normal tissue. Based on survival analysis, we also demonstrated that low PTGDS
expression levels were significantly correlated with poor OS in DLBCL patients based on data from TCGA DLBC and
an independent cohort GSE31312 dataset.

EMT has been shown to enhance solid tumor metastasis, invasion, and proliferation [26]. Omori et al. [27] reported
that endothelial PTGDS deficiency could lead to accelerated vascular hyperpermeability, angiogenesis, and EMT in
tumors, which in turn reduced tumor cell apoptosis. In our study, pathway enrichment analysis demonstrated that
PTGDS was enriched in EMT and was in-line with the above-mentioned studies in which deficiency in PTGDS in-
duced EMT. Lemma et al. [26] showed that EMT is also present in lymphomas. Both ZEB1 and Slug, EMT-mediating
transcription factors (TFs), were highly expressed and associated with adverse prognosis in DLBCL. Taken together,
we hypothesized that PTGDS inhibits EMT and suppresses tumor proliferation and invasion by regulating the ex-
pression of ZEB1 and Slug in DLBCL. Future experiments need to be performed to verify this hypothesis.

c© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Recent studies suggest that DNA repair enzyme MGMT methylation is a significant prognostic factor for patients
with DLBCL [28,29]. However, the prognostic role of CDC20 and PTGDS methylation levels in DLBCL has never
been reported previously. By data mining using the DLBCL cohort in the TCGA database, CDC20 hypomethyla-
tion and PTGDS hypermethylation were observed in DLBCL patients. We demonstrated that CDC20 expression
was negatively regulated by its DNA methylation, whereas PTGDS was not affected by its methylation status. DNA
promoter methylation may have prognostic value for DLBCL [30]. We examined the prognostic value of CDC20
promoter methylation in DLBCL and found that favorable OS was observed in patients with high CDC20 promoter
methylation (P=0.041). This suggests that CDC20 promoter methylation status may be a biomarker for predicting
OS in patients with DLBCL.

Combined predictive models for OS is superior to predictive models relying on a single predictor [31]. Liu et al.
[32] reported that combining two independent prognostic factors, i.e. a five miRNA signature and TNM stage, was
a more sensitive predictor for nasopharyngeal carcinoma. In another study, the FGD3-SUSD3 metagene model was
demonstrated to have a superior prognostic value for breast cancer [33]. Our two genes combined panel for DLBCL, in
which low CDC20 expression and high PTGDS expression, had a superior prognostic value compared with CDC20
or PTGDS alone. This CDC20-PTGDS combined model could allow clinicians to identify high-risk patients and
lead to a more personalized treatment strategy for patients with DLBCL.

Conclusion
In summary, CDC20 and PTGDS were identified from the DEGs and CDC20 overexpression and PTGDS low ex-
pression were associated with poor prognosis. CDC20 expression is negatively regulated by DNA methylation in
DLBCL and its hypomethylation may be a potential indicator for adverse OS. In addition, our study demonstrated
that cell cycle, oocyte meiosis, and EMT were potential mechanisms and pathways associated with DLBCL. However,
we need to perform additional experiments to verify our results generated from our bioinformatics analysis.

It has been reported that a single biomarker or pathway is not sufficient to explain cancer pathogenesis because
of the complex molecular mechanisms that govern oncogenesis [34]. Hence, we assembled a prognostic score model
combining the expression levels of CDC20 and PTGDS. This combined gene expression model was more sensitive
with higher predictive power. In our present study, prognostic signatures including CDC20 and PTGDS were iden-
tified from the DEGs and could predict OS in DLBCL patients, which will provide useful guidance for therapeutic
applications.
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