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XPG gene contributes to DNA repair defects and genomic instability, which may lead to the
initiation of uterine leiomyoma. We hypothesized that genetic variants of XPG gene may alter
the carriers’ susceptibility to leiomyoma. The association between five potential functional
single nucleotide polymorphisms (SNPs), i.e. rs2094258 C>T, rs751402 C>T, rs2296147
T>C, rs1047768 T>C, rs873601 G>A, and uterine leiomyoma risk in Chinese, was inves-
tigated in this case–control study, which included 398 incident leiomyoma cases and 733
controls. We found that rs873601 was significantly associated with tumor risk in a recessive
genetic model after being adjusting for age and menopause. When compared with rs873601
GG/GA genotypes, the AA genotype had an increased leiomyoma risk (adjusted OR = 1.59,
95% CI = 1.16–2.18, P=0.004; Bonferroni adjusted P=0.040). Furthermore, stratified anal-
ysis revealed that the association between the rs873601 AA genotype and leiomyoma risk
was more evident among subjects younger than 40 years old (adjusted OR = 1.58, 95% CI
= 1.06–2.35, P=0.023) and patients who had more than three myomas (adjusted OR = 2.05,
95% CI = 1.24–3.41, P=0.006). Yet, no significant association between the other four poly-
morphisms and leiomyoma risk was observed. To sum up, the present study reported on the
association between XPG gene polymorphisms and myoma risk. The observed data indi-
cated that SNP rs873601 G>A contributes to uterine leiomyoma susceptibility in a Southern
Chinese population.

Introduction
Uterine leiomyoma, also known as myomata or fibroids, is the most common pelvic tumor in women [1].
Increased serum oxidative stress, which induces DNA lesions, has been associated with this type of benign
tumor [2]. Likewise, environmental tumorigenic agents can also damage DNA, while different DNA repair
mechanisms have been reported to alleviate such DNA damages [3]. Therefore, the polymorphisms of
some DNA repair genes have been reported associated with leiomyoma risk [4-6].

Xeroderma pigmentosum group G, also known as XPG, RAD2 or ERCC5, is a 1,186-amino acid
structure-specific endonucleases, which belongs to the nucleotide excision repair (NER) pathway, one
of five known major DNA repair mechanisms [7]. The endonucleases XPG is important in maintaining
genomic stability. XPG is a DNA damage recognition protein that binds and cleaves damaged DNA, which
is followed by the excision of a 24- to 32-bp segment containing the bulky adduct at the 3’ and 5’ ends of
the damaged site; finally, the resultant gap is filled by DNA synthesis and ligation [8]. In addition, XPG is
involved in the RNA transcription through interaction with other transcription activator complexes, such
as TFIIH [9], RNA polymerase II [10] and Gadd45a [11], which eventually influences mutagenesis and
cell death. This protein is encoded by XPG gene, which is located on human chromosome 13q22-q33,
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spans 69kb length, contains 15 exons, and is highly polymorphic [12]. A serious of reports have revealed the associa-
tion between the XPG gene polymorphisms and tumor risk, including colorectal cancer [13], gastric cancer [14-16],
lung cancer [17], head and neck cancer [18], and neuroblastoma [19]. Nevertheless, no associations between XPG
gene and leiomyoma risk have been reported so far. We hypothesized that genetic variants of XPC gene may modulate
the carriers’ susceptibility to uterine leiomyoma.

Therefore, we conducted the current case–control study in a Southern Chinese population to understand the as-
sociations between the potential functional polymorphisms of XPG gene and the risk of uterine leiomyoma.

Materials and methods
Study population
Three hundred and ninety-eight patients with incidentally histologically confirmed leiomyoma and 733 healthy con-
trols without uterine tumor (or other diseases), verified by ultrasonic examination, were enrolled at Bao’an Maternal
and Child Health Hospital, Jinan University between January 2015 and February 2018. The respond rate of patiens and
controls were 98.8% and 85.9%, respectively. All the research subjects were unrelated ethnic Han Chinese population
from Southern China.

First, demographic characteristics (age and menopause), and tumor characteristics, including, numbers, sites, and
diameters were obtained from all patients. Next, 2 ml of venous blood sample was collected from each subject after
interview and signing the consent form.

The present study was approved by the Ethics Committee of the Bao’an Maternal and Child Health Hospital, Jinan
University (IRB No: LLSC2018-02-01).

SNPs selection and genotyping
The potentially functional single nucleotide polymorphisms (SNPs) were selected by using the NCBI dbSNP database
and SNPinfo (http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm). The applied criteria were described earlier [13,15],
briefly as following: (1) the minor allele frequency reported in HapMap was more than 5% for Chinese Han subjects;
(2) SNPs were located in the 5’-flanking region, exon, 5’-untranslated region (5’-UTR) and 3’-UTR, which might
affect transcription activity and the microRNA-binding site activity and (3) SNPs were in low linkage disequilibrium
with each other (R2 < 0.8). The widely reported SNP rs17655 G>C was excluded because of its linkage disequilibrium
(LD) with rs873601 G>A (R2 = 0.91). As a result, five potential functional SNPs (rs2094258 C>T, rs751402 C>T,
rs2296147 T>C, rs1047768 T>C, and rs873601 G>A) were included in the present study.

Genomic DNA was extracted from blood samples using the Qiagen Blood DNA Mini Kit (Qiagen Inc., Valen-
cia, CA, U.S.A.) according to the manufacturer’s instructions of the manufacturer. As described previously [20], we
performed genotyping of above SNPs was performed by the Taqman real-time polymerase chain reaction method
using a 7900 Sequence Detection System (Thermo Fisher Scientific, Waltham, MA, U.S.A.). To achieve more reliable
genotyping results, four duplicated positive controls and four negative controls without DNA template were loaded
in each of 384-well plates. Genotyping was repeated on 10% of the samples randomly selected from the subjects, and
the results were 100% concordant.

Statistical analysis
Statistical analyses were performed as described earlier [21]. Briefly, we compared the differences between cases
and controls regarding demographic characteristics, such as age and menopause, by using Chi-square test and Stu-
dent’s t test; then we tested whether the genotype frequency distribution of each polymorphism in controls was in
Hardy–Weinberg equilibrium through Goodness-of-fit χ2 test. Odds ratios (ORs) and 95% confidence intervals (CIs)
were calculated to estimate the associations between each SNP and gastric cancer risk, using univariate and multi-
variate logistic regression models. Bonferroni correction was used to correct for multiple comparisons of SNPs, that
is, the Bonferroni adjusted P value = (P value of tested SNP) × k!/(2!(k − 2)!), where k was the number of total SNPs.
Further stratification analysis by age, menopause, and tumor characteristics (numbers, sites, and diameters) was also
performed. All statistical analysis was performed using SPSS software (version 18.0; SAS Institute Inc., Chicago, IL,
U.S.A.). A two-sided statistical significance level of 0.05 was chosen.

Results
Subject’s characteristics
The clinical and demographic characteristics of the study population, including 398 leiomyoma cases and 733 healthy
controls, was described as Supplementary Table S1. Compared with controls, the cases were more likely to be younger
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Table 1 Association between XPG gene polymorphisms and uterine fibroid risk

Genotypes Cases, n (%) Controls, n (%) HWE P* OR (95% CI) P AOR (95% CI) P†

rs2094258 C>T

CC 167 (42.0) 330 (45.0) 0.813 1.00 1.00

CT 178 (44.7) 328 (44.7) 1.07 (0.83–1.39) 0.599 1.09 (0.82–1.43) 0.562

TT 53 (13.3) 75 (10.3) 1.40 (0.94–2.08) 0.100 1.48 (0.95–2.29) 0.081

Dominant 231 (58.0) 403 (55.0) 1.13 (0.89–1.45) 0.322 1.16 (0.89–1.51) 0.285

Recessive 345 (86.7) 658 (89.8) 1.35 (0.93–1.96) 0.119 1.42 (0.94–2.14) 0.100

rs751402 C>T

CC 150 (37.6) 271 (37.0) 0.553 1.00 1.00

CT 194 (48.4) 358 (48.8) 0.98 (0.75–1.28) 0.876 0.95 (0.71–1.26) 0.718

TT 54 (13.6) 104 (14.2) 0.94 (0.64–1.38) 0.745 0.89 (0.59–1.34) 0.573

Dominant 248 (62.3) 462 (63.0) 0.97 (0.75–1.25) 0.812 0.94 (0.71–1.23) 0.628

Recessive 344 (86.4) 629 (85.8) 0.95 (0.67–1.35) 0.774 0.92 (0.63–1.34) 0.648

rs2296147 T>C

TT 257 (64.6) 443 (60.4) 0.171 1.00 1.00

CT 121 (30.4) 260 (35.5) 0.80 (0.62–1.03) 0.089 0.80 (0.60–1.07) 0.128

CC 20 (5.0) 30 (4.1) 1.15 (0.48–2.74) 0.754 1.20 (0.81–2.97) 0.679

Dominant 141 (35.4) 290 (39.6) 0.84 (0.66–1.07) 0.152 0.86 (0.66–1.14) 0.294

Recessive 378 (95.0) 703 (95.9) 1.24 (0.60—2.57) 0.564 1.32 (0.78–3.19) 0.579

rs1047768 T>C

TT 209 (52.5) 367 (50.0) 0.338 1.00 1.00

CT 154 (38.7) 311 (42.4) 0.87 (0.67–1.13) 0.287 0.86 (0.65–1.13) 0.282

CC 35 (8.8) 55 (7.5) 1.12 (0.71–1.76) 0.634 1.10 (0.67–1.81) 0.703

Dominant 189 (47.5) 366 (49.9) 0.91 (0.71–1.16) 0.432 0.90 (0.69–1.17) 0.410

Recessive 363 (91.2) 678 (92.5) 1.19 (0.77–1.85) 0.444 1.18 (0.73–1.91) 0.505

rs873601 G>A

GG 108 (27.1) 201 (27.4) 0.305 1.00 1.00

GA 183 (46.0) 381 (52.0) 0.89 (0.67–1.20) 0.453 0.83 (0.61–1.14) 0.251

AA 107 (26.9) 151 (20.6) 1.32 (0.94–1.86) 0.111 1.41 (0.97–2.06) 0.071

Dominant 290 (72.9) 532 (72.6) 1.02 (0.77–1.33) 0.918 0.98 (0.73–1.32) 0.900

Recessive 291 (73.1) 582 (79.4) 1.42 (1.07–1.89) 0.016 1.59 (1.16–2.18) 0.004

Notes: *Goodness-of-fit χ2 test; †adjusted for age, and menopause
Abbreviations: AOR, adjusted OR; CI, confidence interval; HWE, Hardy–Weinberg equilibrium; OR, odds ratio.
Statistically significant associations are indicated by bold text.

(for subjects <40 years, 68.8% vs. 39.4%, P<0.001) and reproductive females (98.2% vs. 67.3%, P<0.001). Among
the leiomyoma cases, nearly 40% (156 cases) had more than two myomas, and they were more commonly located in
intramural (66.8%, 266 cases) and subserous (20.9%, 83 cases) region.

Associations between XPG gene polymorphisms and leiomyoma risk
Table 1 summarized the genotype distributions of the selected XPG gene polymorphisms in all subjects. The genotype
frequency distributions of all SNPs in the control subjects were in agreement with Hardy–Weinberg equilibrium (all
P>0.05, Table 1).

Next, we examined the association between the above morphisms and myoma risk. Variables including age and
menopause were adjusted for in the subsequent multivariate logistic regression analyses (Table 1). The logistic re-
gression analysis showed that polymorphism rs873601 G>A was significant associated with tumor risk in a reces-
sive genetic model after adjusting for age and menopause. When compared with rs873601 GG+GA genotypes, the
rs873601 AA variant genotype had an increased leiomyoma risk (adjusted OR = 1.59, 95% CI = 1.16–2.18, P=0.004;
Bonferroni adjusted P=0.040). While no associations between other four polymorphisms (rs2094258 C>T, rs751402
C>T, rs2296147 T>C, and rs1047768 T>C) and tumor risk were observed in either of the three genetic models.

Stratification analysis
We further investigated the potential association between the most important polymorphism rs873601 G>A of XPG
gene and the leiomyoma risk in the stratified study by age, menopause, and tumor characteristics (numbers, sites,
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Table 2 Stratification analysis for association between XPG rs873601 G>A genotypes and uterine fibroid risk

Genotypes rs873601 G>A (cases/controls) OR (95% CI) P AOR (95% CI) P †

GG+GA AA

Age, years

<40 200/234 74/55 1.58 (1.06–2.34) 0.025 1.58 (1.06–2.35) 0.023

≥40 91/348 33/96 1.32 (0.83–2.08) 0.242 1.65 (0.98–2.77) 0.066

Menopause

No 285/403 106/90 1.67 (1.21–2.29) 0.002 1.65 (1.20–2.28) 0.002

Yes 6/179 1/61 0.49 (0.06–4.14) 0.512 0.59 (0.07–5.12) 0.630

No. of myoma

1 178/582 64/151 1.39 (0.99–1.94) 0.058 1.55 (1.08–2.24) 0.019

2 54/582 16/151 1.14 (0.64–2.05) 0.657 1.31 (0.72–2.39) 0.380

≥3 59/582 27/151 1.76 (1.08–2.88) 0.023 2.05 (1.24–3.41) 0.006

Site of myoma*

Intramural 204/582 62/151 1.17 (0.84–1.64) 0.356 1.32 (0.92–1.90) 0.128

Subserous 52/582 31/151 2.30 (1.42–3.71) 0.001 2.60 (1.56–4.32) <0.001

Other types 35/582 14/151 1.54 (0.81–2.94) 0.188 1.80 (0.93–3.49) 0.081

Diameter, mm*

≤5.0 110/582 50/151 1.74 (1.19–2.54) 0.004 1.96 (1.31–2.94) 0.001

>5.0 180/582 57/151 1.22 (0.86–1.73) 0.261 1.39 (0.95–2.02) 0.086

Notes: *in the biggest myoma; †adjusted for age, and menopause.
Abbreviations: AOR, adjusted OR; CI, confidence interval; OR, odds ratio.
Statistically significant associations are indicated by bold text.

and diameters) (Table 2). The rs873601 AA variant genotype was found to be associated with a significantly increased
risk of uterine leiomyoma among individuals younger than 40 (adjusted OR = 1.58, 95% CI = 1.06–2.35, P=0.023),
when GG+GA genotypes served as the reference. Similarly, when compared with the reference genotypes, carriers of
rs873601AA genotype had a significantly increased risk of leiomyoma among reproductive females (adjusted OR =
1.65, 95% CI = 1.20–2.28, P=0.002), cases with one myoma (adjusted OR = 1.55, 95% CI = 1.08–2.24, P=0.019)
or more than three myomas (adjusted OR = 2.05, 95% CI = 1.24–3.41, P=0.006), subjects with myomas located in
subserous (adjusted OR = 2.60, 95% CI = 1.56–4.32, P<0.001), and myomas’ diameter less than 5 mm (adjusted OR
= 1.96, 95% CI = 1.31–2.94, P=0.001).

Because of very few subjects in the subgroups, such as menopause females, some subgroups were not significantly
associated with the risk of leiomyoma risk.

Discussion
In the present study, we found that XPG polymorphism rs873601 G>A was associated with an increased leiomyoma
risk. In addition, this association was more evident among younger subjects and those with multiple myomas. To the
best of our knowledge, this is the first study that reported on the association of XPG polymorphisms with uterine
leiomyoma.

Some studies have investigated the role of XPG polymorphisms in different other tumors. In an Eastern Chinese
population, rs873601A variant genotypes (GA+AA) was associated with a significantly elevated risk of gastric cancer
[15]. However, the association between this SNP and gastric cancer has not been validated in a Southern Chinese
population in another study [22]. Moreover, Wang et al. [23] reported that this SNP was associated with hepatocellu-
lar cancer risk by single-locus analysis only in screening stage. Besides, Hua et al. [24] reported that rs873601 A allele
can also contribute to the susceptibility of colorectal cancer in a Southern Chinese population with a total of 1,901
cases and 1,976 controls. Two studies have performed comprehensive meta-analyses to evaluate the association of
XPG polymorphism rs873601 with cancer risk: Han et al. [25] found that polymorphism rs873601 was significantly
associated with overall cancer risk, using data from 12 studies, including 9,158 cases and 10,073 controls focus on
rs873601; while another meta-analysis study that included data from 23 reports found that this polymorphism was
related to the cancer susceptibility only in Asians [26]. The ethnic and demographic differences among studies might
be partly due to the enormously different frequencies of the rs873601 A allele in different groups (0.48 in Chinese,
CHB; 0.53 in Caucasian, CEU; 0.30 in Africans (YRI), according to HAPMAP database, www.hapmap.org/). In addi-
tion to tumorigenesis, polymorphism rs873601G>A has also been reported the association with poorer disease-free
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survival and overall survival, in Chinese patients with esophageal squamous cell cancer receiving platinum-based
adjuvant chemotherapy [27]. Combined with the above reports, our results suggested that this SNP might be used as
surrogate marker for tumor risk.

XPG gene plays the critical role in the NER pathway. Briefly, XPG cleaves the DNA strand at the 3’ side of the
damaged site and stabilizes the DNA repair complex [28-30]. Thus, functional XPG variants may alter the DNA
repair capacity of NER, thus modifying the risk of leiomyoma. Additionally, XPG rs873601 is a cis-regulatory SNP,
which might be related to gene expression [31]. Thereby, our results on the association of leiomyoma risk and XPG
rs873601 G>A polymorphism are biologically plausible.

Our data suggested that the risk effect of XPG rs873601 AA genotypes remained significant in the subgroups
of younger subjects (<40 years old) and those with multiple myomas (≥3). Youngers are usually more exposed to
less environmental mutagens, thus the role of genetic variants in tumor case might outweighed than enviromental
factors in tumorigenesis. In addition, we also found that the association between an increased tumor risk and this SNP
(rs873601 AA) was more evident in cases carrying more myomas. Because the activities of NER are associated with
cell proliferation, i.e. tumor number [31], it is possible to explain the association between this SNP and an increased
risk in tumor numbers.

The present study had some limitations: first, it was a hospital-based case–control study, restricted only to a Chinese
Han population. However, the genotype frequencies of all studied SNP among controls well fit the Hardy–Weinberg
disequilibrium law, suggesting the subjects’ selection is in random. Second, the controls were older than the cases in
the present study. Nevertheless, these selection criteria might be helpful for excluding some “future” tumor case. Third,
some other risk factors should be considered in later studies, such as metabolism, hormones, and environmental
factors [32].

In conclusion, our data suggested that the XPG rs873601 G>A polymorphism was associated with an increased
leiomyoma risk. Future well-designed, prospective studies with larger sample size, involving different ethnicities, are
needed to confirm these findings.
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