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Cystamine is commonly used as a transglutaminase inhibitor. This disulphide undergoes
reduction in vivo to the aminothiol compound, cysteamine. Thus, the mechanism by which
cystamine inhibits transglutaminase activity in vivo could be due to either cystamine or cys-
teamine, which depends on the local redox environment. Cystamine inactivates transglu-
taminases by promoting the oxidation of two vicinal cysteine residues on the enzyme to
an allosteric disulphide, whereas cysteamine acts as a competitive inhibitor for transami-
dation reactions catalyzed by this enzyme. The latter mechanism is likely to result in the
formation of a unique biomarker, N-(γ-glutamyl)cysteamine that could serve to indicate how
cyst(e)amine acts to inhibit transglutaminases inside cells and the body.

Introduction
Cystamine is a symmetric organodisulphide commonly used as an inhibitor of transglutaminases. This
disulphide is also reduced to cysteamine within the body. Cystamine and cysteamine both inhibit transglu-
taminases but by different mechanisms. Therefore, the purpose of this discussion is to highlight the redox
behavior of cystamine and cysteamine in vivo and the mechanisms by which cystamine and cysteamine
inhibit the activity of transglutaminases inside the body.

Transglutaminases and the formation of cross-linked
proteins in disease
Transglutaminases catalyze nucleophilic substitutions of the carboxamide group of glutaminyl residues
[1,2]. The attacking nucleophiles are typically the amines of various compounds, but can include hydroxyl
moieties and H2O depending on the transglutaminase isozyme or conditions. Thus, subject to the nucle-
ophile, transglutaminases catalyze transamidation, esterification, or deamidation of glutaminyl residues.
Transamidation involving the ε amine of lysyl residues is the reaction most often catalyzed by transglutam-
inases and results in the formation of Nε-(γ-glutamyl)lysine isodipeptide linkages between polypeptide
chains (Figure 1A). A number of important pathologies exhibit both aberrant transglutaminase activity
and increased production of Nε-(γ-glutamyl)lysine cross-linked proteins (e.g., neurodegenerative disor-
ders [3-12] and cardiovascular disease [13-20]). The involvement of increased transglutaminase activity
in neurodegenerative or cardiovascular diseases is supported by the observation that genetic inactivation
of various transglutaminases in animal models slows progression of these diseases [21-26]. The preceding
observation and others prompted a search for medicinal transglutaminase inhibitors [27-29], as well as
testing of cystamine in disease models and patients [30-45]. These tests indicate that cystamine might be
of benefit in the treatment of selected diseases.
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Figure 1. Reactions of cyst(e)amine with transglutaminases and cystine

(A) Transglutaminase-catalyzed Nε (γ-glutamyl)lysine isodipeptide formation: transglutaminases catalyze an acyl transfer reaction

that proceeds by a Bi-Molecular or Ping-Pong mechanism. Activated transglutaminases first act to form a thioester bond between

the active site Cys277 and the carboxamide moiety of glutaminyl residues. Formation of this intermediate involves the release of

the amide nitrogen as ammonia, which powers the subsequent catalysis. The thioester bond then undergoes a nucleophilic attack

by the ε amine of lysine to complete the acyl transfer and produce Nε (γ-glutamyl)lysine isodipeptide linkage. These dipeptides

can then be released from the protein by hydrolysis of the peptide linkages. (B) Oxidative inactivation of transglutaminase 2 by

cystamine by the mechanism of Lorand and Conrad [46]: in this model, the thiol moiety of Cys277 participates in thiol-disulphide

interchange with cystamine to produce cysteamine–Cys277 mixed disulphide. (C) Oxidative inactivation of transglutaminase 2 by

cysteamine by our interpretation of the mechanism of Palanski and Khosla [48]: in this model, cystamine first forms mixed disul-

phides with Cys370 and Cys371. Cys230 then undergoes thiol–disulphide interchange with cysteamine–Cys230 mixed disulphide.

The newly reduced Cys371 then reduces the mixed disulphide of cysteamine–Cys370 while being oxidized to the Cys370–Cys371

disulphide. It is also possible that the Cys230 undergoes thiol–disulphide interchange with the cysteamine–Cys370 mixed disulphide

rather than the cysteamine–Cys371 mixed disulphide. In either case, the Cys370–Cys371 disulphide would form and allosterically

regulate the enzyme. (D) Thiol–disulphide interchange of cysteamine and cystine: cysteamine interacts with cystine by thiol–disul-

phide interchange to from the cysteamine–cysteine mixed disulphide. Note that the latter resembles the lysyl residue depicted in

(A). (E) Transglutaminase-catalyzed N-(γ-glutamyl)cysteamine formation: a mechanism for the competitive inhibition of transglu-

taminase by cysteamine. This mechanism is analogous to that shown in (A) and for the sake of brevity begins with thioester bound

intermediate. The thio–ester bond is attacked by the amine nitrogen of cysteamine to complete the acyl transfer and produce

N-(γ-glutamyl)cysteamine. We propose that N-(γ-glutamyl)cysteamine is released from the protein by proteolysis, as is the case

for other N-(γ-glutamyl)amines.
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Oxidative mechanisms for the inhibition of
transglutaminases by cystamine
Cystamine was first reported to be an inhibitor of transglutaminase 2 by Lorand and Conrad in 1984 [46]. They
hypothesized that cystamine and the active site Cys277 undergo a thiol-disulphide interchange to produce a mixed
disulphide that prevents catalysis (Figure 1B). Cystamine is the disulphide form of cysteamine. Thus, the proposed
thiol-disulphide interchange (thiolation) produces free cysteamine and a mixed disulphide of cysteamine and Cys277.
An ‘oxidative mechanism’ for the inhibition of transglutaminase 2 is supported by subsequent investigations by Jeon et
al. [47], and also by Palanski and Khosla [48]. The latter researchers, however, proposed a modified hypothesis, which
states that cystamine forms mixed disulphides with a triad of cysteinyl residues on the surface of transglutaminase 2
that regulates the activation of the extracellular pool of this enzyme. According to Palanski and Khosla [48], cystamine
reacts with Cys230, Cys370, or Cys371 to promote the eventual formation of an allosteric disulphide bond between Cys370

and Cys371 as shown in Figure 1C. These mechanisms, however, presume that cystamine is not metabolized en route
to the targetted transglutaminases; a presumption that is not supported by pharmacokinetic studies.

Conversion of cystamine into cysteamine within the body
Cystamine is rapidly reduced to cysteamine by serum, as well as by the liver and kidneys [49]. By contrast, cys-
teamine is relatively stable in plasma and rapidly absorbed from blood into tissues [49-53]. Prior to cellular uptake,
cysteamine undergoes thiol-disulphide interchange with extracellular cystine to form cysteamine–cysteine mixed
disulphide (Figure 1D), which resembles lysine [54,55]. Consequently, the cysteamine–cysteine mixed disulphide
enters cells through amino acid transporters and is then reduced to cysteamine and cysteine. Thus, the major form
in which cystamine inhibits intracellular transglutaminases is cysteamine and not cystamine.

Cysteamine as an inhibitor of intracellular transglutaminases
In earlier studies, we demonstrated that cysteamine acts as a substrate for transglutaminase 2 to link this compound
to glutaminyl residues by way of an isopeptide linkage forming N-(γ-glutamyl)cysteamine (Figure 1E) [56]. In other
words, cysteamine by virtue of being a transglutaminase 2 substrate, acts as a competitive inhibitor of the other amine
substrates of this enzyme. Cystamine has not been shown to be an amine substrate of transglutaminase 2, an assertion
erroneously attributed to us elsewhere [48]. Formation of N-(γ-glutamyl)cysteamine by transglutaminases could ac-
count for two puzzling observations pertaining to the metabolism of exogenously supplied cysteamine. The first of
these observations is that a significant portion of the administered cysteamine is unaccounted for following analysis
of established routes of metabolism. Cysteamine generated endogenously by the catabolism of pantetheine is oxi-
dized to hypotaurine and then taurine [57]. The administration of cysteamine to rodents, however, does not result
in significant accumulation of hypotaurine or taurine in brain or plasma [49], and indicates that the metabolism of
exogenous cysteamine bypasses oxidation to taurine. A small portion of cysteamine administered per os is metab-
olized to thialysine and then S-(2-aminoethyl)l-cysteine ketimine decarboxylated dimer [50]. Based on the levels of
cysteine that accompany cysteamine into cells as a mixed disulphide, significant quantities of cysteamine must enter
cells [38,49-51,54,55] but it is then rapidly metabolized. The cellular fate of the majority of exogenous cysteamine
remains unaccounted for.

A role for transglutaminases in the metabolism of cysteamine
A novel hypothesis for the metabolism of cysteamine is that it is covalently attached to proteins by intracellular trans-
glutaminases. This hypothesis is supported by the observation that a significant portion of radiolabeled cysteamine
administered to animals or cells is covalently bound to proteins, but not by disulphide bonds [58,59]. This hypothesis
requires that the intracellular transglutaminases be activated while cysteamine is being absorbed by cells. Transglu-
taminases are activated by calcium. Exogenous cysteamine may stimulate calcium release from intracellular stores
and thereby promote transglutaminase activity. This mechanism depends on the production of hydrogen peroxide
(H2O2), by micromolar amounts of cysteamine. At these concentrations, thiols (RSH) such as cysteamine reduce
transition metals (Mn → Mn−1, where n is the oxidation number), while being oxidized to the corresponding disul-
phide (RSSR):

2RSH + 2Mn � RSSR + 2Mn−1 + 2H+
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The reduced metals, in turn, reduce oxygen (O2) to superoxide (O−
2̇ ):

Mn−1 + O2 � Mn + O−
2̇

Dismutation of superoxide yields hydrogen peroxide (H2O2), which is a mild oxidant at physiological pH values
(7.2–7.4):

2O−
2̇ + 2H+ → H2 O2 + O2

Thiols, such as cysteamine, react slowly with hydrogen peroxide under these conditions [60]. Effective scavenging
of the peroxide by thiols does not occur until the thiols are present at millimolar concentrations [54]. Thus, at the
micromolar concentrations that it attains outside of cells, cysteamine promotes hydrogen peroxide production by the
reactions shown above [54]. Hydrogen peroxide readily enters cells and causes a peroxidative stress that is exacerbated
by the inhibition of cellular glutathione peroxidases by cysteamine [54].

Hydrogen peroxide promotes the release of calcium from intracellular stores [61,62] and should therefore stimulate
transglutaminase activity. In support of this notion, the addition of hydrogen peroxide to cells in culture stimulates
their in situ transglutaminase activity [63,64].

The above conjecture could be readily tested by investigating the plasma of cysteamine-treated animals or medium
of cells in culture treated with cysteamine for the presence of free N-(γ-glutamyl)cysteamine. Isopeptide link-
ages are resistant to proteolysis and consequently transglutaminase-made N-(γ-glutamyl)amines are excised as free
N-(γ-glutamyl)amines during proteolysis of proteins bearing these species [65]. Free N-(γ-glutamyl)amines are
present in various body fluids and reflect the levels of active transglutaminases in tissues [3,66,67]. If our hypoth-
esis is correct, then the simultaneous measurements of taurine, S-(2-aminoethyl)l-cysteine ketimine decarboxylated
dimer, as well as protein-bound and free N-(γ-glutamyl)cysteamine should provide a comprehensive accounting of
the metabolism of exogenous cyst(e)amine, in addition to indicating the mechanism by which cysteamine inhibits
intracellular transglutaminases.

Sites for the oxidative inactivation of transglutaminases by
cystamine
Transglutaminases are fully activated by the binding of three calcium ions per enzyme and reducing conditions that
maintain the active site cysteine in a fully reduced state [1,2,47]. The cytosol is highly reducing and therefore the
activation of intracellular transglutaminases is regulated by the availability of cytosolic calcium. The extracellular
environment is different; calcium is readily available whereas reductants are not. Khosla et al. discovered that the
activity of extracellular transglutaminase 2 is regulated by the redox status of two vicinal cysteinyl residues on the
surface of this enzyme [68]. Under the oxidizing conditions of interstitial fluids [69], these residues: Cys370 or Cys371

form a disulphide in a manner that involves a third cysteinyl residue, Cys230, and ERp57 [70]. Reduction in the
Cys370–Cys371 disulphide linkage by thioredoxin activates extracellular transglutaminase 2 [71,72]. The activation
of extracellular transglutaminase by this mechanism is blocked by cystamine forming mixed disulphides with Cys370

and Cys371 (Figure 1C). As noted earlier, cystamine is converted into cysteamine in the body [49]. It is possible that
a portion of the plasma-derived cysteamine is oxidized to cystamine within the interstitial spaces and in this form
inactivates extracellular transglutaminases. The amount of cystamine available to inhibit the extracellular transglu-
taminases by this mechanism will depend on the amounts of cysteamine and cysteamine–cysteine mixed disulphide;
the amounts of the latter are expected to be significant after the administration of cyst(e)amine. It should be noted
that cysteamine–cysteine mixed disulphide could also inhibit transglutaminase in an oxidative manner, as shown in
Figure 1C with cysteamine–cysteine mixed disulphide replacing cystamine. The lumen of the gut is also likely to be an
oxidizing environment because the administration of cysteamine by gavage results in the appearance of cystamine in
the plasma [50]; the most likely site for oxidation of cysteamine to cystamine, in this case, is the gut. Thus, cystamine
is most likely to inhibit transglutaminases by an oxidative mechanism in the gut. This observation is important since
aberrant transglutaminase activities contribute to etiology of several intestinal diseases, in particular, celiac disease.
In this disease, transglutaminases act to deamidate glutaminyl residues in the wheat protein gliadin increasing the
autoantigenicity of the modified protein in the context of HLA-DQ2 or HLA-DQ8 [73]. Cystamine inhibits the gen-
eration of the relevant epitopes in vitro, but only at millimolar concentrations [74]. Given the relatively safe use of
cysteamine in humans [75-77] and the potential to assess the mechanism by which this compound inhibits transglu-
taminases (i.e., by measurement of N-(γ-glutamyl)cysteamine), cysteamine may be of use in the treatment of celiac
disease and other diseases involving transglutaminases.
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Conclusion
The activities of intracellular and extracellular transglutaminases contribute to a number of important pathologies.
Agents that safely inhibit the in situ activities of these transglutaminase pools are therefore of interest as possible
therapeutics. The evidence presented here indicates that cystamine inhibits extracellular transglutaminases, while its
reduced congener – cysteamine – inhibits intracellular transglutaminases. This distinction is important for the de-
sign of other transglutaminase inhibitors based on the mechanisms by which cysteamine or cystamine inhibit these
enzymes (e.g., disulphiram [48]). It may also guide the form in which cystamine is administered: as either cystamine
or cysteamine. Finally, the measurement of N-(γ-glutamyl)cysteamine) may provide a means of determining the
mechanism by which intracellular transglutaminases are inhibited following the administration of cystamine or cys-
teamine.
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