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Reactive oxygen species (ROS) are highly reactive reduced oxygen molecules that result
from aerobic metabolism. The common forms are the superoxide anion (O2

•−) and hydrogen
peroxide (H2O2) and their derived forms, hydroxyl radical (HO•) and hydroperoxyl radical
(HOO•). Their production sites in mitochondria are reviewed. Even though being highly toxic
products, ROS seem important in transducing information from dysfunctional mitochondria.
Evidences of signal transduction mediated by ROS in mitochondrial deficiency contexts are
then presented in different organisms such as yeast, mammals or photosynthetic organisms.

Respiratory chain and reactive oxygen species
production sites
ATP is the energy carrier compound that is mainly produced in chloroplasts and mitochondria. In both

organelles, its production results from oxido-reduction reactions performed by multi-enzymatic com-
plexes located in lipid-bilayer organellar membranes. These reactions are coupled to a proton (H+) gradi-
ent that is used by the ATP synthase to synthesise ATP from ADP and inorganic phosphate [1].

Mitochondrial oxidative process (OXPHOS) comprises four multi-enzymatic respiratory complexes
(complexes I–IV) and ATP synthase embedded in the inner mitochondrial membrane. NADH and suc-
cinate produced by the Krebs cycle are oxidised by complex I (NADH:ubiquinone oxidoreductase) and
complex II (succinate:ubiquinone oxidoreductase) respectively and the electrons are transferred to the
ubiquinone pool, leading to the reduction of ubiquinone to ubiquinol inside the mitochondrial membrane.
Electrons are then transferred by complex III (ubiquinol:cytochrome c oxidoreductase) from ubiquinol
to cytochrome c, a soluble electron carrier located in the intermembrane space, and from cytochrome c
to molecular oxygen (O2) via complex IV (cytochrome c oxidase). The respiratory chain continuously
reduces O2 into H2O in the mitochondrial matrix (Figure 1) but a small quantity of the superoxide anion
O2

•− is also generated, as a result of monoelectron reduction of O2. It has been calculated that less than
0.1% of the electrons passing through the respiratory chain leak on to O2 to form superoxide in normal
conditions of electron transfer (reviewed in [2]). The respiratory complexes and the other mitochondrial
enzymes responsible for such reactive oxygen species (ROS) production are described in this section.

Complex I
Complex I (EC 1.6.5.3), the first proton-pumping complex, catalyses the reaction.

[
NADH + H+] + Q + 4 H+

matrix → NAD+ + QH2 + 4 H+
IMS (Q , ubiquinone)

Subunit composition
In all organisms investigated so far, complex I has an L-shaped form [3] which has been structurally de-
tailed by crystallisation obtained in prokaryotes [4] and eukaryotes such as the fungus Yarrowia lipolytica
[5] and a few mammals’ species [6-8]. The complex has a molecular weight of approximately 1 MDa and
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Figure 1. Respiratory chain and ROS production sites

Electron transport chain, composed of complex I (CI), complex II (CII), complex III (CIII), complex IV (CIV) and ATP synthase, is

presented. Alternative pathways of plant and microorganisms are also shown: alternative NADH dehydrogenase facing the inter-

membrane space (NDe) or facing the mitochondrial matrix (NDi) and alternative oxidase (AOX). Ubiquinone pool (UQ/UQH2). Circles

represent Fe–S centres, squares represent haems.

Table 1 The core subunits of complex I and their associated role in electron or proton transfer as summarised in [11]

Core subunits (bovine nomenclature) Role

51 kDa Binding of FMN - N3 - NADH

24 kDa Binding of N1a

75 kDa Binding of N1b, N4, N5

PSST Binding of N2

TYKY Binding of N6a, N6b

49 kDa-PSST-ND3-ND1 Binding of quinone

ND2, ND4, ND6, ND1-ND6-ND4L Proton translocation

contains more than 40 subunits (reviewed in [9]). Fourteen of these subunits represent the core of the complex as
they form the structure of the most simplistic bacterial complex I (type I NADH dehydrogenase) [10,11] and are
conserved in all eukaryotic complex I. Among these 14 core subunits, 7 are hydrophobic and usually encoded by
the mitochondrial genome (ND1-ND6, ND4L). They form the membrane arm of the complex. The other seven are
hydrophilic and encoded by the nucleus (75, 51, 24, 49, 30 kDa, TYKY, and PSST) (bovine nomenclature). They form
the matrix arm of the complex and harbour an FMN and eight iron–sulphur (Fe–S) clusters named N3, N1a, N1b,
N4, N5, N6a, N6b, and N2 (Table 1). In addition to these core subunits, approximately 30 supernumerary subunits
are present in eukaryotic complexes I. Crystallisation of these complexes [5-8] showed that they form a shield around
the core subunits and although their role remains unclear, they are thought to stabilise and protect complex I [12].

Electron transfer pathway
The substrate NADH binds to the 51-kDa subunit near the FMN moiety. Two electrons are extracted from NADH
and transferred to the FMN molecule in a binding pocket detailed in [11] for bacterial complex I. The FMN serves
as the first electron acceptor from NADH; the N3, N1b, N4, N5, N6a, and N6b serve as a path for electron transport
[13,14] (Figure 1). The N2 cluster serves as final electron acceptor and catalyses electron transfer to the ubiquinone
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molecule. An eighth Fe–S cluster, named N1a, located near the FMN, is thought to serve as an electron store meant
to avoid an excessive ROS production [5].

The quinone-binding site is formed by the 49 kDa-PSST-ND3-ND1 subunits in bacteria [11]. This module allows
electron transfer to the ubiquinone through the N6a and N6b Fe–S clusters located on the TYKY subunit and through
N2 reaction centre cluster.

Proton translocation pathway
Four proton channels are located in the membrane domain and participate in proton pumping: three in antiporter-like
subunits (ND2, ND4 and ND5) and one at the interface with the hydrophilic domain (ND1-ND6-ND4L) [11]. The
proton-pumping channels through the membrane domain are distant from the redox-active groups mediating elec-
tron transfer through the hydrophilic domain. The current model for proton pumping proposes that the stabilisation
of a negatively charged ubiquinone at the ubiquinone-binding site would be responsible for a conformational change
causing energy transmission to the membrane arm and resulting in proton pumping [4,11,14,15].

ROS production (reviewed in [2])
ROS are produced in two situations: (i) when electrons are backed up in the chain of Fe–S clusters. This happens when
NADH is present and the downstream chain is inhibited by complex I inhibitors that bind to the quinone-binding
site or by inhibitors of complex III or complex IV; and (ii) in conditions of reverse electron transfer, when electrons
are going backwards from complex II via ubiquinone to complex I. In the ‘forward’ mode, the electrons delivered by
NADH produce ROS at the FMN cofactor; in the ‘reverse mode’, superoxide is generated from a semi-ubiquinone
at the quinone-binding site. There are also experimental evidences that this mode could also produce superoxide at
the FMN moiety [16,17] but this is still to be investigated. The reverse electron transfer requires a high membrane
potential or proton-motive force.

Complex III
Complex III (EC 1.10.2.2), the second proton-pumping complex, catalyses the reaction .

2QH2 + 2 ferricytochrome c + 2H+
Matrix → QH2 + 2 ferrocytochrome c + 4H+

IMS

Subunit composition
Complex III always functions under a dimeric form, with a size of ≈500 kDa. The monomeric form of complex
III contains ten to eleven subunits: three core subunits of prokaryotic origin, cytochrome b—cytochrome c1—Rieske
iron–sulphur protein, and eight supernumerary subunits. Cytochrome b contains the ubiquinol oxidation centre (Qo)
and ubiquinone reduction centre (Qi), separated by two b-type haems. One haem (bL) is close to the Qo site and has
a low redox potential, and the other haem (bH) is close to the Qi site and has a high potential haem [17]. Cytochrome
c1 contains a c-type haem.

Proton-motive Q cycle and electron transfer
The molecular mechanism that drives H+ pumping of complex III has been first proposed by Mitchell [18] and
supported by numerous studies (reviewed in [2]). In short, the proton-motive Q cycle starts with the oxidation of
ubiquinol at the Qo site, and the release of two H+ at the intermembrane space. One electron is transferred succes-
sively to the Fe–S cluster of the Rieske protein, to cytochrome c1, and then to soluble cytochrome c. The other electron
is successively transferred to the haem bL of cytochrome b, to haem bH and finally to a ubiquinone bound to the Qi
site, which is reduced to a stabilised semiquinone species. In the second round of the cycle, the electron entering the
Fe–S cluster of the Rieske protein reduces a second cytochrome c and c1, which is accompanied by two other H+

released at the intermembrane space. The electron entering the low-potential chain reduces the semiquinone in the
Qi site to ubiquinol. This is accompanied by the uptake of two protons from the negative matrix side of the mito-
chondrial membrane. Thus there is a net translocation of 2H+/2e−. The key component of the Q cycle is the correct
routing of the two electrons resulting from ubiquinol oxidation to either the Fe–S cluster of the Rieske protein or to
the bL haem of cytochrome b [19,20]. The flexibility of the globular domain of the Rieske protein seems to be one of
the main elements for the bifurcation of the electrons. Other components implicated in this correct routing could be
the binding of ubiquinol into the Qo site that would trigger conformational changes, maybe due to the widening of
Qo to accept the substrate [21].
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ROS production
Superoxide production is formed at the ubiquinol oxidation centre of complex III (Qo) and induced by adding an-
timycin A, a specific inhibitor of the Qi site of the complex. In addition, a high membrane potential can also enhance
the superoxide production at the Qo site (reviewed in [2,22]). The redox state of the ubiquinone pool is another
factor responsible for superoxide production in the presence of antimycin A [22]. Superoxide production could be
explained because in all these conditions, electrons are backed up in cytochrome b, which leads to an accumulation
of semiquinone radical at the Qo site, which can transfer its electron to oxygen forming superoxide. Other authors
propose that superoxide production at the Qo site occurs by reverse electron transfer from reduced haem bL directly
on to molecular oxygen and that oxidised ubiquinone serves as a redox mediator (reviewed in [2,22]).

Complex II
Complex II (1.3.5.1) catalyses the reversible conversion of succinate into fumarate. It is the only membrane-bound
enzyme of the Krebs cycle and does not contribute to the formation of a proton gradient.

succinate + Q ↔ fumarate + QH2

Subunit composition and electron transfer
The size of this small multiprotein complex is ≈110 kDa. Four subunits are found in most eukaryotes (reviewed in [9]).
The two matrix subunits, Sdh1 and Sdh2, are anchored to the membrane by the Sdh3 and Sdh4 membrane subunits.
The Sdh1 subunit contains a covalently attached FAD in the dicarboxylate binding site, where succinate is oxidised
into fumarate [23]. The Sdh2 subunit bears three Fe–S centres. Sdh3 and Sdh4 harbour two ubiquinone reduction
sites and a b-type haem at the interface of both subunits. The enzyme catalyses the oxidation of succinate to fumarate
and transfers the two electrons of the reaction to ubiquinone-bound membrane via four prosthetic groups (the FAD
cofactor, and the three Fe–S centres). Only one of the ubiquinone reduction sites is used. In addition, the b-type haem
is located off pathway from the electron transferring cofactors and does contribute to the electron transfer between
succinate and quinone bindings [23].

ROS production
ROS production by complex II is by far less studied than that of complexes I and III. It has been shown that superoxide
is produced at the FAD site of the complex in the direct and in the reverse reaction, when the electrons are provided
from the reduced ubiquinone pool [24]. The quinone-binding site would not be a site for superoxide production in
the wild-type enzyme (reviewed in [23]).

Additional sites of ROS production are present in mitochondria. Some enzymes produce ROS at their flavin
site (the 2-oxoacid dehydrogenase complexes). Other enzymes produce ROS at their Q-binding site (mitochondrial
3-phosphate dehydrogenase, the short electron transfer chain composed of electron transfer flavoprotein (ETF) and
the ETF:ubiquinone oxidoreductase (ETF:QO), dihydroorotate dehydrogenase) (reviewed in [25,26]).

2-oxoacid dehydrogenase complexes
2-oxoacid dehydrogenases complexes are NADH/NAD+-linked enzymes, which bind flavin molecules and contribute
to superoxide/H2O2 production in the matrix of mitochondria at their flavin site. They oxidise different substrates
(2-oxoglutarate, pyruvate, branched-chain 2-oxoacids or 2-oxoadipate) to the corresponding acyl-CoA and reduce
NAD+ into NADH + H+. They have similar subunit composition (E1, E2 and E3) (see below), these proteins be-
ing encoded by multigene families. Their superoxide/H2O2 production has been studied and compared in isolated
rat mitochondria at the redox potential of NADH/NAD+ by [27]. These authors showed that the maximum ROS
production follows the range 2-oxoglutarate dehydrogenase > pyruvate dehydrogenase > branched chain 2-oxoacid
dehydrogenase > complex I, leading to propose that H2O2 production by the 2-oxoglutarate dehydrogenase may be
considerable and possibly previously misattributed to complex I.

2-oxoglutarate dehydrogenase complex
The 2-oxoglutarate dehydrogenase complex (OGDH) complex catalyses the overall conversion of 2-oxoglutarate into
succinyl-CoA, CO2 and NADH in the Krebs cycle. It contains three components. The E1 component is an oxoglu-
tarate decarboxylase that contains thiamine pyrophosphate as cofactor. The E2 component is a dihydrolipoyl succinyl-
transferase that contains lipoic acid and coenzyme A as cofactors. The E3 component of the enzyme (dihydrolipoyl
dehydrogenase) binds FAD and NAD+ and produces superoxide/H2O2 at the flavin site when NAD+ is limiting (high
NADH/NAD+ ratio) [27].
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Pyruvate dehydrogenase complex
The pyruvate dehydrogenase (PDH) complex catalyses the overall conversion of pyruvate into acetyl-CoA, CO2 and
NADH in the mitochondrial matrix. Similar to the OGDH complex, it is composed of three components, E1, E2 and
E3. E1 is a pyruvate dehydrogenase containing thiamine pyrophosphate as cofactor, E2 is a dihydrolipoyl transacety-
lase containing lipoic acid and coenzyme A as cofactors, E3 is dihydrolipoyl dehydrogenase that binds FAD and
NAD+. Similar to OGDH, superoxide/H2O2 is produced at the flavin site when NAD+ is limiting [27].

Branched-chain 2-oxoacid dehydrogenase complex
This complex catalyses the overall conversion of branched chain 2-oxoacids produced by the catabolism of valine,
isoleucine and leucine to acyl-CoA, CO2 and NADH. It contains three enzymatic components: branched-chain
2-oxoacid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3). It produces
superoxide/H2O2 at high NADH/NAD+ ratio at the flavin site [27]. Branched-chain 2-oxoacid dehydrogenase com-
plex (BCKDH) has been found in plants [28] but to our knowledge, no report about superoxide production has been
published yet.

2-oxoadipate dehydrogenase complex
This complex catalyses the overall conversion of 2-oxoadipate into glutaryl-CoA, CO2 and NADH. 2-oxoadipate is
produced by the catabolism of tryptophan, lysine and hydroxylysin [29]. Rat skeletal muscle mitochondria produce
superoxide/H2O2 at high NADH/NAD+ ratio at the flavin site [29].

Mitochondrial glycerol-3-phosphate dehydrogenase
This enzyme is a part of the glycerol-3-phosphate (G-3-P) shuttle that channels cytosolic reducing equivalent to
mitochondria for respiration through oxidoreduction of G-3-P in different mammalian tissues, yeasts and higher
plants [30,31]. This shuttle uses two GDPHs: a cytoplasmic NADH-coupled enzyme reducing dihydroxyacetone phos-
phate to G-3-P and an FAD-linked ubiquinone oxidoreductase enzyme at the outer face of the inner mitochondrial
membrane re-oxidising G-3-P and feeding the electrons directly to the ubiquinone pool. The mitochondrial GDPH
monomer has a size of 74 kDa in mammals and could be active under dimeric or even multimeric forms (reviewed
in [31]). Its Q-binding pocket has been suggested to be the major site of superoxide generation in different mammal
tissues [32,33].

Mitochondrial dihydroorotate dehydrogenase
This enzyme catalyses the ubiquinone-mediated oxidation of dihydroorotate to orotate, at the outer face of the in-
ner mitochondrial membrane and constitutes the fourth enzymatic step of pyrimidine synthesis. In mitochondria
from rat skeletal muscle, this FMN-linked ubiquinone enzyme produces superoxide at the ubiquinone site [34]. A
dihydroorotate dehydrogenase (DHDOH) has also been identified in plant mitochondria [28] but its involvement in
superoxide/H2O2 production has not been reported yet.

ETF:QO (reviewed in [35])
ETF:QO enzymes transfer their electrons to ubiquinone via a short electron transfer chain composed of ETF and
ETF:QO. The electrons are generated by β-oxidation of fatty acids at the level of the acyl-CoA dehydrogenases.
ETF:QO has been purified from pig liver mitochondria: it is a monomer of 68 kDa associated with the inner mito-
chondrial membrane and contains FAD and a single Fe–S cluster as cofactors [35]. Superoxide formation by ETF:QO
has been proposed to be associated with impaired electron transfer from flavin to the Q-binding pocket in mammal
tissues [35]. The ETF/ETF:QO electron transfer chain has also been reported in plants [28].

A more oxidant destiny of O2
•− and H2O2

Once O2
•− and H2O2 are generated, other ROS molecules could arise from reactions with transition metal residues.

Indeed, hydroxyl radical (HO•) could be formed through iron redox cycling by Fenton reaction, where free iron (Fe2+)
reacts with H2O2, and by the Haber–Weiss reaction that results in the production of Fe2+ when superoxide reacts with
ferric iron (Fe3+) [36]. In addition to the iron redox cycling, a number of other transition metals including Cu, Ni,
or Co could be responsible for HO• formation in living cells [36]. The protonated form of H2O2, the hydroperoxyl
radical (HOO•), being another ROS, can also react with redox active metals such as Fe or Cu to further generate HO•
through the above-described reaction [36].
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ROS damage and detoxification
It is assumed that the largest fraction of ROS has a mitochondrial origin [37], although they can also be produced
in each other’s compartment that includes proteins or molecule with a sufficiently high redox potential to excite or
donate an electron to atmospheric oxygen [38]. The chemical nature of the substrates fueling the respiratory chain,
the amplitude of the membrane potential in mitochondria (�ψm), the pH of the matrix, and the oxygen tension in
the surroundings are important factors controlling ROS production in mitochondria [39,40], this control having to be
tight for such molecules considered as toxic by-products. Indeed, ROS can damage cells in many ways and give rise to
fast, barrier-less and non-selective oxidation steps, being responsible for a severe insult of both organic and inorganic
matter exposed to ‘oxidative stress’ [41,42]. Protein oxidation mostly results in the formation of carbonyl groups
(ketone and aldehydes) [43]. HO• and HOO• are responsible for the oxidation of lipids, thus leading to impairment
of membrane function [44-46]. DNA bases can be modified by Fenton gated oxidative stress [47,48].

Beside the fact that mitochondrial H2O2 can cross the membrane and serve as signalling molecule (see point 3),
nature has evolved a complex enzymatic machinery to control the risk of so-called ‘oxygen toxicity’ paradox [41,42].
The primary line of defence is a panel of proteins that remove ROS or that act as sequestering metal ions that are
reviewed below. Briefly, superoxide production can be detoxified into H2O2 in a reaction catalysed by superoxide
dismutase (SOD). Afterwards, H2O2 can be removed by antioxidant enzymes such as catalase (CAT) and peroxidase,
which convert H2O2 into water.

SOD
SODs are metalloenzymes. The superoxide dismutation reaction starts with the reduction of the metal centre and is
followed by its reoxidation by superoxide radical anion. It is dependent on two protons per redox cycle [49]. SODs
are present in prokaryotes and in eukaryotes, found in monomeric, dimeric or tetrameric conformation and clas-
sified on the basis of their metal cofactor. So far, four types are identified: manganese co-factored (MnSOD), iron
co-factored (FeSOD), copper/zinc co-factored (Cu/ZnSOD) and nickel co-factored (NiSOD) (reviewed in [49-51]).
Superoxide production by complex III at the intermembrane space can be detoxified into H2O2 in a reaction catalysed
by Zn/CuSOD, while superoxide produced in the matrix side by complex I can be detoxified into H2O2 by MnSOD
[52]. Indeed, except in the diatom Thalassiosira pseudonana where an MnSOD has been identified in chloroplasts
[53], it is generally assumed that MnSODs are found in mitochondria of eukaryotes.

CAT
CATs can be of two types Mn-CAT and haem-CAT [54]. They have one of the highest turnover rates of all en-

zymes, converting approximately 6 million molecules of H2O2 into H2O and O2 per minute and per molecule of CAT
[55]. While the hexameric Mn-CATs only exist in prokaryotes, tetrameric haem-CATs, which contain one molecule
of haem per subunit, are found in a much wider range of organisms. In eukaryotes, the predominant form is the
tetrameric haem form and is mainly localised in peroxisomes, where hydrogen peroxide is produced by the acyl-CoA
oxidase of the fatty acid β-oxidation pathway or by other oxidases [54], leaving glutathione peroxidase (GPX) as the
major scavenger in mitochondria to deal with H2O2 reduction. In higher plants, among the numerous CAT isoforms
identified that could be highly expressed in specific cell types, some of them seem to be found in mitochondria but
studies are ambiguous. Indeed, proteomic analysis of highly purified mitochondria from Arabidopsis cells identi-
fied CAT2 and CAT3 peptide sequences [56]. This finding was interpreted with some caution since CAT activity,
used as a marker for peroxisomal contamination, showed a progressive decline throughout the mitochondrial pu-
rification procedure, along with the plastid marker enzyme, alkaline pyrophosphatase [56]. In yeast, peroxisomal
CAT was co-localised to mitochondria in a manner that depended on nutritional conditions [57]. Dual peroxiso-
mal/mitochondrial targeting of CATs cannot yet be ruled out. However, to date there has been no demonstrations of
CAT import into mitochondria using either in vitro or in vivo approaches, and it is possible that contamination may
account for reports of CAT activity in this organelle [58]. The same uncertainty exists in algae such as in the green
alga Chlamydomonas reinhardtii where there is only one isoform of CAT (CAT2, [59]). This enzyme has been de-
tected in isolated mitochondria [60] and by proteomic analyses of purified mitochondria [61] although the targeting
prediction tool (Predalgo, [62]) does not identify any putative mitochondrial targeting in the amino acid sequence
of the protein. In addition, CAT2 presents a weak PTS1 signal (peroxisomal) at the C-terminus (VEL) based on the
consensus sequences established for the peroxisomal targeting in higher plants by [63].

Recently a synthetic ‘dizyme’ combining SOD and CAT functional activities has been designed to enable a detox-
ification cascade from O2

•− into H2O and O2. This ‘dizyme’ has been shown to prevent H2O2 accumulation in the
green alga Chlamydomonas reinhardtii, cultivated under high light illumination conditions [42].
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Peroxidase
Peroxidases catalyse the reduction of H2O2 into water using reductants that give the name of the peroxidase, e.g.
ascorbate peroxidase, GPX and thioredoxin peroxidase. These enzymes are present in practically all subcellular com-
partments and an organelle has generally more than one system to scavenge ROS [64,65]. Ascorbate peroxidases are
only present in photosynthetic organisms where they play an important role for detoxification of H2O2 produced by
photosystem I in the chloroplasts (reviewed by [66]). Eight isoforms of GPX are found in the cytoplasm and mito-
chondria in mammals, which are dependent on selenium for their antioxidant function [67]. Oxidised glutathione
(GSSH) is reduced by its corresponding glutathione reductase, which uses NADPH as substrate. In mitochondria,
NADPH can be kept reduced by the activity of H+-transhydrogenases [52]. Thioredoxin peroxidases are multigene
families in eukaryotes with some of the isoforms found in mitochondria [68]. Similar to the system described for the
GPX, oxidised thioredoxin (TrxS−) is reduced by its corresponding thioredoxin reductase, using NADPH as substrate
and H+-transhydrogenases can keep the NADPH reduced [52].

Alternative enzymes of the respiratory chain
In plants and many microorganisms, besides the main respiratory enzymes—complexes I–IV— alternative enzymes
which do not contribute to the proton gradient are present (Figure 1): NAD(P)H dehydrogenases (type II NAD(P)H
dehydrogenases) and alternative oxidases (AOXs). These enzymes are not relevant in standard physiological condi-
tions since they are not coupled to ATP synthesis and thus reduce the energy efficiency of respiration. However, they
are useful when there is a need to uncouple electron transfer and ATP production, thereby avoiding ROS formation,
a situation that is described to occur in many conditions such as the stationary growth phase in microorganisms [69]
or under different biotic and abiotic stresses (reviewed in [70]).

NAD(P)H dehydrogenases transfer electrons from NADH to the ubiquinone pool, facing either the intermembrane
space or the mitochondrial matrix. The crystal structure of one of them from yeast, located on the matrix side, has been
obtained in 2012 [71]: the structure reveals two ubiquinone-binding pockets, and the FAD- and NADH-binding sites.
The enzyme is functional under a dimeric form. In the green microalga C. reinhardtii, inactivation of NDA1, located
at the inner side of the mitochondrial membrane does not lead to any clear physiological defect except if associated
with a complex I deficiency [72]. AOXs are homodimeric, and the monomeric unit has a size of approximately 40
kDa. They contain a covalently bound diiron centre that catalyses the four-electron reduction of dioxygen to water
by ubiquinol [73]. The role of AOX in the control of ROS and their signalling in plants has been recently discussed
in [74]. The presence of these two types of enzymes allows for better survival of C. reinhardtii mutants affected in
complex I, III or IV and partly explains why isolated mutants with deficient OXPHOS complexes are viable in the
microalga Chlamydomonas [9].

ROS signalling
ROS could potentially be considered as an essential factor in cell-signalling processes thanks to the fact that they are
produced in different sites, are very stable and can potentially diffuse through appreciable distances or travel across
membranes [38,75]. These cell-signalling processes termed as redox biology, in which ROS act as signal transducers,
appear early in the evolution and are proposed to allow adaptation of organisms to oxidative conditions [76]. So far,
an increasing number of studies showed that waves of oxidative compounds as well as antioxidants reactions, activate
gene expressions or responses in a variety of phylogenetically different organisms [77,78] and in response to a lot of
environmental challenges.

Mode of action
The mode of action of ROS signalling is about transducing the signal mainly via interaction with cysteine (Cys)
residues of proteins [79-81] and like this modifying protein functions. Indeed, the cysteine thiol group (Cys–SH)
represents the oxidation state −2 of the sulphur atom, the fully reduced form. This sulphur atom becomes a reactive
nucleophile in the deprotonated form [82]. In fact, H2O2 could interact with Cys thiolate anions (Cys–S), at physiolog-
ical pH, leading to their oxidisation to sulphenic form (Cys–SOH). In this condition, the oxidation state of the sulphur
atom rises to 0. This allows Cys–SH to undergo several post-translational modifications, thanks to structural changes
within the protein. This happens in plant or in animal cells as reviewed in [78]. Cys–SOH is highly reactive and,
under major ROS excess, can be overoxidised to sulphinic acid (Cys–SO2H) and sulphonic acid (Cys–SO3H) [78].
Although these overoxidations have been regarded as irreversible modifications in the past, sulphiredoxin enzymes
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have been shown to reduce SO2H through an ATP-dependent reaction [83-86]. These redox-derived changes in pro-
tein function can affect transcription, phosphorylation and other important signalling events, and/or alter metabolic
fluxes and reactions in the cell by altering enzymatic properties of the proteins [79-81].

Additionaly, Cys–SOH can also react with a free thiol on the same protein, on other proteins, or with low-molecular
weight thiols, such as glutathione. Indeed, tripeptide glutathione (GSH) could form disulphides either with proteina-
ceous Cys or with itself. GSH, being the most abundant and widely distributed low-molecular thiol compound of the
cell, is found in most subcellular compartments mainly in its reduced form and transiently accumulating as oxidised
disulphide (GSSG) under stress conditions [87].

In this way, mitochondrial ROS could induce communication with the nucleus, the so-called retrograde signalling
pathway that was originally discovered as a mechanism initiated by mitochondrial dysfunction in yeast [88]. Such
ROS retrograde signalling could then involve an essential cellular adaptation mechanism by which dysfunctional
mitochondria can transmit signals to a nuclear level in order to adapt the metabolic machinery to survive [89]. In
fact, in normal conditions mitochondria do not export ROS but are preferentially a sink for them [90]. However,
under stress conditions the capacity of antioxidant systems can be exhausted and the direction of ROS flux can be
reverted. For instance, an increase in cytosolic [Ca2+] transforms yeast mitochondria into a major source of ROS, by
the fact of a burst in generation of ROS by complex III [40].

Calcium signalling
Interactions between Ca2+ and ROS are considered as bidirectional: ROS can regulate cellular calcium signalling,
while calcium signalling is essential for ROS production [91]. Indeed, as cited above �ψm could control ROS pro-
duction. This was shown for example by the correlation between the use of uncouplers and the reduction in ROS
production [40]. Concerning specificity of Ca2+, when �ψm is high, Ca2+ uptake results in a decreased ROS gener-
ation, while if �ψm is depolarised, ROS generation is stimulated or not influenced by Ca2+ [92]. Additionally, the
explained above redox modification of disulphide bonds is known to affect the structure and function of ion regula-
tory proteins including ion channels, pumps and transporters. This includes cardiac calcium channel and transporters
[93] that are the mainly studied topics so far. ROS and Ca2+ are also correlated by their common point: ATP. The in-
terconnection between ATP, ROS and Ca2+ was called the mitochondrial love-hate triangle by Brookes et al. (2004)
[94]: Ca2+ promotes ATP synthesis by stimulating Krebs cycle enzymes and oxidative phosphorylation. As the whole
mitochondria work faster and consume more O2, ROS levels increase, because of an increased respiratory electron
leakage, which could lead to the negative feedback from respiratory chain and a decrease in ATP production.

Mitochondrial deficiencies and their impact through ROS
signalling
Impact of mitochondrial ROS on respiratory chain subunits
In mammals, ROS could mediate the regulation of nuclear components of the above-described respiratory chain.
For example, mitochondrial ROS were shown to regulate a nuclear miRNA component, miR-663 in tumor cells,
that specifically control the expression of nuclear-encoded structural subunits or assembly factors of I, II, III and IV
complexes [95]. Moreover, ROS can activate a tyrosine kinase, Fgr, allowing the phosphorylation of the SDH subunits
of complex II, which allows adjusting the level of complex I in order to optimise the NADH/FADH2 electron use in the
respiratory chain [96]. In addition, ROS generated by complex I or III specifically react with distinct subsets of proteins
in isolated mitochondria from rat heart [97]. Indeed, redox fluorescence difference gel electrophoresis analysis showed
that proteins involved inβ-oxidation and fatty acid import are preferentially complex III redox-sensitive targets while
proteins of the Krebs cycle are preferentially complex I redox targets. It is also proposed that H2O2 formed at the
level of complex III could have a direct feedback on complex I enzyme [2] or that ROS at complex I have an impact
on complex II components [97]. Moreover, lipid-derived reactive species formed in mitochondria could react with
mitochondrial components resulting in mitochondrial dysfunction or in the regulation of cell function [98-100].
Interestingly, nuclear complex I proteins appear as a specific target in a signalling event derived from mitochondrial
polyunsaturated fatty acids lipoperoxidation promoted by HO• [101,102].

Impaired respiration/mitochondrial function and signalling
In a respiratory altered background, such as when in yeast, complex III is inhibited by myxothiazol, the signal is
relayed to the cell by the modulation of transcription factors known to be involved in oxidative stress response, such
as Yap1 [103], a basic leucine zipper transcription factor that is a key cytosolic H2O2 sensor [104]. Indeed, H2O2
may activate Yap1 by oxidising its Cys–SH in Cys–SOH by the thiol peroxidase Orp1. Consequently, a Cys–SOH
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chaperone, Ybp1, brings together Orp1 and Yap1 into a ternary complex that selectively activates condensation of the
Orp1 to provide specificity in the transfer of oxidising equivalents by a reactive sulphenic acid species [105]. In yeast,
respiratory complex III deficiencies could then be compensated by a ROS modulation of the Yap1 signalling process
[106].

Concerning mammals, alterations of mitochondrial systems have long been documented in tumours, and the dis-
ruption of the mitochondrial retrograde signalling seems implicated in this process. Evidence seems to correlate
the influence of ROS, and specifically when formed in a complex III deficiency background, on the nuclear ex-
pression of oncogenes/tumour suppressors (such as APC gene) and of some kinases such as MAPK/ERK that can
activate tumorigenesis [107]. In contrast with deficiencies, an overexpression of a complex I structural subunit, the
ND3 subunit, also highlights the role of ROS signalling in tumour formation [108]. Indeed, such overexpression in-
volves a ROS-mediated reduction in a glycolytic enzyme, the pyruvate kinase M2, by its carbonylation, this being a
pro-cancerous feature [108].

The pathophysiology of cancer in association with mtDNA variations is suggested to be a manifestation of elevated
ROS, reported as a mitogenic mediator and as an inducer of apoptosis [38,109,110]. In fact, as the majority of the
mtDNA encodes for proteins of the mitochondrial respiratory chain and as mtDNA could potentially be targeted
by oxidation, a correlation between ROS formation and mtDNA mutations exists. Indeed, in two different knockout
mice models with increased mitochondrial ROS due to MnSOD and aldehyde dehydrogenase deficiencies, correla-
tion between mitochondrial ROS formation and oxidative mtDNA lesions is increasing with age [111]. Concerning
a cell signalling related to mtDNA oxidation, the case of mitochondrial transcription factor A (TFAM) is interesting.
TFAM, being an mtDNA-binding protein and the major regulator of mtDNA copy number in mammalian models
[112], seems to have a regulatory mode over ROS production and calcium. Indeed, TFAM allows the stabilisation
of a regulatory complex of mtDNA depending on an increase in ROS and calcium conditions. When mitochondria
become dysfunctional such as in failing hearts, TFAM level initially rises as a compensatory mechanism, but it pro-
gressively decreases as calcium mishandling and ROS production increase, as observed in later stages of heart failure,
TFAM being lost in dysfunctional mitochondria [113].

The mitochondrial and ROS signalling process in photosynthetic organisms is also of high interest because it seems
to be crucial for the adaptation to environmental conditions and is linked to biotic and abiotic stresses (reviewed in
[114]). In a complex I mutant of Arabidopsis thaliana, proteome analysis showed reorganisation of both cellular
respiration and photosynthesis, which is proposed to be responsible for the increase in ROS and stress defence system
[115]. Induction of the expression of a twin cysteine protein (At12Cys) in this type of mutant has been proposed to
be responsible for modification of cytosolic, chloroplastidic and mitochondrial functions [116]. In an A. thaliana
complex II mutant, ROS production in roots and leaves are lowered in response to stresses such as salicylic acid or
bacterial infection, suggesting a role of complex II in plant stress and defence stress responses through mitochondrial
ROS signalling [117]. Using a forward genetic screen to characterise regulators of AOX1 expression in A. thaliana, Ng
et al. [118] found a transcription factor of the NAC family, ANAC017, which is bound to the endoplasmic reticulum
and released upon mitochondrial perturbation to initiate the mitochondrial retrograde response.

The production of ROS has also been investigated for some of the respiratory mutants of the microalga C. rein-
hardtii: in complex I mutants, H2O2 production is not modified in moderate light compared with control strains
[119] and ROS detoxification enzymes are lowered [120]; in mutants affected in the COX3 subunit of complex IV, a
60% decrease in H2O2 production after short exposure (12 h) to darkness is found compared with wild-type [121].

Chloroplasts are other sources of ROS in photosynthetic organisms and these organelles play a major role in ROS
production. In the green microalga C. reinhardtii grown in high light, ROS production seems to be mainly caused
by the chloroplast since the increase in H2O2 production is the same in mitochondrial mutants (such as complex I
mutants or AOX mutants) as in control strains [122]. Therefore, the mitochondrial ROS signalling does not seem to be
relevant in high light in these mutants. However, it seems implicated in other growth conditions, as shown by Murik et
al. [123]. These authors analysed the response of a complex III mutant to oxidative stress and programmed cell death
in control light and brought evidence that it was different from its control strain, which suggests that respiratory
deficient mutants could be interesting tools to study mitochondrial and ROS signalling in microalgae.
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67 Brigelius-Flohé, R. and Maiorino, M. (2013) Glutathione peroxidases. Biochim. Biophys. Acta 1830, 3289–3303,

https://doi.org/10.1016/j.bbagen.2012.11.020
68 Miranda-Vizuete, A., Damdimopoulos, A.E. and Spyrou, G. (2000) The mitochondrial thioredoxin system. Antioxid. Redox Signal. 2, 801–810,

https://doi.org/10.1089/ars.2000.2.4-801
69 Guerrero-Castillo, S., Cabrera-Orefice, A., Vázquez-Acevedo, M., González-Halphen, D. and Uribe-Carvajal, S. (2012) During the stationary growth
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