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Apoptosis of podocytes contributes to proteinuria in many chronic kidney diseases. The
cytokine, tumor necrosis factor-α (TNF-α) is thought to be involved in podocyte apoptosis,
but the underlying mechanism is not understood. In our study, we established a model of
TNF-α-induced apoptosis by isolating primary podocytes from mice. After exposing cells
to TNF-α, we determined the expression levels of heterogeneous nuclear ribonucleoprotein
K (hnRNP K) and cellular FLICE-inhibitory protein (c-FLIP) and the phosphorylation levels
of glycogen synthase kinase β (GSK3β) and extracellular signal-regulated kinase (ERK). We
then knocked down or overexpressed the levels of hnRNP K and observed its effects on the
expressions of c-FLIP, caspase-8, caspase-3, and the phosphorylation of GSK3β and ERK.
In addition, we examined the percentage of cells undergoing apoptosis and studied cell cy-
cle distribution. We found that TNF-α induced apoptosis in podocytes and that the expres-
sions of hnRNP K and c-FLIP were significantly decreased, whereas the phosphorylations
of GSK3β and ERK were significantly increased. Both gene knockdown and overexpression
of hnRPN K resulted in varied expressions/phosphorylations of c-FLIP, GSK3β, and ERK.
Moreover, decreased hnRPN K expression contributed to increased levels of caspase-8
and capase-3, as well as an increase in cell apoptosis and G0/G1 arrest. In conclusion,
down-regulated expression of hnRNP K by TNF-α resulted in a decrease in the expression
of c-FLIP as well as increases in phosphorylated GSK3β, ERK, caspase-8, and caspase-3,
and then critically contributed to the podocyte apoptosis.

Introduction
As a highly differentiated and structurally complex organ, the kidney is composed of approximately a mil-
lion clusters of looping blood vessels called glomeruli. The outer part of the glomerular basement mem-
brane is covered with extremely ramified cells called podocytes. As blood flows through each glomerulus,
water and metabolic wastes are filtered through capillary walls by the surrounding podocytes. Therefore,
podocytes function as the final barrier to protein loss and are crucial in maintaining the integrity of the
glomerular filtration barrier [1]. Apoptosis is a major reason for podocyte loss and sequentially results in
glomerular diseases [2]. Recent studies revealed that podocyte apoptosis and loss are observed in many
forms of human and experimental glomerular diseases, including minimal change disease (MCD), focal
segmental glomerulosclerosis, membranous glomerulopathy, diabetes mellitus, and lupus nephritis [1].
Therefore, preventing podocyte apoptosis is an attractive therapy for treating these kidney diseases. How-
ever, the underlying mechanisms involved in podocyte apoptosis are still not fully understood.

Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine secreted by a variety of cell types,
including macrophages, lymphocytes, natural killer cells, and epithelial cells. It regulates several cellular
responses including proinflammatory cytokine production, cell survival, cell proliferation, and paradoxi-
cally, cell death. TNF-α has been shown to induce podocyte apoptosis [3]. Furthermore, TNF-α blockade
showed protective effects on glomerulosclerosis of hypertensive rodents and on podocyte apoptosis [3].
It is widely acceptable that apoptosis induced by TNF-α is caspase-dependent [4]. Additionally, TNF-α,
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released by macrophages, has been shown to inhibit cAMP-RAR and ROS-p38MAPK pathway, leading to podocyte
injury [5,6].

Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a ubiquitously expressed protein and belongs to the sub-
family of heterogeneous ribonucleoproteins (hnRNPs). hnRNP K is involved in multiple processes including chro-
matin remodeling, transcription, RNA splicing, mRNA stability, and translation [7]. In addition to being associated
with various physiological processes, hnRNP K participates in several human diseases. A recent study showed sig-
nificantly decreased hnRNP K expression in the mice with diabetic nephropathy and suggested induced expression
attenuated the nephropathy [8]. Podocyte apoptosis always occurred at the onset of diabetic nephropathy. However,
there is no information on the correlation between podocyte apoptosis and hnRNP K. Accumulating evidence sug-
gests that hnRNP K plays an important role in the development of many types of cancers, including pancreatic cancer
[9]. The tumorigenic activity of hnRNP K is ascribed to its proliferative and antiapoptotic effects, which are achieved
by inducing downstream antiapoptotic proteins. Furthermore, hnRNP K has been shown to be associated with cellular
FLICE-inhibitory protein (c-FLIP), glycogen synthase kinase β (GSK3β), and extracellular signal-regulated kinase
(ERK) [9,10].

c-FLIP is a master regulator of apoptosis-mediating factors. It suppresses apoptosis induced by TNF-α, Fas-L, and
TNF-related apoptosis-inducing ligand (TRAIL). Moreover, c-FLIP shares structural homology with procaspase-8 but
lacks the catalytic site. It can therefore competitively inhibit the activation of caspase-8 and act as a key suppressor of
the death receptor signaling pathway.

The GSK3β and ERK are two other key regulators of apoptosis. GSK3β has been shown to exhibit dual functions as
an apoptosis inhibitor or a promoter and also be involved in repair and acute injury [11]. Recent studies demonstrated
that inhibition of GSK3 by celecoxib promoted the degradation of c-FLIP and death receptor-induced apoptosis,
suggesting that GSK3 might stabilize c-FLIP and antagonize tumor resistance to TRAIL [12]. On the other hand,
inhibition of GSK3β by lithium has been shown to have a protective role in podocytopathy [13]. ERK is involved in
the activation of the extrinsic pathway by TNF-α and TRAIL, as well as in podocyte apoptosis [14].

In the present study, we investigated the expression levels of hnRNP K, c-FLIP, GSK3β, and ERK and determined
their phosphorylation status in podocytes treated with a low dose of TNF-α. Furthermore, we demonstrated that
knocking down or overexpressing hnRNP K–mediated podocyte apoptosis by regulating the expression of c-FLIP, and
the phosphorylation of GSK3β and ERK. Our data suggest that hnRNP K could be a potential target for therapeutic
intervention in proteinuric glomerulopathies.

Materials and methods
Isolation and cultivation of mouse podocytes
The male mice at the age of 6–8 weeks were purchased from the Central Animal Facility of Southern Medical Uni-
versity and used for cell isolation. All the procedures conducted on the animals were approved by the Animal Care
and Use Committee of Southern Medical University. The mice were anesthetized with pentobarbital at 0.07 mg/kg,
and then their kidneys were collected. This was followed by renal capsule removement in PBS containing 1% peni-
cillin/streptomycin (Sigma–Aldrich, St Louis, MO, U.S.A.). The medullas were removed and the kidneys were minced
into small pieces of 1–3 mm3 sized pieces, and then gently ground. The suspension was filtered through a succession
of cell strainers of 80, 120, and 200 mesh. The filtrate was centrifuged at 50 g for 2 min. The pellet was resuspended
with 0.1% collagenase I in RPMI 1640 and then incubated at 37◦C in a shaker for 20 min. The cell suspension was
then centrifuged at 100 g for 5 min. The cells were resuspended in complete culture medium (Procell, Wuhan, China).
Thereafter, the cells were cultured in the complete medium on dishes precoated with polylysine at 37◦C, 5% CO2, and
the medium was refreshed every 3 days.

Cell viability
Cell viability was detected with a CCK8 kit (KeyGen, Nanjing, China). In brief, podocytes were seeded in 96-well
plates at a density of 104 cells/well and grown in 100 μl complete medium overnight at 37◦C with 5% CO2. After
24-h treatment with either control or TNF-α at the concentrations of 10, 20, 40, 80, or 160 ng/ml, the medium was
refreshed and CCK8 (10 μl) was added into each well. After 2 h of incubation, absorbance was measured at 450 nm
using a microplate reader (Bio–Rad Laboratories, Hercules, CA, U.S.A.). The actual absorbance value of each well =
OD value of the test well – OD value of the blank. Finally, the viability curve was prepared.
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Cell transfection
The siRNA oligos targetting hnRNP K were designed and transfected into cells. In brief, the siRNA (si hnRNPK:
sense 5′-UGUACGGAGAGCCUUAAUATT-3′ and siRNA negative control (NC)) were obtained from GenePharma
(Shanghai, China). Transfections were performed with either 75 nM siRNA or NC, using Lipofectamine RNAiMAX
(Invitrogen, CA, U.S.A.). The cDNA encoding hnRNP K was amplified by PCR and then subcloned into pcDNA3.0
vectors. Empty pcDNA3.0 vector was used as a negative control. Transfections of pcDNA 3.0 were performed with
Lipofectamine 2000 reagents (Invitrogen, CA, U.S.A.), according to the manufacturer’s instructions.

Flow cytometric analysis
After exposure to 5 ng/ml of TNF-α for 24 h, the cells were detached with 0.25% EDTA-free trypsin, and harvested for
apoptosis and cell cycle analysis. After centrifugation at 1000 rpm for 5 min, the medium was discarded and the cells
were resuspended in precooled PBS for apoptosis analysis. Following overnight fixing of cells in precold 70% ethanol
at 4◦C, they were washed twice with PBS and incubated in a binding buffer containing FITC-conjugated Annexin V
and propidium iodide (PI, KeyGen, Nanjing, China) at 4◦C for 30 min in the dark. Data collection was performed
using BD FACSCalibur flow cytometer (BD Biosciences, CA, U.S.A.). Additionally, cells were also used in proliferation
and cell cycle assays with the EdU Alexa Fluor 488 Flow Cytometry assay kit (Riobio, Guangzhou, China), according
to the manufacturer’s protocol. After 24 h of treatment with 5 ng/ml of TNF-α, the cells were incubated with EdU and
then washed with PBS, fixed with 0.5% buffered paraformaldehyde, permeabilized with cold acetone for 3 min and
then incubated with the Alexa Fluor 488 EdU detection solution for 30 min in the dark. Some cells were subjected
to proliferation assay with the flow cytometry. Other cells received an additional staining with 25 μg/ml PI (Sigma,
MO, U.S.A.), and then subjected to cell cycle analysis and data were collected using the flow cytometer.

Immunofluorescence staining
After cells were fixed with 4% paraformaldehyde for 15 min, the primary podocytes were permeabilized with 0.1%
Triton X-100 for 30 min at room temperature, and blocked with goat serum. Then, antibody (Santa Cruz Biotechnol-
ogy, CA, U.S.A.) against cytokeratin 18 (CK18) was added and incubated at 4̊C overnight. After three washes with
PBS, they were incubated with Cy3-labeled secondary antibody (Beyotime, Haimen, China) for 1 h at room tem-
perature. Subsequently, DAPI was added for nuclei staining, and the cells were then examined under a fluorescence
microscope.

Hoechst staining
The cells were cultured in six-well plates (104 cells/well) overnight. After 24 h of treatment with 5 ng/ml of TNF-α,
the cells were fixed with 4% paraformaldehyde at room temperature for 1 h, washed with PBS, stained with 10 μg/ml
Hoechst 33258 (Sigma–Aldrich, MO, U.S.A.) at 37̊C in the dark for about 10 min and then washed with PBS. Using
nuclear staining, the apoptotic cells were identified by chromatin condensation by fluorescence microscopy (Olym-
pus, Tokyo, Japan).

Western blots
To extract protein, the cells were lysed with RIPA buffer. The total protein concentrations in whole-cell lysates were
measured by the BCA Protein Assay. After heat denaturation, the cell lysates with 20 μg of protein and loading buffer
were added into each well of SDS/PAGE. After electrophoresis, the proteins were transferred onto PVDF membranes,
and blocked with 5% skim milk in TBST (TBS + Tween 20) for about 1.5 h at room temperature. Then the bands
associated with the proteins of interest were incubated with primary antibodies against hnRNP K (Abcam, ab23644),
c-FLIP (Abcam, ab6144), GSK3β (Abcam, ab93926), ERK (Abcam, ab17942), Casapse 3 (CST. sc-271759), Caspase
8 (catalog no. sc-6136), p-GSK3β (Abcam, ab75745), p-ERK (Abcam, ab50011), and GAPDH (Abcam, ab181602) at
4◦C overnight. After three washes with TBST, the samples were incubated with horseradish peroxidase-conjugated
secondary antibodies (catalog no. sc-2005; Santa Cruz Biotechnology, CA, U.S.A.) at room temperature for 1.5 h.
Following the final wash, the immunoreactive bindings were visualized with an ECL detection kit (Amersham, GE
Healthcare). GAPDH was chosen as the internal reference.

Quantitative RT-PCR
Total RNA was extracted from podocytes with TRIzol (Invitrogen, MA, U.S.A.) according to the manufac-
turer’s instructions and was reverse transcribed into cDNA using a PrimeScript RT-PCR kit (TaKaRa, Dalian,
China). RT-qPCR was conducted with the cDNA using an SYBR Green PCR kit (Roche Penzberg, Upper
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Figure 1. Expression of CK18 in primary podocytes

Cells were fixed, permeabilized, and incubated with antibodies. CK18 was immunofluorescently stained red. The nuclei were stained

blue with DAPI. Representative images are shown. Magnification = 400×.

Bavaria, Germany). The relative expression was calculated using the comparative cycle threshold (2−��CT ) method.
The primers used were listed as follows: hnRNP K, forward 5′-CAATGGTGAATTTGGTAAACGCC-3′, re-
verse 5′- GTAGTCTGTACGGAGAGCCTTA-3′; GAPDH, forward 5′- ACTTTGTCAAGCTCATTTCC-3′, reverse
5′-TGCAGCGAACTTTATTGATG-3′. GAPDH was used as an internal control to calculate the relative transcript
levels.

Statistical analysis
Data were presented as the mean +− SD of three independent experiments. Two-tailed Student’s t-tests and one-way
ANOVA were used for statistical analysis. All statistical analyses were conducted with SPSS 21.0 (SPSS Inc., Chicago,
IL, U.S.A.) software. Statistical differences were considered significant at P<0.05.

Results
Isolation and characterization of primary podocytes
We examined the expression of CK18, a marker of podocytes, in the isolated cells. Immunofluorescence staining
showed that CK18 (Figure 1) was highly expressed in the cells, suggesting that podocytes were successfully isolated
and characterized.

TNF-α decreased podocyte growth
We used the CCK8 assay to examine the effect of TNF-α on the viability of podocytes. After exposure to TNF-α for 24
h at the following concentrations: 10, 20, 40, 80, or 160 ng/ml, we observed a dose dependent decrease in cell viabilities
(Figure 2A). Furthermore, we found that TNF-α inhibited cell growth at IC50 of 24.07 ng/ml, and that cell viability
markedly decreased at 10 ng/ml, compared with the control group. To mimic apoptosis that occurs pathologically,
we decided to use 5 ng/ml of TNF-α in subsequent experiments. As shown in Figure 2B,C, we found that 5 ng/ml
of TNF-α significantly induced podocyte apoptosis. Flow cytometry analysis indicated the podocyte apoptosis rate
increased from 2.5% in the control to approximately 25% in the experimental group. These results indicated that 5
ng/ml of TNF-α induced apoptosis in podocytes, and can be used to mimic the cell injury model in vivo.

Subsequently, we investigated the role of other regulators associated with TNF-α-induced apoptosis. As shown in
Figure 2D, the densities of the immunoreactive bands of hnRNP K and c-FLIP were significantly decreased after 24-h
exposure to TNF-α, as compared with those in the control group. In addition, the phosphorylated levels of GSK3β
and ERK were notably increased. These data suggest that TNF-α contributed to apoptosis.

hnRNP K knockdown enhanced TNF-α-induced apoptosis in podocytes
To investigate the role of hnRNP K in TNF- α-induced podocyte apoptosis, we knocked down the expression of hn-
RNP K using siRNA. As shown in Figure 3A, the expressions of hnRNP K at the transcriptional and translational levels
were significantly decreased after transfection with the siRNA, indicating that hnRNP K knockdown was successful.
After TNF-α treatment, we used Hoechest staining and found that the incidence of condensed DNA increased in
the cells where hnRNP K expression was knocked down, compared with cells with NC transfection or without trans-
fection, indicating that hnRNP K might play an inhibitory role in TNF-α-induced apoptosis (Figure 3B). This was
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Figure 2. Effects of TNF-α on cell apoptosis and protein expressions

(A) Primary podocytes were seeded in 96-well plates and were treated with TNF-α for 24 h, then the viability was measured by CCK8

assay. (B) After treatment with 5 ng/ml TNF-α for 24 h, apoptotic morphological changes in the primary cells were examined by

Hoechest staining under fluorescence microscopy. (C) The apoptosis of primary podocytes were measured by flow cytometry. (D)

Expressions of hnRNP K, c-FLIP, GSK3β, p-GSK3β, ERK, and p-ERK were analyzed by Western blot analysis. **P<0.01, compared

with the control group by two-tailed Student’s t test. Magnification = 400×.

confirmed by the flow cytometry assay, which revealed that hnRNP K knockdown increased TNF-α-induced apop-
tosis (Figure 3C) and correspondingly inhibited cell proliferation (Figure 3D), as compared with the groups with
NC transfection or without transfection. In addition, cell cycle analysis showed that TNF-α treatment exhibited a
significantly higher and lower frequency of cells at the G0/G1 and S phases, respectively. This was further enhanced
by hnRNP K knockdown (Figure 3E). All these data suggest that hnRNP K inhibits the podocyte injury induced by
TNF-α by promoting cell cycle arrest and inhibiting entry into S phase. Moreover, TNF-α might induce podocyte
apoptosis by decreasing the expression of hnRNP K.

Subsequently, we observed the expression levels of other apoptosis regulators. As shown in Figure 3F, hnRNP K
knockdown significantly enhanced the inhibitory effect of c-FLIP expression, as well as the stimulatory effect of
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Figure 3. Effects of hnRNP K knockdown on cell apoptosis and protein expressions

Primary podocytes were transfected with either siRNA against hnRNP K or NC. (A) Total RNA and proteins were isolated from the

cells after transfection. RT-qPCR and Western blots were performed to detect hnRNP K mRNA expression in the primary podocytes.

Primary podocytes with/without transfection were exposed to 5 ng/ml TNF-α or control for 24 h. (B) Apoptotic morphological

changes in the primary cells were examined by Hoechest staining under fluorescence microscopy. By flow cytometry, the apoptosis

(C), proliferation (D), and cell cycle distribution (E) of the podocytes were measured. (F) Western blotting was performed to detect

the expressions of c-FLIP, GSK3β, p- GSK3β, ERK, p-ERK, caspase-3, and caspase-8 in the primary podocytes. Model indicated

5 ng/ml TNF-α exposure; **P<0.01 by ANOVA followed by Bonferroni’s post hoc analysis. Magnification = 400×.
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GSK3β and ERK phosphorylation. Furthermore, the markers associated with apoptosis, caspase-3, and caspase-8, ex-
hibited a significant increase in response to hnRNP K knockdown. These results suggest that TNF-α induces podocyte
apoptosis by decreasing hnRNP K expression, and thus decreasing levels of c-FLIP, and increasing levels of GSK3β
and ERK phosphorylation. In other words, hnRNP K is a target of TNF-α-induced apoptosis, and regulates the ex-
pressions of c-FLIP, GSK3β, and ERK phosphorylation.

hnRNP K overexpression inhibited TNF-α-induced apoptosis in podocytes
To confirm the antiapoptotic effect of hnRNP K on podocytes exposed to TNF-α, we successfully transfected hnRNP
K into podocytes. We observed an increase in mRNA and protein levels of hnRNP K (Figure 4A). In contrast to
the effects of hnRNP K knockdown on cell viability, hnRNP K overexpression markedly decreased the frequency of
condensed DNA and cell apoptosis induced by TNF-α (Figure 4B,C). Correspondingly, the cell proliferation inhibited
by TNF-α was significantly increased (Figure 4D). In addition, the cell cycle distribution assay showed that hnRNP
K overexpression significantly decreased and increased the incidences of G0/G1 phase and S phase, respectively, in
the cells treated with TNF-α (Figure 4E). Western blots showed that TNF-α-treated cells overexpressing hnRNP K
had significantly increased c-FLIP expression, and decreased GSK3β, ERK phosphorylation and caspase-3, caspase-8
expressions (Figure 4F). All these results confirm that the inhibitory effect of hnRNP K on TNF-α-induced apoptosis
is mediated by its regulatory effects on the expressions of c-FLIP, and phosphorylation of GSK3β and ERK.

Discussion
Proteinuria is the presence of excess protein in urine, and is a major healthcare problem affecting several hundred
million people worldwide. As a well-known marker of kidney damage, proteinuria is closely associated with glomeru-
lonephritis and end stage renal disease (ESRD) [15,16]. Typically, increased proteinuria is an indication of a decline in
renal function, regardless of baseline estimated glomerular filtration rate (eGFR) [17]. Since podocytes are an essen-
tial component of the glomerular filtration barrier, any injury can result in proteinuria. Reducing proteinuria is often
associated with beneficial effects on kidney damage [18], suggesting that protecting podocytes from injury might be a
good treatment option against the kidney diseases associated with proteinuria. In the present study, we confirmed the
apoptotic effect of TNF-α on podocytes. Furthermore, we demonstrated for the first time that hnRNP K contributes
to TNF-α-induced apoptosis, in podocytes.

TNF-α has also been shown to be involved in renal disease, such as acute kidney injury. Numerous in vivo and in
vitro studies have shown that exposure of glomerular cells to TNF-α induces glomerular dysfunctions similar to those
observed in glomerulonephritis [19]. Furthermore, several studies suggest that TNF-α induces podocyte apoptosis
[6,20]. Thus, TNF-α contributes to the initiation and development of glomerular injury, consistent with a previous
report showing that it closely associates with ESRD [21].

As a master regulator of gene expression, hnRNP K has multiple functions in regulating cell proliferation, apop-
tosis, metastasis, and chemoresistance. Aberrant expression of hnRNP K can be induced by various effectors, such
as epidermal growth factor (EGF) and heregulin-β1 [22,23]. However, limited studies exist that describe the impact
of cytokines downregulating the protein. In the present study, we showed for the first time that TNF-α inhibited the
expression of hnRNP K in podocytes, and consequently increased cell apoptosis. Moreover, we observed that over-
expression of hnRNP K significantly suppressed the apoptotic effect induced by TNF-α. This is consistent with the
widely reported antiapoptotic role of hnRNP K [24].

The antiapoptotic effect of hnRNP K has been primarily demonstrated by inducing the expression and activation
of important oncogenes, such as c-myc and c-SRC [25]. In this study, we observed that the expression of c-FLIP was
positively correlated with hnRNP K levels. Consistent with our observations, c-FLIP, an antiapoptotic protein, was
highly expressed in tumor cells, and this high-level expression was significantly correlated with high-level hnRNP
K expression [26]. The upregulation of c-FLIP was reported to occur transcriptionally via direct interaction with a
poly(C) sequence in the FLIP promoter by hnRNP K/nucleolin complex [26]. Moreover, Quintavalle et al. found that
c-FLIP can interfere with Gsk3β phosphorylation, resulting in the antiapoptotic effect [27]. However, work conducted
by Gao et al. showed that hnRNP K inhibited Gsk3β phosphorylation, and subsequently increased the levels of c-FLIP
expression by increasing stabilization [10]. It is possible that hnRNPK up-regulates the c-FLIP protein levels in cancer
cells through other mechanisms [10]. In the present study, we did not establish the exact correlation between c-FLIP
and Gsk3β phosphorylation, and this should be studied further.

A recent study demonstrated that ERK phosphorylation participates in the apoptosis of podocytes [28]. This is
consistent with our observation that increased phosphorylated ERK coincided with increased podocyte apoptosis.
Moreover, increased activation of ERK was accompanied by c-FLIP overexpression. Safa et al. showed that c-FLIP
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Figure 4. Effects of hnRNP overexpression on cell apoptosis and protein expressions

Primary podocytes were transfected empty pcDNA3.0 vectors (pcDNA3.0) or pcDNA3.0 containing cDNA encoding hnRNP K. (A)

Total RNA and proteins were isolated, then RT-qPCR and Western blotting were performed to detect hnRNP K mRNA and protein

expressions, respectively, in the transfected primary podocytes. Primary podocytes with/without transfection were exposed to 5

ng/ml TNF-α or vehicle for 24 h. (B) Apoptotic morphological changes in the primary cells were examined by Hoechest staining under

fluorescence microscopy. By flow cytometry, the apoptosis (C), proliferation (D), and cell cycle distribution (E) of the podocytes was

measured. (F) Western blotting was performed to detect the expressions of c-FLIP, GSK3β, p- GSK3β, ERK, p-ERK, caspase-3, and

caspase-8 in the primary podocytes. pcDNA3.0 indicated the primary podocytes received transfection of empty pcDNA3.0 vectors;

pcDNA3.0-hnRNP K indicated the primary podocytes received transfection of pcDNA3.0 containing cDNA encoding hnRNP K.
**P<0.01, by ANOVA followed by Bonferroni’s post hoc analysis. Magnification = 400×.
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overexpression induced ERK activation, suggesting that ERK phosphorylation observed in this study might be medi-
ated by c-FLIP [29]. In contrast, expression of c-FLIP protein has been reported to be regulated by the ERK pathway
[30]. Future work needs to be done to determine the exact relationship between c-FLIP and ERK.

In podocyte apoptosis, the death receptor signaling pathway and activation of the caspase-8 (or
caspase-10)–caspase-3 cascade are one of three major lethal signaling cascades []. In the pathway, pro-caspase-3 is
cleaved and activated by caspase-8. The data in this study showed that the levels of caspase-8 and caspase-3 were
significantly induced by TNF-α, and this is further mediated by hnRNP K. As a target of hnRNP K, c-FLIP is able
to modulate activation of procaspase-8 and thereby prevent induction of apoptosis mediated by the death receptors
[31,32]. All these support the notion that TNF-α induced caspase-8 and capase-3, as a result of reduced expression
of hnRNP K.

In summary, we investigated the molecular details of TNF-α-induced apoptosis in podocytes. We found that in
the podocyte model of TNF-α-induced apoptosis, hnRNP K was significantly decreased, which in turn decreased the
expression of c-FLIP; whereas it increased GSK3β and ERK phosphorylation as well as caspase-8 and capase-3 acti-
vation. Although the correlation amongst increased GSK3β, ERK phosphorylation, and decreased c-FLIP expression
was not investigated in this study, caspase-8 and caspase-3 induction is the net result of the correlation.
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