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Obesity, together with insulin resistance, promotes multiple metabolic abnormalities and is
strongly associated with an increased risk of chronic disease including type 2 diabetes (T2D),
hypertension, cardiovascular disease, non-alcoholic fatty liver disease (NAFLD) and chronic
kidney disease (CKD). The incidence of obesity continues to rise in astronomical propor-
tions throughout the world and affects all the different stages of the lifespan. Importantly,
the proportion of women of reproductive age who are overweight or obese is increasing at an
alarming rate and has potential ramifications for offspring health and disease risk. Evidence
suggests a strong link between the intrauterine environment and disease programming. The
current review will describe the importance of the intrauterine environment in the develop-
ment of metabolic disease, including kidney disease. It will detail the known mechanisms
of fetal programming, including the role of epigenetic modulation. The evidence for the role
of maternal obesity in the developmental programming of CKD is derived mostly from our
rodent models which will be described. The clinical implication of such findings will also be
discussed.

Introduction
Obesity affects almost one quarter of the adult population and is increasing rapidly amongst young women
globally, with 30–50% of women of childbearing age falling within the spectrum of being overweight to
obese [1-3]. The significant increase in maternal obesity over the last decade has had ramifications for
all aspects of female reproductive health, with maternal adiposity strongly associated with an increased
risk of almost all maternal and fetal complications. Although genetic predisposition and postnatal envi-
ronment are key features for the development of chronic disease, there appears to be a critical window
during gestation which influences the long-term risk unaccounted for by genetic tendency and postnatal
environment alone.

Maternal obesity has lasting effects on the long-term health of offspring. Evidence from both human
and animal studies suggests that maternal obesity ‘programs’ the offspring toward obesity, hyperglycemia,
diabetes, and hypertension, all key features of the metabolic syndrome [4,5]. This observation evokes the
concept of the developmental origins of health and disease; a concept first explored by Barker and Mar-
tyn, which suggests that chronic disease may be influenced by in utero exposure to the maternal milieu
[6]. There is substantial evidence that maternal obesity increases risk of diabetes, obesity, hypertension,
cardiovascular disease, and even premature death in adult offspring [7-10]. The effect of maternal obesity
on the risk of chronic kidney disease (CKD) in offspring is much less understood.

The current review will discuss the evidence for the role of maternal obesity in the developmental pro-
gramming of chronic metabolic disease in offspring, particularly focussing on the role of fetal program-
ming in the development of CKD. The mechanisms of fetal programming, as it may relate to CKD, will
be reviewed highlighting the role of inflammation, oxidative stress, and epigenetic changes. The avenues
for future research will be discussed.
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Maternal obesity programs metabolic disease in offspring
When an unborn fetus is exposed to the intrauterine environment associated with maternal obesity, it has lasting ef-
fects on the offspring’s long-term metabolic health, independent of genetic predisposition and postnatal environmen-
tal factors [7,8,11-17]. Both human observational studies and animal models of maternal obesity have contributed to
our understanding of the role of fetal programming in chronic disease risk. Specifically, epidemiological studies have
shown that offspring born to obese mothers are at an increased risk of obesity, type 2 diabetes (T2D), cardiovascular
disease, and non-alcoholic fatty liver disease (NAFLD) (Table 1). A large, retrospective cohort study of over 100,000
person years found that offspring of obese mothers (body mass index (BMI) >30) had a 35% increased mortality,
mostly due to cardiovascular death, compared to offspring of normal weight mothers [7]. Using a similar experi-
mental design, Eriksson et al. [14] also found that higher maternal BMI was strongly associated with an increased
risk of cardiovascular and cerebrovascular diseases, both coronary heart disease and stroke. There are currently no
observational studies that specifically examine the effect of maternal obesity on offspring’s long-term kidney health.

The aforementioned studies mostly employ observational, epidemiological designs, inherently subject to differ-
ences in selection methods, measurement of study variables, design-specific sources of bias, control of confounding
variables and statistical analyses [19]. For example, many studies have used self-reported pre-pregnancy BMI rather
than directly measuring BMI, and some studies did not have additional measurements of body weight during preg-
nancy. Breastfeeding is infrequently identified as a confounding factor though it is known to be less common in obese
women and is well known to protect offspring against risk of adult obesity and T2D [20-24]. Animal studies allow con-
trolled experimental design and can induce a specific maternal perturbation to determine its influence on offspring’s
long-term health. Many animal studies have utilized dietary manipulation in rodent models to examine the effects of
maternal obesity on the offspring. Table 2 summarizes some examples of long-term studies using various species to
model maternal obesity. These studies have overwhelmingly supported the concept that maternal obesity programs
the development of metabolic disease in adult and even aged offspring, and that maternal obesity compounds the
effect of diet-induced obesity in adulthood. Rodents, rabbits, guinea pigs, sheep, and non-human primates have been
used to model maternal obesity and determine its effects on offspring’s health. The largest meta-analysis including 53
rodent studies confirmed that maternal obesity is associated with significantly higher body weight in offspring post
weaning [25].

The role of maternal obesity in CKD risk in offspring
A limitation of the existing data regarding the effects of maternal obesity on metabolic health is that few studies, both
in humans and animal models, have specifically examined the effect of maternal obesity on renal health in offspring.
Several human studies have shown that offspring born to diabetic mothers are at increased risk of hypertension, hyper-
filtration, and CKD [39]. A longitudinal study of over 5000 births found that overweight and obesity in early infancy
are associated with increased risk of CKD in adulthood [40]. A large population-based, case–control study with 1994
patients with childhood CKD (<21 years of age at diagnosis) confirmed that maternal overweight and obesity were
associated with a significantly increased risk of CKD in these young children (24 and 26% increased risk, respectively
compared with the controls) [41]. Low birth weight, gestational diabetes, and maternal overweight/obesity were sig-
nificantly associated with obstructive uropathy in children [41]. These clinical studies are suggestive that maternal
obesity can negatively impact renal development and increase risk of CKD in later life.

Utilizing rodent models of maternal obesity, research within our laboratory has established that maternal obesity is
a significant risk factor for the future development of CKD in offspring. In rodent models of maternal obesity utiliz-
ing high-fat diet (HFD) feeding (20 kJ/g, 43% fat, 21% protein, 36% carbohydrate) during gestation and lactation, we
have demonstrated that offspring of obese mothers have increased fat deposition, insulin resistance, and impaired glu-
cose tolerance together with increased albuminuria and renal pathology [42-46]. The kidneys of offspring of obese
compared with lean mothers examined at Day 20, Week 9 and through to Week 32 showed persistent evidence of
inflammation, oxidative stress, and fibrosis. Interestingly, postnatal feeding of HFD in offspring augmented the dele-
terious renal effects of maternal obesity, confirming the negative impact of persistent high calorie diet. Moreover, off-
spring of obese mothers were more prone to renal damage after an additional insult, such as streptozotocin-induced
diabetes, suggesting maternal obesity may be an initial insult in a ‘two-hit’ model of disease. However, diet-induced
HFD-feeding in offspring remained a very powerful means of inducing weight gain, glucose intolerance, albuminuria,
and renal damage, which overpowers the effect of maternal obesity by postnatal week 32 [46]. Our results highlight
that intrauterine exposure to maternal obesity predispose offspring toward CKD and implicates fetal exposure to
maternal obesity as a significant risk factor for CKD.
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Table 1 Summary of epidemiological studies assessing the effect of maternal obesity on offspring risk of chronic disease

Study name
Year of
publishing Country

Study
design

Sample
size

Outcome of
interest Main findings Adjusted variables P-value

Level of
evidence

Obesity in adulthood

Eriksson et al.
[11]

2015 Denmark Retrospective
cohort

2003 Adult BMI (mean
age: 62 years)

Higher maternal BMI was
associated with
significantly higher BMI in
offspring

Current age P=0.002 III-3

Schack-Nielsen
et al. [12]

2010 Denmark Retrospective
cohort

1540 Adult BMI (mean
age: 42 years)

Higher gestational weight
gain was associated with
significantly higher BMI in
offspring

Sex, maternal
age/pre-pregnancy, BMI,
parental social status,
education/single-mother
status, prematurity, birth
weight, and smoking

P=0.003 III-2

Laitinen et al.
[13]

2001 Finland Retrospective
cohort

6280 Adult BMI (mean
age: 31 years)

Offspring
overweight/obesity was
more common if the
mother was
overweight/obese during
pregnancy, BMI at the age
of 31 correlated with BMI
at the age of 14

N/a P<0.001 III-3

Cardiovascular disease in adulthood

Eriksson et al.
[14]

2014 Finland Retrospective
hospital
archive
medication
register

13345 Cardiovascular
disease
(coronary heart
disease and
stroke)

Higher maternal BMI was
associated with increased
risk of cardiovascular
disease; as well as
coronary heart disease
and stroke in offspring
when analyzed separately
(P=0.003 and P=0.04,
respectively)

Childhood
socioeconomic status,
adult socioeconomic
status, income,
education, sex, and year
of birth

P=0.002

Reynolds et al.
[7]

2013 Scotland Retrospective
cohort

37709 All-cause
mortality

Offspring of obese
mothers had a 35% higher
risk of mortality compared
with offspring of mothers
of normal weight.
Offspring of obese
mothers had an increased
risk of cardiac-related
hospitalization

Maternal age at delivery,
socioeconomic status,
offspring sex, birth
weight, gestation at
delivery, and gestation at
measurement of BMI

HR:
1.17–1.55

III-2

Hospitalized for
a cardiovascular
event

Forsen et al. [8] 1997 Denmark Retrospective
cohort

3300
(men
only)

Death from
coronary heart
disease (ICD)

Higher maternal BMI was
associated with increased
risk of death from
cardiovascular disease

N/a P=0.008 III-3

T2D in adulthood

Eriksson et al.
[14]

2014 Finland Retrospective
hospital
archive/medication
register

13345 T2D (as
determined by
use of
antidiabetic
medications)

The risk of T2D was
increased with higher
maternal BMI; the
association was stronger
in women

Childhood and adult
socioeconomic status,
income, education, sex,
and year of birth

P=0.004 III-3

NAFLD

Patel et al. [15] 2016 U.K. Prospective
pregnancy
cohort

1581 NAFLD as
determined by
liver ultrasound
at the age of
17–18 years

Maternal
overweight/obesity and
pre-pregnancy BMI were
associated with greater
odds of NAFLD in
offspring, even when
adjusting for confounders
(lost significance when
adjusted for neonatal
offspring adiposity)

Age at assessment,
gender, maternal age at
delivery, parity, maternal
pre-pregnancy alcohol
intake, household social
class, birth weight

P<0.05 III-2

This table highlights major studies that have identified the significant influence of maternal obesity on chronic disease risk. Level of evidence is derived
from NHMRC levels of evidence where level I evidence is a systematic review of level II evidence, II is a randomized controlled trial, III is a comparative
study; -2 concurrent controls, -3 historical controls or two single arm studies [18].
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Table 2 Metabolic sequelae of maternal obesity in animal models

Study Year Species/strain
Maternal
diet (fat %)

Comparator
group

Age of
offspring Main findings

Ramirez-Lopez et al.
[26]

2015 Wistar rat Cafeteria (ad
libitum)

Offspring of
chow-fed mothers

Week 20 Male offspring from obese mothers showed significantly
greater abdominal fat than control offspring although no
significant difference in body weight between the groups
was found.

Srinivasan et al. [27] 2006 SD rat HFD (60%) Offspring of
chow-fed mothers

Day 60 Offspring of HFD-fed mothers had increased glucose, free
fatty acids, triglycerides, and glucose intolerance.

Rajia et al. [28] 2010 SD rat HFD (60%) Offspring of
chow-fed mothers

Week 21 HFD-fed offspring of HFD-fed mothers had increased body
weight, fat mass, and glucose intolerance with increased
insulin, leptin, insulin resistance, and hyperphagia compared
with offspring of chow-fed mothers.

Chen et al. [29] 2014 SD rat HFD (60%) Offspring of
chow-fed mothers,
offspring fed chow
compared with HFD

Week 9 Offspring of HFD-fed mothers had increased adiposity,
hyperinsulinemia, hyperlipidemia, and insulin resistance.

Only offspring of HFD-fed mothers who were fed HFD had
impaired glucose tolerance, and not those fed chow.

Buckley et al. [30] 2005 Rat HFD (59%) Offspring of
chow-fed mothers

3 months Offspring of HFD-fed mothers had increased proportions of
both total body fat and abdominal fat, hyperinsulinemia on
oral glucose tolerance test at 15 min and elevated liver
triglyceride content. Insulin signaling protein expression
levels in the offspring of HFD-fed mothers were consistent
with reduced hepatic insulin sensitivity.

Bayol et al. [31] 2007 Rat Cafeteria Offspring of
chow-fed mothers

Week 10 Offspring of junk food-fed mothers exhibited increased body
weight and BMI compared with all other offspring

Blackmore et al. [32] 2014 SD rat High fat and
sugar (20%)

Offspring of
chow-fed mothers

Week 12 Although offspring of high fat/high sugar mothers had the
same body weight and adiposity as offspring of chow-fed
mothers, their heart mass was greater, ventricular volumes
were increased, and there was increased ventricular wall
thickening.

Samuelsson et al.
[33]

2008 C57BL/6 mouse Obesogenic
diet (16%
fat/33% sugar)

Offspring of
chow-fed mothers

3 and 6
months of
age

At 6 months, offspring of obese mothers were heavier, with
increased adiposity, endothelial dysfunction, hypertensive,
and significantly reduced skeletal muscle mass. Fasting
insulin was raised at 3 months and by 6 months fasting
glucose was elevated

King et al. [34] 2014 C57BL/6 Cafeteria (58%
fat/25% sugar)

Offspring of
chow-fed mothers

3 and 6
months of
age

At 3 months: post-weaning exposure to cafeteria diet
increased glucose, insulin, and cholesterol in males;
increased plasma insulin and cholesterol in females and
increased HOMA-IR in both sexes. There was an additive
effect of maternal overnutrition to increase insulin levels in
males.

At 6 months: no additional effect of maternal overnutrition
was seen.

Castaneda-Gutierrez
et al. [35]

2011 Guinea pig HFD (40%) Offspring of
chow-fed mothers

Day 136 Feeding a HFD during pregnancy induced a 3% increase in
body fat in the neonates without change in birth weight. A
maternal HFD increased the offspring’s adiposity at 2 and
21 days but had no effect on body composition later in life.

Long et al. [36] 2010 Sheep 150% nutrient
requirements
(obseogenic
diet)

Offspring of
chow-fed mothers

2 years old Fasting glucose was greater; glucose effectiveness and
insulin sensitivity were lower in offspring from obese
compared with control ewes. During a feeding challenge,
offspring from obese ewes consumed approximately 10%
more food and tended to have greater weight gain. Their
percentage of body fat was greater

McCurdy et al. [37] 2009 Macaca fuscata HFD (32%) Offspring who were
switched to normal
diet (15% fat) at age
5 years

Age: 15
years

Chronic maternal HFD consumption, independent of
maternal obesity, or diabetes, significantly increased the risk
of NAFLD in the developing fetus that persisted into the
postnatal period.

Rivera et al. [38] 2015 Macaca fuscata HFD (37%) Offspring of normal
diet (15% fat)

13 months Maternal obesity (defined as >15.8% body fat) but not
maternal HFD consumption alone was associated with
increased body weight. Offspring from HFD-obese mothers
overconsumed high-fat/sucrose relative to control offspring
demonstrating a preference for palatable HFD food.

This table demonstrates that maternal obesity is implicated in metabolic dysfunction utilizing a variety of species/strains and different offspring ages. It
does not intend to provide an exhaustive list of all studies completed on the topic.
Abbreviation: HFD, high-fat diet. HOMA-IR, homeostasis model assessment of insulin resistance. SD, Sprague-Dawley
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Our previous studies established association with respect to maternal obesity and renal effects in offspring, how-
ever were not able to demonstrate direct causality. The kidneys of rodent offspring demonstrated deleterious changes
including increased markers of oxidative stress, inflammation, and lipid deposition. Changes in blood glucose regula-
tion and blood pressure by maternal obesity or postnatal insults may also have contributed to the renal effects. Indeed,
rodent offspring of obese mothers are known to be hypertensive with evidence of endothelial dysfunction [33]. There
has been some suggestions that early life exposure to hyperleptinemia may contribute to establishing hypertension in
the offspring of obese mothers [47].

Developmental programming of kidney disease in offspring
The influential role of developmental programming in the susceptibility to CKD has received greater attention in
the context of nutritional deprivation, tobacco smoking, and gestational diabetes mellitus (GDM), as compared with
maternal obesity [48]. The kidney is a highly vascular and metabolically active organ, particularly susceptible to the
impact of prenatal insults [49]. Infants born prematurely, prior to 36 weeks of gestation have reduced nephron number
and kidney size. Low birth weight, defined as birth weight below 2500 g, represents the postnatal manifestation of
fetal growth restriction. Considerable evidence exists for an association between low birth weight and CKD [50-59].
Indeed, a recent meta-analysis found that low birth weight confers approximately 70% increased risk (OR: 1.77) of
developing CKD in adult life, compared with normal birth weight [59]. Factors known to increase the likelihood of low
birth weight include maternal nutritional deprivation, maternal smoking, placental insufficiency, twin pregnancy, and
preterm delivery [48,60-63]. Mothers who smoke tobacco during pregnancy can permanently damage their offspring’s
kidney health as a result of prematurity and low birth weight [64,65]. This is due to the disruption in delivery of
nutrients to the growing fetus that leads to intrauterine growth restriction, which has permanent deleterious effects on
renal health in postnatal life [66]. Though often associated with fetal overgrowth, maternal obesity can also conversely
be associated with increased risk of premature birth and low birth weight, with implications for renal development
and CKD risk [67].

Epigenetic mechanisms are implicated in the development of CKD [68,69]. As compared with genome-wide asso-
ciation studies (GWAS), epigenome-wide association studies (EWAS) have been more fruitful in demonstrating influ-
ence of epigenetic changes on CKD risk [70]. The tubuli from patients with CKD demonstrated significant changes
in DNA methylation, particularly at enhancers associated with the increased expression of key fibrotic genes [71].
Furthermore, accelerated loss of renal function in patients with known CKD is associated with DNA methylation of
genes involved in inflammation, as well as fibrosis [72] The role of epigenetics is increasingly understood to underpin
the relationship between maternal perturbations and renal health in adulthood [73,74]. Much of this work in epige-
netics and fetal programming has investigated the effects of intrauterine growth restriction and maternal smoking.
There are no studies that have investigated the effect of maternal obesity on epigenetic changes specifically related to
development of CKD. This needs to be addressed in future studies.

Mechanisms of fetal programming affecting offspring kidney
health
The total number of nephrons within the kidney is important, as each nephron provides a critical filtering function
within the kidney. In humans, nephron endowment, defined as the number of nephrons at the start of postnatal life,
is an important determinant of adult kidney health [75]. Nephrogenesis is complete by 32–36 weeks in humans and
thereafter no new nephrons are formed. The total number of nephrons is correlated with birth weight in humans [51].

In the context of premature delivery or intrauterine growth restriction, nephron endowment is reduced and thus
the normal physiological demand becomes overwhelmed leading to hyperfiltration and subsequent glomerular hy-
pertrophy which may ultimately lead to CKD and systemic and intraglomerular hypertension [49,75,76]. The impor-
tance of kidney size is evident in neonates with retarded kidney growth during the first 18 months of life, who have
increased risk of CKD in adulthood [77]. The underdeveloped kidney in offspring from smoking mothers is at least
partially a direct result of the inflammatory and vasoconstrictive actions of nicotine and results in lower nephron
endowment in the offspring [78]. Within our laboratory, in a rodent model of maternal smoking maternal smoking
has been found to impair mitochondrial function, increase renal levels of reactive oxygen species, and reduce an-
tioxidant defense mechanisms in the kidneys of adult offspring. The appearance of mitochondrial defects preceded
the onset of albuminuria at postnatal week 13. Thus, mitochondrial damage caused by maternal smoking may play
an important role in development of CKD in adult life [65]. Indeed, maternal smoking is associated with epigenetic
changes which have been implicated in the development of CKD as well as cancer, rheumatoid arthritis, and other
immune-mediated diseases [79-81].
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Figure 1. A schematic representation depicting the key players in developmental programming of maternal obesity

The mechanisms underpinning the association between maternal obesity and CKD are less well studied and have
been pioneered by our research team. We confirm that inflammation, oxidative stress, and dyslipidemia are the key
mechanisms involved in the relationship between maternal obesity and CKD [42-46]. The known mechanisms of
developmental programming on chronic disease risk in offspring are depicted in Figure 1 .

Cross-talk amongst adipose tissue, placenta, and fetal
kidney development in maternal obesity
Adipose tissue has an important role in metabolic programming
Offspring of obese mothers are predisposed to adiposity, adipocyte hypertrophy, and weight gain in adulthood as a
result of up-regulation of adipogenesis and lipogenesis [82]. Visceral adipose tissue is increased (including increased
epididymal/periuterine, perirenal, omental, and mesenteric fat deposits), which has been shown to have particu-
larly adverse metabolic consequences to the offspring in relation to insulin resistance and metabolic risk [83]. Key
transcription factors involved in adipogenesis and lipogenesis include peroxisome proliferator-activated receptor-γ
(PPARγ), CCAAT/enhancer binding protein, the sterol regulatory element-binding protein 1c as well as fatty acid
synthesis enzymes such as fatty acid synthase. All of them are up-regulated in the adipose tissue of offspring of obese
mothers [84]. PPARγ has been shown to be up-regulated in adipose tissue of offspring exposed to maternal obesity
both prenatally and up to postnatal day 130 [85,86]. Fatty acid synthase and multiple fatty acid transporters have been
shown to be up-regulated in retroperitoneal, omental, mesenteric, and subcutaneous fat deposits. Lipid accumula-
tion, including cholesterol and phospholipid accumulation, within the glomeruli and proximal tubules is known to
be associated with CKD [87]. We demonstrated that maternal obesity was associated with reduced renal function and
increased fibrosis as measured by renal structural changes and fibronectin; renal inflammation and oxidative stress
were up-regulated in the offspring of obese mothers. Table 3 shows the maternal anthropometric characteristics in
mothers at the time of weaning, clearly demonstrating that HFD feeding in the mothers induced significant adiposity
but not diabetes nor relative hyperglycemia in the offspring.

Adipose tissue produces adipocytokines including adiponectin and leptin which have autocrine, paracrine, and en-
docrine effects and influence whole-body insulin sensitivity and hence the development of metabolic diseases [88].
Adiponectin promotes insulin sensitivity and has anti-inflammatory properties; decreased circulating levels are asso-
ciated with obesity, insulin resistance, and T2D [88]. Pregnant obese dams have lower adiponectin levels and similarly
offspring of obese mothers also have lower adiponectin levels [89]. In contrast, leptin plays important roles in modu-
lating satiety and energy homeostasis. Although leptin is elevated in offspring of obese mothers, the offspring do not
demonstrate reduced food intake suggesting that maternal obesity induces leptin resistance [36]. The mechanism of
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Table 3 Maternal anthropometric characteristics of dams at the time of weaning (day 21 postpartum)

Maternal factor Control Obese

BW (g) 24.36 +− 0.31 34.23 +− 1.063*

Fasting glucose (mmol/l) 13.50 +− 0.63 15.17 +− 0.73

Kidney/BW (%) 0.73 +− 0.01 0.61 +− 0.02*

Liver/BW (%) 6.04 +− 0.37 6.52 +− 0.26*

Retroperitoneal fat/BW (%) 0.20 +− 0.02 1.29 +− 0.12*

Extrauterine fat/BW (%) 1.36 +− 0.11 5.60 +− 0.52*

Abbreviation: BW, body weight.
*P<0.0001 compared with control. Results are expressed as mean +− S.E.M., n=28-30. Control: chow fed and Obese: HFD fed from 6 weeks prior to
mating, throughout pregnancy and lactation.

leptin resistance due to maternal obesity may be permanently programmed by intrauterine overnutrition as a result
of alterations in neural circuitry that is similar to that induced by HFD consumption [90].

Adipocytes secrete inflammatory mediators including chemokines and cytokines which lead to both local and
systemic inflammation [91]. Excessive lipids that cannot be stored in adipocytes are released into the blood and ec-
topically deposited in the liver, muscle, and pancreas. At these sites, inflammatory cytokines secreted by adipocytes,
cause cellular functional injury. Together these metabolic abnormalities lead to insulin resistance and the predis-
position toward metabolic disorders, which may lead to end-organ effects such as cardiovascular disease and CKD
[92].

The placenta and programming by maternal obesity
The placenta is the gatekeeper between the maternal and fetal circulation. It modulates the delivery of oxygen and
nutrients including glucose, amino acids, free fatty acids, and hormones such as insulin and glucagon, and glucocor-
ticoids from the maternal circulation to the growing fetus. In exchange, the placenta is responsible for transferring
carbon dioxide, urea, waste products, and hormones from the fetal circulation to the maternal circulation for clear-
ance. The placenta is now recognized as an integral programming agent for chronic disease in offspring and in par-
ticular, placental efficiency is a predictor of disease. Maternal obesity is known to modulate how the placenta forms
and functions [93].

In general, placental function relates to how it delivers oxygen and nutrients to the fetus. Placental transport is
dependent on a number of factors including placental size and function, maternal nutrient availability, and the stage
of gestation [94]. Placental transport of key nutrients is not as simple as concentration gradients from maternal to fetal
circulation, although for nutrients such as glucose there is a strong relationship between maternal and fetal glucose
levels [95]. Most relevant to the setting of maternal obesity, is the transport of glucose and fats across the placenta.

Diffusion of glucose across the placenta takes place readily and results in increased fetal growth. The
insulin-independent glucose transporter (GLUT) 1 (GLUT1) has been identified as the main transporter for glucose
in the placenta [95]. In GDM, it has been demonstrated that GLUT1 is up-regulated probably as a result of hormon-
ally driven mechanisms such as increased insulin and insulin-like growth factor-1 (IGF-1). In obese mothers without
GDM, GLUT1 expression correlated with birth weight [96]. However, the placental role in transferring glucose from
mother to fetus is yet more complex where fetal hyperinsulinemia, in response to fetal hyperglycemia can steepen the
glucose gradient, known as glucose steal [97]. This is because hyperinsulinemia in the fetus is likely to accelerate glu-
cose clearance into fetal tissues by increasing fat accumulation predominantly in adipose tissue and in the liver, which
will consequently increase the fetal glucose steal. It has been postulated that even in the presence of normal maternal
glucose levels, fetal hyperinsulinemia will still lower fetal glucose concentrations, thus a high-glucose gradient and
an exaggerated glucose steal are sustained [97]. Furthermore, in the setting of a large maternal–fetal glucose gradient,
maternal postprandial glucose peaks may even be blunted further exacerbating the fetal exposure to glucose though
masking the phenomenon in the mother.

The placenta is highly permeable to free fatty acids, transfer of which is gradient dependent. In general, the preg-
nant state is associated with mobilization of lipids, cholesterol, and free fatty acids into the maternal circulation [98].
Lipoprotein metabolism is up-regulated. Maternal lipoproteins do not pass directly across the placenta, rather lipopro-
tein receptors, lipases, and fatty acid-binding transport proteins within the placenta allow placental uptake of triglyc-
erides and cholesterol and passage to the fetus. In fact, the placenta also has the ability to re-esterify and store lipids
for later fetal use [99]. Maternal obesity is associated with even greater increases in maternal lipid mobilization and
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triglyceride. Low-density lipoprotein (LDL) and free fatty acids are all increased in obese compared with normal
weight pregnant women [98]. In animal models as well as humans, maternal obesity increases the expression of free
fatty acid transporters within the placenta, including CD36, fatty acid transport proteins 1 and 4, which are associated
with increased circulating lipids in fetal serum [100-104].

Cellular mechanisms of developmental programming
affected by maternal obesity
Inflammation
Obesity is associated with chronic low-grade inflammation largely mediated by excess adipose tissue [105]. Increased
inflammatory markers are evident in the placentae of obese mothers [93,106,107]. Enhanced placental expression of
pro-inflammatory cytokines, and expression of a critical signaling molecule in the inflammatory pathway, Toll-like
receptor 4, alongside increased macrophage accumulation has been demonstrated in obese HFD-fed non-human pri-
mates [108,109]. Furthermore, cord blood levels of inflammatory markers also are reported to be altered by exposure
to an obese mother [110,111]. Dosch et al. [111] found that cord serum levels of key inflammatory cytokines were in-
creased in neonates of obese mothers at cesarean section (BMI >35 at the time of delivery). The mechanisms by which
chronic low-grade inflammation influences placental function and how inflammatory mediators are transmitted to
offspring and perpetuated to increase chronic disease risk later in life are poorly understood. Of particular interest, is
the emerging evidence that maternal obesity may lead to alterations in the maternal DNA methylome which thereby
influences placental gene [112].

Oxidative stress
An imbalance between reactive oxygen species and antioxidant defense mechanisms leads to cellular damage via
oxidative stress. Markers of oxidative stress have been shown to be increased in the placentae of obese mothers [113].
In a study of overweight and obese Spanish women, reduced placental expression of mammalian target of rapamycin
and up-regulation of sirtuin 1 and uncoupled protein 2 were demonstrated. The implication of their altered regulation
suggests increased placental oxidative stress, given the known role of these genes in up-regulating cellular antioxidant
defense mechanisms [114]. Interestingly, in this study they did not find increased inflammatory cytokines in the cord
blood of the neonates exposed to maternal obesity.

Mitochondria are intracellular organelles extensively involved in cellular metabolism and oxidative stress defense
as a result of inevitable free radical leakage in the process of cellular respiration. Mitochondrial dysfunction has been
demonstrated as early as embryogenesis by maternal obesity [115]. Furthermore, the placentae of obese mothers
have higher levels of oxidative stress and impaired mitochondrial respiration in both rodent and human placenta
[116-118]. The outcome of increased oxidative stress and dysfunctional repair mechanisms is likely to be impaired
placental function, which may thereby lead to unhealthy fetal growth and development.

Changes in epigenetic regulation
Epigenetics is the study of heritable changes in gene expression that are not due to changes in the DNA sequence [119].
Epigenetic modification can occur via DNA methylation, histone modification, or by the influence of miRNA and
small non-coding regions of the genome previously regarded as ‘junk’ though now recognized as important regulators
of gene expression itself. DNA methylation typically occurs at CpG dinucleotide sites (regions of DNA where a cyto-
sine nucleotide is followed by a guanine nucleotide) via the action of DNA methyltransferase enzymes. DNA methy-
lation is usually associated with down-regulation or silencing of gene expression via direct methylation at non-CpG
sites. Histone modification results in altered compaction of DNA around histones, preventing or enabling gene activa-
tion. Changes to histone structure as a result of various processes including acetylation, methylation, ubiquitylation,
and phosphorylation lead to chromatin and nucleosome restructure which influences binding of transcription factors
which can have numerous effects on gene regulation [119]. There is a complex interplay between epigenetic processes
such that coupling between DNA methylation and histone modification increases the complexity of gene regulation.
With respect to fetal programming, epigenetic changes are increasingly demonstrated to play an influential role in
modulating gene expression which may persist from early life in utero through to adulthood.

In human studies, maternal nutrition as early as conception, can modulate DNA methylation of important genes.
In a series of elegantly designed experiments taking place in a remote community in the Gambia, maternal nutri-
tional status at the time of conception was shown to alter methylation status of a host of genes in the cord blood of
offspring [120-122]. In rural communities in the Gambia, the combination of self-sufficient food source (without
external influence) and reliance on stored foods during the rainy season lead to profound annual variations in the
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Figure 2. Influencing factors and cellular mechanisms leading to the development of CKD in offspring

intakes of macro- and micronutrients. First, it was established that the season of conception (reflecting variation in
the dietary intake and nutritional status of women at the time of conception) significantly influenced the methylation
status in multiple genes in children [122]. Second, a randomized, controlled trial where Gambian women were given
micronutrient supplementation, determined that particular candidate genes had altered methylation status as a result
of the supplement as measured in cord blood of offspring [120]. Thereafter, a large randomized, controlled trial car-
ried out in the Gambian communities demonstrated the powerful effect of periconceptional maternal nutrition on
DNA methylation in offspring blood and hair and was predicted by periconceptional maternal plasma concentrations
of key micronutrients, such as homocysteine, folate, and B vitamins [120].

A very powerful example of the potential effects of epigenetic modification comes from animal experiments involv-
ing the Agouti mouse. The wild-type Agouti gene encodes a paracrine-signaling molecule that produces either black
or yellow fur [123]. When the agouti gene is in its normal methylated state, the coat is brown and the mouse has low
risk of metabolic disease. In contrast, if the agouti gene is unmethylated, the mouse is yellow-furred and obese with
dysregulated metabolism. When pregnant yellow-furred Agouti mice are fed methyl-rich diet, they produce mostly
healthy brown-furred offspring. However, if fed methyl-poor diet the offspring are yellow furred and are at increased
risk of obesity. In the human studies conducted in the Gambia, interestingly higher maternal BMI was significantly
associated with hypomethylation status in the serum of the offspring [121]. To date, it is unclear if epigenetic changes
established in utero are persistent throughout life or can be modulated by postnatal environmental factors.

Clinical implications
There is firm evidence that maternal obesity influences the development of chronic disease in offspring, and our
animal models of maternal obesity have now extended this knowledge to include developmental programming of
renal disease. There is considerable evidence related to the pathways of inflammation, oxidative stress, and fibrosis
with regard to the pathogenesis of CKD [124,125]. Maternal obesity is an important modulator of these pathways
and hence should be considered a contributor to future CKD risk in the offspring (see Figure 2 ). Further studies
are needed to explore the critical components of in utero exposure underlying the influence of maternal obesity on
renal outcomes, specifically determining the role of hypertension in CKD risk in offspring. The role of epigenetics in
modulating the effects of maternal obesity on metabolic disease in offspring is an important area for future research
and no doubt will provide explanation for the transgenerational propagation of metabolic disease.

As all-important gatekeeper between the maternal and fetal circulations, the placenta is likely to play a critical role
in fetal programming as previously described. An objective for future studies is to determine the role of the placenta
in orchestrating the effect of perturbations related to maternal obesity on metabolic programming within the fetal
kidney. There are several unanswered questions related to this concept. Are all periods of gestation as important for
the deleterious renal effects of maternal obesity? For example, is early gestation most important when placental im-
plantation is occurring or is late gestation more important when final kidney maturation is taking place? Another
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question arises: if weight loss occurs prior to conception, will this resolve the negative programming effects of mater-
nal obesity on the renal health of offspring? There is low level of evidence to suggest that this may not be the case and
invokes the concept of irreversible epigenetic modifications with the potential to lead to transgenerational propaga-
tion of obesity and renal disease [126,127]. Transmission of epigenetic modifications from mother to child may shift
the population phenotype, particularly if occurring in the mtDNA.

Specific targets to reduce inflammation and oxidative stress are needed to prevent the harmful effects of maternal
obesity on renal health, and other deleterious metabolic effects. Agents safe in pregnancy that can reduce inflamma-
tion, oxidative stress, or reverse adverse epigenetic modification, may be useful to prevent developmental program-
ming of maternal obesity impacting on renal health in offspring. Finally, its far-reaching consequences for disease
propagation to subsequent generations calls for unity of industry, academia, and public health to come together with
policymakers and governments to devise public health strategies to reduce obesity, particularly in women of repro-
ductive age.
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