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A growing body of evidence has clearly demonstrated that maternal nutrition can strongly
determine the susceptibility to the development of metabolic diseases in offspring. With the
increasing prevalence of maternal overweight, obesity, and gestational diabetes mellitus,
it yields enormous burden for individual and public health. Interventions during pregnancy
have been proven to be challenging, with limited efficacy and low compliance. Resveratrol,
as a natural polyphenolic compound, has a wide-range of beneficial properties, including
potent antiobesogenic, antiatherosclerotic, and antidiabetic effects. However, the role of
maternal resveratrol intake on metabolic health in offspring has not been extensively inves-
tigated. Therefore, the aim of this study was to review the effects of maternal resveratrol
supplementation on metabolic health in offspring and its potential mechanisms.

Introduction
The incidence of obesity and diabetes is increasing rapidly, placing a huge economic burden on society [1].
However, the pathogenesis of diabetes has not been fully illustrated. Emerging data show that perinatal
nutrition consumption is a pivotal factor determining the susceptibility to metabolic disorders [2-4]. In
particular, approximately one in six births is affected by gestational diabetes mellitus (GDM) reported by
International Diabetes Federation Atlas in late 2017 [1]. The World Health Organization newly reported
that 50% of women of childbearing ages, and 20–25% of pregnant women in Europe were affected by over-
weight or obesity [5]. As demonstrated by the “Developmental Origins of Health and Disease (DOHaD)”
theory [6,7], obese mothers and women with GDM are associated with infant weight z-scores at birth and
at 6 months [8], childhood obesity [9], and unhealthy body composition in adult offspring [10,11]. They
are more likely to develop insulin resistance [12], type 2 diabetes [13,14] and even early childhood type 1
diabetes [15], and cardiovascular diseases [16] in adulthood.

Interventions for metabolic health during pregnancy
are limited
With the increasing prevalence of metabolic diseases during pregnancy, such as maternal obesity and
GDM, it yields enormous burden for individual and public health [17]. Preventing obesity, insulin re-
sistance, and type 2 diabetes during pregnancy has pronounced benefits [18]. Lifestyle interventions,
including diet and exercise, have been widely used to prevent and treat abnormal metabolism during
pregnancy [19]. However, it has proven to be challenging, with limited efficacy and low compliance. One
meta-analysis indicated that diet and lifestyle interventions in pregnancy were able to reduce gestational
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Figure 1. The molecular structure of resveratrol isolated from grapes

Resveratrol, a polyphenolic compound (3,4′,5-trihydroxystilbene), is mostly present in grapes. Resveratrol has a variety of beneficial

health effects and exhibits several biological properties, including its cardioprotective, antiobesogenic, antiatherosclerotic, and

antidiabetic effects.

weight gain; however, no effects on composite maternal and fetal outcomes were observed [20]. Poston et al. [21]
showed that a behavioral intervention with diet and physical activity in obese mothers was insufficient to reduce the
incidence of fetal macrosomia or to prevent GDM occurrence. Han et al. [22] showed that for women with GDM, there
were no differences in adverse pregnancy outcomes among several kinds of dietary advice. Flynn et al. [23] showed
that the methodological variability in dietary interventions to control gestational weight gain in pregnant women
was large, which limited the ability to apply the evidence in clinical practice and develop clinical guidelines. Other
management practices, such as medication therapy for GDM, are expensive and with side effects [24]. Therefore,
alternative interventions for metabolic health during pregnancy are needed.

Historical perspective of active compounds isolated from
plants and herbs
Traditional Chinese Medicine (TCM), as an herbal medicine with a 2000-year-old history, has been widely used to
treat diseases in most Asian countries [25]. The safety, efficacy, and mechanisms of most TCM have been clearly
demonstrated, and compounds from dietary plants and herbs have been widely used in complementary and alterna-
tive medicine [26]. For example, artemisinin, as an important antimalarial drug, is mainly discovered and isolated
from sweet wormwood [27]. In addition, approximately 50% of pharmaceutical drugs may be plant derivatives [28].
Salicylic acid, isolated from the willow tree, is the basis of the common drug, aspirin. Atropine, as a muscle relax-
ant, is isolated from nightshade plants, and morphine is extracted from the opium poppy [29]. In recent years, active
compounds isolated from plants and herbs have been discovered, due to its multiple therapeutic capacities [25,30].

Resveratrol and its roles in human health
Resveratrol, a polyphenolic compound (3,4′,5-trihydroxystilbene), is mostly isolated from grapes (Figure 1). It also
naturally presents in a variety of plant foods such as peanuts and cranberries [31]. It indicates that resveratrol has a
variety of beneficial health effects, such as anti-inflammatory [32], antioxidant [33], and anticarcinogenic [34] prop-
erties. Resveratrol also can ameliorate metabolic diseases [35], including cardioprotective, antiobesogenic [30], an-
tiatherosclerotic [36], and antidiabetic [37] effects. A systematic analysis of 21 studies found that daily resveratrol
consumption (≥300 mg/day) significantly reduced blood pressure, total cholesterol, and plasma glucose in obese
subjects, with lower risks of cardiovascular diseases [38]. However, evidence about the effects of maternal resveratrol
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Figure 2. Maternal resveratrol consumption and its beneficial effects on metabolic health in offspring

It is speculated that “Developmental Programming” is the underlying mechanism because it can link maternal nutrition and

metabolic health in offspring. Several potential points could explain the beneficial effects of maternal resveratrol consumption on

offspring. First, resveratrol can decrease inflammation reaction in placental and normalized embryonic oxidative stress level, due

to its anti-inflammatory and antioxidant properties. Second, it was able to improve hypothalamic leptin signaling in offspring with

central nervous system regulation. Another possible mechanism is epigenetic modification, including methylation and acetylation,

thus regulate gene expressions.

intake on metabolic health in offspring is limited. Therefore, we aimed to review the effects of maternal resveratrol
consumption on metabolic health in offspring and its potential mechanisms underlying these programming effects.

Maternal resveratrol consumption and metabolic health
Evidence from clinical studies in human
The beneficial effects of resveratrol supplementation in humans are widely studied, but the studies about the effects
of resveratrol intake during pregnancy on metabolic health in humans are limited. Several studies show that oral
resveratrol is well absorbed and rapidly metabolized, without pronounced toxicity [39,40]. One clinical study was
conducted to evaluate the metabolic effects of resveratrol in overweight pregnant women. It showed that resveratrol
supplement (80 mg) reduced the incidence of GDM and improved the lipid profile and glucose blood level after
60 days [41]. It also showed that both the time and doses of blood pressure control were significantly reduced in
preeclampsia patients who received resveratrol supplementation (50 mg each, up to five dosages) [42]. It suggested
that maternal resveratrol intake has a beneficial effect in pregnant women. However, the evidence is limited and no
information is available about the different effects of resveratrol depending on the dietary intake on pregnant women.
Thus, more clinical studies with larger sample size are needed.

Evidence from in vivo and in vitro experiments
Maternal resveratrol consumption and glucose metabolism
Animal experiments showed that maternal resveratrol consumption can improve glucose metabolism in pregnant
females, as well as in offspring. Resveratrol supplementation throughout pregnancy was able to decrease maternal
body weight, improve glucose tolerance, and increase blood flow volume in uterine artery, with lower triglyceride de-
position in liver and decreased placental inflammation in nonhuman primates [43]. Using a genetic mouse model of
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GDM, it showed that resveratrol intake (10 mg/kg body weight per day) before pregnancy and during pregnancy sig-
nificantly alleviated hyperglycemia, improved insulin resistance, increased fetal survival, and decreased body weight
at birth. They further found that resveratrol enhanced adenosine monophosphate activated protein kinase (AMPK)
activation and reduced glucose-6-phosphatase activity in pregnant C57BL/KsJ-Leptin (db/+) mouse, as well as the
offspring [44]. Using human samples, Lappas et al. [45] investigated the effects of resveratrol incubation (50, 100,
and 200 μmol/l) on insulin resistance and placental inflammation associated with GDM. It showed that resveratrol
was able to ameliorate placental inflammation triggered by lipopolysaccharide (LPS), with decreased tumor necrosis
factor (TNF), interleukin-6 (IL-6), and interleukin-8 (IL-8) gene expressions in human placentas. Recently, Tran
et al. [46] found that treatment with resveratrol (200 μmol/l) significantly reduced the secretion and expression
of proinflammatory cytokines, such as IL-6, interleukin-1α (IL-1α), interleukin-1β (IL-1β), IL-8, and monocyte
chemoattractantprotein-1 (MCP-1) in human placenta and adipose tissue. It was able to restore the impaired insulin
signaling and glucose uptake activity assessed by radio-labeled assay in skeletal muscles obtained from pregnant in-
dividuals. Thus, maternal resveratrol intake had a beneficial effect on glucose metabolism in pregnant females and
offspring.

Maternal resveratrol consumption and its effects on lipid metabolism
Maternal resveratrol administration (0.2% diet) in pregnant mice increased energy expenditure and insulin sensitivity,
which was associated with increased brown adipose activity and the browning of white adipose tissue [47]. Mater-
nal resveratrol consumption (50 mg/l in the drinking water) during pregnancy and lactation reduced body weight,
serum leptin level, visceral and subcutaneous adipose tissue weight, with females being more affected in offspring
rats, indicating sexually dimorphic impact [48]. Franco et al. [49] also showed that maternal resveratrol intake (30
mg/kg body weight/day) decreased body weight and fat mass in offspring. It was able to reverse hyperleptinemia and
improve hypothalamic leptin signaling. Resveratrol administration (100 mg/kg body weight) from embryonic day 3
to 12 prevented the occurrence of oxidative stress and apoptosis in embryos; it further decreased blood cholesterol
level by 41.74% and triglyceride level by 60.64% in diabetic dams [50]. Thus, it indicated that maternal resveratrol
intake was able to improve lipid metabolism in both dams and offspring.

Maternal resveratrol consumption and its effects on cardiovascular function
Maternal resveratrol supplementation (4 g/kg diet) during pregnancy and lactation alleviated the development of
hypertension in adult offspring, with improved nitric oxide bioavailability in spontaneously hypertensive rats [51].
However, Moraloglu et al. [52] found that resveratrol intake (20 mg/kg per day) during the whole pregnancy did not
decrease blood pressure, and did not result in a significant response in blood flows and placental pathology param-
eters in pregnant rats. Resveratrol consumption (4 g/kg diet) improved cardiac recovery from ischemia/reperfusion
injury and attenuated superoxide levels in both male and female rat offspring exposed to prenatal hypoxia [53]. This
variability in findings could be caused by variations in the different doses of resveratrol intake or the length of study
duration. Thus, it suggests that the efficacy of distinct doses is needed to be evaluated and the best dosing should
be determined in further studies. The relevant evidence of maternal resveratrol intake and metabolic health in both
pregnant females and offspring are summarized in Table 1.

Possible harmful effects of resveratrol
In addition to the above beneficial effects of resveratrol, detrimental effects of resveratrol should also be considered.
Studies that reported possible harmful effects of resveratrol are limited. Roebrts et al. [43] found that, in stark contrast
with the other seemingly beneficial effects to the placenta and developing fetus, a dramatic increase in fetal pancreatic
mass and exocrine proliferation, independent of an increase in islet mass, following maternal resveratrol supplemen-
tation in nonhuman primates which is clinically concerning. Klink et al. [54] showed that resveratrol was associated
with significantly worse survival with LAPC-4 (the human CaP cell line) tumors and caution should be advised in
using resveratrol for patients. Further studies about other possible harmful effects of resveratrol should be conducted.

Potential mechanisms of maternal resveratrol consumption and
metabolic health in offspring
Taken together, the above studies suggest that maternal resveratrol intake protects against hyperglycemia, insulin re-
sistance, dyslipidemia, and cardiac function in pregnant females, as well as their offspring. However, the molecular
mechanisms are not clearly elaborated. It is speculated that “developmental programming” may be the underlying
mechanism that can elucidate maternal nutrition and metabolic health in offspring [55]. Several potential points can
explain the beneficial effects of maternal resveratrol consumption on offspring, which are summarized in Figure 2.
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Table 1 Relevant studies about maternal resveratrol intake and metabolic health in offspring

Resveratrol
consumption

Intervention
period Species

Beneficial effects on
pregnant females

Beneficial
effects on
offspring

Potential
mechanism References

A Western-style diet
supplemented with 0.37%
resveratrol

Throughout
pregnancy

Nonhuman
primates

- Resulted in maternal weight
loss and improved glucose
tolerance

- Fetal pancreatic
mass was enlarged
by 42%

May be driven by an
eNOS-dependent
mechanism

Roberts et al.
[43]

- Increased uterine artery volume
blood flow

- A 12-fold increase
in proliferation

- Decreased placental
inflammation and liver triglyceride
deposition

Oral gavage with
resveratrol (10 mg/kg
body weight per day)

Four weeks before
pregnancy and
during pregnancy

A genetic GDM
model:
C57BL/KsJ-Leptin
(db/+) mouse

- Improved glucose metabolism,
insulin tolerance, and
reproductive outcome of the
pregnant db/+ females

- Increased fetal
survival and
decreased body
weight

- Enhanced AMPK
activation

Yao et al. [44]

- Reduced production
and activity of G6Pase

50, 100, and 200 μmol/l
resveratrol incubation

6- and/or 24-h
incubation

Human placenta - Quenched inflammation
induced by LPS

NA - SIRT1 possessed
anti-inflammatory
actions

Lappas et al.
[45]

200 μmol/l resveratrol
incubation

20-h incubation Human placenta,
adipose tissue,
and skeletal
muscle

- Reduced the expression and
secretion of pro-inflammatory
cytokines IL-6, IL-1α, IL-1β, IL-8,
and MCP-1 in human placenta
and omental and subcutaneous
adipose tissue

NA - Restored the
impaired insulin
signaling pathway and
insulin-mediated
glucose uptake in
human skeletal muscle

Tran et al. [46]

A high-fat diet with or
without 0.2% (w/w)
resveratrol

During pregnancy
and lactation

C57BL/6 J mice - Protected dams against body
weight gain and fat accumulation

- Increased energy
expenditure and
insulin sensitivity

- Increased
phosphorylated
AMPKα levels, Sirt1,
PRDM16, and other
thermogenic genes
protein contents

Zou et al. [47]

- Reduced the concentrations of
triglycerides and insulin

- Enhanced white
adipose tissue
browning

Resveratrol (50 mg/l) in
drinking water

During pregnancy
and lactation

Wistar rats - No difference in body weight at
the end of lactation

- Reduced body
weight, leptin, VAT
and SCAT, with
females being more
affected

- Decreased fatty acid
synthase expression in
VAT

Ros et al. [48]

- An antiadipogenic
effect

Resveratrol (30 mg/kg
body weight/day)

8 weeks before
mating and
throughout gestation
and lactation

Wistar rats NA - Decreased body
weight,
subcutaneous and
visceral fat mass,
and adiposity

- Increased p-STAT3
content in the
hypothalamus

Franco et al.
[49]

Resveratrol (100 mg/kg
body weight) was
administered by gavage
feeding

10 days (from day E3
to E12)

Sprague Dawley
rats

- Decreased lipid accumulation
including cholesterol by 41.74%
and triglyceride by 60.64% and
increased HDL in diabetic dams

- Prevented both
oxidative stress and
apoptosis in
embryos

- Stimulation of the
extrinsic and intrinsic
pathway

Singh et al.
[50]

- May attenuate the
expression of
HMG-CoA reductase

Resveratrol-supplemented
diet (4 g/kg diet)

From gestational day
0.5 until postnatal
day 21

Spontaneously
hypertensive rat

- Had no effect on blood flow
patterns in the maternal uterine
arteries

- Mitigated the
development of
hypertension in
adult offspring

- Improved nitric oxide
bioavailability

Care et al. [51]

20 mg/kg per day and
twice daily

During the whole
pregnancy

Wistar albino rats - Did not decrease blood
pressure

NA NA Moraloglu et
al. [52]

- No changes in blood flows and
placental pathology parameters

Resveratrol
supplementation (4 g/kg
diet)

For 9 weeks following
weaning

Sprague–Dawley
rats

NA - Improved cardiac
recovery from is-
chemia/reperfusion
injury

- Unclear, without
AMPK–ACC signaling
activation

Shah et al. [53]

- Attenuated
superoxide levels

Abbreviations: ACC, acetyl-CoA carboxylase; AMPK, adenosine monophosphate activated protein kinase; E, embryonic; eNOS, endothelial nitric oxide
synthase; G6Pase, glucose-6-phosphatase; GDM:, gestational diabetes mellitus; HDL, high-density lipoprotein; HMG-CoA, hydroxy-3-methyl-glutaryl
(HMG)-CoA reductase; IL-1α, interleukin-1α; IL-1β, interleukin-1β; IL-6, interleukin-6; IL-8, interleukin-8; LPS, lipopolysaccharide; MCP-1, monocyte
chemoattractantprotein-1; NA, not available; PRDM16, PR domain containing 16; p-STAT3, phosphorylated-signal transducer and activator of tran-
scription 3; SCAT, subcutaneous adipose tissue; SIRT, sirtuin; VAT, visceral adipose tissue.
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First, resveratrol can decrease inflammation reaction in placental and normalize embryonic oxidative stress level [43],
due to its anti-inflammatory [32], antioxidant [33] properties. Second, it can reverse hyperleptinemia and improve
hypothalamic leptin signaling in offspring [49]. Another possible mechanism is epigenetic modification [56]. Our
previous studies showed that epigenetics can link early life nutrition and cardiometabolic health in later life [57-60].
It demonstrated that resveratrol was able to modulate histone H3 on lysine 9 (H3K9) methylation and acetylation
in the zygotic pronuclei [61]. Gestational resveratrol exposure induced breast cancer-1 (BRCA-1) promoter hyper-
methylation and reduced BRCA-1 expression in mammary tissue of rat offspring [62]. However, whether the role
of maternal resveratrol consumption on the offspring is due to adaptive responses to improved glucose and lipid
metabolism in mothers, or is the direct result of resveratrol transfer through the placenta or the mother’s milk is
still unclear. There have been no reports, however, on whether resveratrol crosses the placental barrier. One study
showed that as a polyphenol, administration of resveratrol has vasodilator effect on isolated human umbilical vein in
vitro [63]. Jang et al. [64] showed that resveratrol is beneficial against diabetes-induced embryonic malformation, we
therefore might cautiously assume that it does cross the placental barrier. Thus, further studies focusing on this point
and the molecular mechanisms in depth are warranted.

Conclusions
In summary, pregnancy period is the critical time window of offspring/embryo growth and development. Perinatal
nutrition consumption can determine the susceptibility of developing metabolic diseases in adulthood. Interven-
tions during pregnancy are challenging, with limited efficacy and low compliance. Our review suggests that maternal
resveratrol consumption during pregnancy has beneficial effects on metabolic health in both pregnant females and
offspring. More importantly, the safe and easy implementation of resveratrol consumption has been widely accepted.
A broad understanding of the role of resveratrol supplementation during pregnancy can provide critical hints for the
early prevention and treatment of metabolic diseases during pregnancy, and thus ensure a healthier future for the
mothers and offspring.
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