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Chemokine (C-X-C motif) receptor 4 (CXCR4) has been reported as a poor prognostic
biomarker in human breast cancers, and has been suggested as a promising therapeutic tar-
get of breast cancer treatment. The present study aims to investigate the delivery efficiency
of siRNA by chitosan into breast cancer cells, and then to examine the regulatory role by chi-
tosan nanoparticle-delivered siRNA on CXCR4 expression and on the chemosensitivity of
breast cancer cells. Our results demonstrated that the siRNA could be capsuled by chitosan
into nanoparticles with a diameter of 80–110 nm, and with a zeta potential of 20–50 mV. The
chitosan nanoparticle delivered siRNA efficiently into breast cancer MCF-7 cells significantly
reduced the expression of CXCR4 in both mRNA and protein levels. Moreover, the reduced
CXCR4 by chitosan nanoparticle-delivered siRNA was associated with increased sensitiv-
ity of breast cancer cells to cisplatin. Reduced growth and increased apoptosis of MCF-7
cells were observed in the CXCR4 siRNA group than in the control siRNA group. Taken to-
gether, our results present the treatment potential of chitosan nanoparticle-delivered siRNA
targeting CXCR4 in breast cancers.

Introduction
Breast cancer is the leading cause of cancer death in females worldwide. Approximately 1 of 8 women in
western countries is affected by breast cancer, and 5% of which is caused by mutations in breast cancer
associated gene 1 (BRCA1) and breast cancer associated gene 2 (BRCA2) [1,2]. Most of patients receive
combined chemotherapy when diagnosed, but approximately 30% of these patients die of metastatic dis-
ease within 5 years [3]. Cisplatin is a conventional drug for breast cancer and for other solid tumors. It
is a crosslink-inducing DNA-damaging agent that may also induce cell death by damaging cytoplasmic
proteins and by inducing apoptosis at the execution phase level [4,5].

Patients with breast cancer often initially have a positive reaction to cisplatin-based chemotherapy.
However, drug resistance is still a fundamental problem in breast cancer treatment, and is responsible
for most treatment failures [6]. Cisplatin causes cytotoxicity to normal tissues, and cancer cells acquire re-
sistance and reduce the drug’s toxicity [7]. The underlying mechanism of cisplatin resistance is not clear.
Previous studies have indicated that the development of drug resistance is correlated with the tumor mi-
croenvironment, and chemokines also seem to play key roles in tumor progression and metastasis [8,9].

CXCR4 and its ligand CXCL12 (also named stromal cell-derived factor 1, SDF-1) have been shown to be
consistently expressed in human breast cancer cells, and the activation of SDF-1α/CXCR4 axis has found
to play a key role in breast cancer migration and metastasis [10-12]. It has been reported that CXCR4 is not
only correlated with the metastatic spread of breast cancer cells, but also crucial in the tumor dissemina-
tion [13]. Thus, therapies targeting CXCR4 have recently attracted increased attention from researchers.
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Here, we aimed to investigate the delivery efficiency of siRNA by chitosan into breast cancer cells, and
then to examine the regulatory role by chitosan nanoparticle-delivered siRNA on CXCR4 expression and
on the chemosensitivity of breast cancer cells. We found that the siRNA could be capsuled by chitosan into
nanoparticles efficiently. The chitosan nanoparticle delivered siRNA efficiently into breast cancer MCF-7
cells and significantly reduced the expression of CXCR4 in both mRNA and protein levels. Additionally,
the reduced CXCR4 by chitosan nanoparticle-delivered siRNA was associated with increased sensitivity
of breast cancer cells to cisplatin.

Materials and methods
Cell culture
All cell culture reagents were ordered from Gibco (U.S.A.). Human breast cancer MCF-7 cells were grown at 37◦C in
a 5% CO2 incubator in DMEM supplemented with L-glutamine (2 mM), penicillin (100 U/ml), streptomycin (100
μg/ml), and 10% fetal calf serum (FCS).

Chitosan nanoparticles preparation
Briefly, chitosan (114 KDa) was dissolved separately in acetate buffer (0.1 M sodium acetate/0.1 M acetic acid, pH 4.5)
to form different concentrations of chitosan solution (25–300 μg/ml). Chitosan–siRNA complexes were produced by
adding chitosan solution to an equal volume of siRNA solution (20 μg/ml) and quickly mixed, then the mixture was
incubated at room temperature for 30 min to form chitosan–siRNA complexes.

Zeta potential determination
Zeta potential measurements were performed using dynamic light scattering (Malvern Instruments, Malvern, U.K.)
applying PALS zeta potential analyzer software as previously described [14]. The sample was run at least three times
and each run lasted 50 cycles at 298 K with the Smoluchowski model. The zeta potential in millivolt units was calcu-
lated as the electrophoretic mobility (μm/cm[V · s]−1).

siRNA transfection
The siRNA sequence was designed as previously reported [15]. Lipofectamine 2000 and chitosan nanoparticles were
used for siRNA transfection respectively. For Lipofectamine 2000, transfection was performed as per standard proto-
col. Chitosan nanoparticle transfection was performed as previously described [16]. The cells were seeded in a 96-well
plate at a density of 30,000 cells per well in Opti-MEM 1 reduced serum medium containing 5% of FBS without antibi-
otics, 24 h prior to transfection. On the day of transfection, 50 μl of chitosan–siRNA nanoparticles, siRNA alone, or
Lipofectamine 2000–siRNA complexes (each well or formulation contained 4 pmol of siRNA) in the medium without
serum was then added to the cells and incubated at 37◦C with a 5% CO2 atmosphere for 48 h.

Determination of nanoparticle morphology using transmission electron
microscopy
Chitosan/siRNA nanoparticles were diluted 1/10 using 0.2 μm filtered sodium acetate buffer. A sample volume of 15
μl was immobilized onto freshly cleaved mica. The samples were purged with N2 and observed on FEI TECNAI 12
electron microscope with accelerating voltage of 80 KV. Several images were obtained for each sample, ensuring data
reproducibility.

Cy5-labeled siRNA chitosan nanoparticles in transfected cells
MCF-7 cells (85% confluence) were transfected with 100 nM siRNA using chitosan nanoparticles. The cells were
transfected with the nanoparticles in serum-free DMEM for 1–4 h, after which 10% serum was added. Twenty four
hours post transfection, cells were subjected to Hoechst staining to visualize nuclei, then the nucleus and the CXCR4
were respectively stained with 4’,6-diamidino-2-phenylindole (DAPI) (blue) and with Cy2 (green). The photo was
made by a Zeiss semi confocal epi-fluorescence microscope.

Western blotting assay
SiRNA–CTL, siRNA–CXCR4-1, or siRNA–CXCR4-2 treated MCF-7 cells were lysed with lysis buffer (Invitrogen,
U.S.A.) on ice for 20 min, and the cell lysates were centrifuged at 13000 g at 4◦C for 30 min, then the supernatant
was collected as the total cellular protein extract. After determining protein concentration using the BCA Protein
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Assay Kit (Bio-RAD, U.S.A.), equal amount of each cellular protein was loaded onto 10% SDS polyacrylamide gel.
The separated proteins were electrophoretically transferred to PVDF membranes (Bio-RAD, U.S.A.). The membrane
was blocked overnight in blocking buffer containing PTST and 5% non-fat milk. Then, the membrane was incubated
with primary mouse antibodies against CXCR4 and GAPDH for 1 h separately and was washed with PBST for four
times subsequently. Following incubating with the secondary goat anti-mouse HRP-conjugated antibody for 1 h, the
PVDF membrane was washed for four times and was treated with ECL reagent (Pierce, U.S.A.) and subjected to X-ray
film. Each band was quantified using Image software.

Quantitative real-time PCR assays for mRNA expression
Total RNA was extracted from the treated MCF-7 cells using the RNeasy Mini-kit (Qiagen Inc.) according to the
manufacturer’s recommendation and was reverse transcribed with SuperScript II RT (Invitrogen-Gibco). Quantita-
tive real-time PCR was then conducted with SYBR R© Green mastermix (Life tech, U.S.A.) in a 7500 Fast PCR instru-
ment (Applied Biosystems, U.S.A.) using the special primers for CXCR4 mRNAs, separately. The cycle threshold (Ct)
values of the target gene were normalized to β-actin from the same sample as relative mRNA levels. All samples were
run in triplicate in the 96-well reaction plates.

Methyl thiazolyl tetrazolium assay
MCF-7 cells were seeded into 96-well plates at a density of 1 × 104 per well and incubated overnight in DMEM
containing 10% heat-inactivated FBS. Cisplain was dissolved in DMSO and diluted with DMEM medium to final
concentrations of 50 μM. The tumor cells were incubated with cisplain and were transfected with 0, 25, or 50 nM
siRNA–CTL or siRNA–CXCR4 1 for 24 h before the methyl thiazolyl tetrazolium (MTT) assay. After removing the
medium supernatant, 200 μl of DMSO was added into each well and mixed thoroughly. The plate was incubated at
37◦C to dissolve air bubbles for 5 min, and A570 value of each well was measured at 570 nm wavelengths using a
microplate reader (Thermo scientific, U.S.A.). The results were calculated as (A570 of control wells − A570 of treated
wells)/(A570 of control wells − A570 of blank wells) × 100%.

Cell counting assay and colony forming assay
For cell counting assay, MCF-7 cells (103 per well) were treated with 50 μM cisplatin, and then were transfected with
50 nM siRNA–CTL or siRNA–CXCR4 1. After 1, 2, or 3 days, cells were washed two times with PBS, were detached
with 0.25% trypsin, and then were counted. For the colony forming assay, MCF-7 cells were seeded in 12-well plate
(200 cells per well) and were incubated in DMEM containing 10% FBS at 37◦C. After separated colonies were formed
(incubation for 5 days), cells were treated with cisplatin and were transfected with siRNA–CTL or siRNA–CXCR4 1.
After another incubation (DMEM + 10% FBS) for 48 h, colonies were counted respectively.

Statistical analysis
All experiments were assayed in triplicate. Data are expressed as means +− SD. All statistical analyses were performed
using GraphPad Pro. Prism 5.0 (GraphPad, San Diego, CA, U.S.A.). Statistical differences between two groups were
assessed by Student’s t test. P value <0.05 was considered statistically significant.

Results
Chitosan–siRNA–CXCR4 transfection efficiently down-regulated CXCR4
expression in breast cancer MCF-7 cells
As shown in Figure 1, the relative mRNA level of CXCR4 was down-regulated by 50% and 40% respectively, when
treated by 25 nM CXCR4-specific siRNA (siRNA–CXCR4 1 or siRNA–CXCR4 2). Similarly, it was decreased by 60%
and 48% separately, when treated by 50 nM siRNA–CXCR4 1 and siRNA–CXCR4 2 respectively. We then checked
the transfection efficacies of Lipofectamine 2000 and chitosan respectively. At the mRNA level, no statistical differ-
ence was found between two groups, indicating those two transfection reagents have similar transfection efficien-
cies (Figure 1B). The CXCR4 expression in protein level of treated MCF-7 cells was detected by WB. As shown in
Figure 1(C) and (D), siRNA–CXCR4 1 or SiRNA–CXCR4 2 transfection obviously decreased the CXCR4 expres-
sion with statistical difference. The protein levels of CXCR4 and GAPDH were detected using WB after transfection
of siRNA ctrol/siRNA–CXCR4 using Lipofectamine 2000 and chitosan separately. As indicated in Figure 1(E) and
(F), siRNA–CXCR4 1 transfection efficiently decreased the CXCR4 expression by 37.5%, and chitosan transfection
down-regulated the CXCR4 expression by 35%.
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Figure 1. Regulation by chitosan–siRNA–CXCR4 on CXCR4 expression in breast cancer MCF-7 cells

(A) CXCR4 mRNA level in the MCF-7 cells, which were transfected with 0, 25, or 50 nM CXCR4-specific siRNA–CXCR4 (siRNA–CXCR4

1 or siRNA–CXCR4 2) or control siRNA (siRNA–CTRL) for 12 h. (B) CXCR4 mRNA level in the MCF-7 cells, which were transfected by

Lipofectamine 2000 or delivered by chitosan with siRNA–CXCR4 1/2- or siRNA–CTRL for 12 h. (C) and (D) Western blotting assay (C)

and relative level (D) of CXCR4 (to GAPDH) in the MCF-7 cells, which were transfected with 50 nM siRNA–CXCR4 1, siRNA–CXCR4 2, or

siRNA–CTRL for 24 h. (E) and (F) Western blotting assay (E) and relative level (F) of CXCR4 (to GAPDH) in the MCF-7 cells, in which 50 nM

siRNA–CXCR4 1 or siRNA–CTRL was transfected by Lipofectamine 2000 or were delivered by chitosan for 24 h. Data were averaged for

triple independents results. Statistical significance was presented as **P<0.01; ns, not significant.

Physical characteristics of chitosan–siRNA–CXCR4 nanoparticles
We measured the diameter and the zeta potential of chitosan–siRNA–CXCR4 particles. Particles sizes of
chitosan–siRNA–CXCR4 1 and chitosan–miRNA–CTRL mainly focused at 100 nm (Figure 2A and B), and zeta po-
tential of chitosan–siRNA–CXCR4 1 and chitosan–miRNA–CTRL is approximately +−70 mV, indicating good stability
of those particles (Figure 2C and D). The particles of chitosan–siRNA–CXCR4 1 and chitosan–miRNA–CTRL were
imaged under TEM at 5000×, with ruler indicated at bottom right (Figure 3A and B). Most of the particles diameters
focused on the 200 nm (Figure 3C and D) under the 25000× magnification.

To reconfirm the delivery efficiency of siRNA–CXCR4 by chitosan, we then performed the confocal scanning
laser microscopy images of CXCR4 expression in MCF-7 cells post the chitosan–siRNA–CXCR4 delivery. After
siRNA–CXCR4 1 and siRNA–CTRL were delivered into 85% confluent MCF-7 cells with chitosan for 24 h, then
the nucleus and the CXCR4 were respectively stained with 4’,6-diamidino-2-phenylindole (DAPI) (blue) and with
Cy2 (green) for both siRNA–CXCR4 1 (Figure 4A–C) and siRNA–CTRL (Figure 4D–F). It was clearly indicated that
the CXCR4 staining was reduced in the chitosan–siRNA–CXCR4 1-delivered cells (Figure 4A–C), compared with the
chitosan–siRNA–CTRL-delivered cells (Figure 4D–F).
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Figure 2. Diameter and zeta potential of chitosan–siRNA–CXCR4 particles

The size (diameter in nm) of chitosan–siRNA–CXCR4 1 (particles coated by chitosan and siRNA–CXCR4) (A) and chitosan–miRNA–CTRL

(particles coated by chitosan and control miRNA) (B) was analyzed by photon correlation spectroscopy. The zeta potential of chitosan–siR-

NA–CXCR4 1 (C) and chitosan–miRNA–CTRL (D) was measured by a Zetasizer Nano ZS.

Figure 3. Image of chitosan–siRNA–CXCR4 particles under transmission electron microscopy (TEM)

The particles of chitosan–siRNA–CXCR4 1 (A) and chitosan–miRNA–CTRL (B) were imaged under TEM at 5000×, with ruler indicated at

bottom right; both particles (C: chitosan–siRNA–CXCR4, D: chitosan–miRNA–CTRL) were also imaged under 25000× magnifcation.
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Figure 4. Representative confocal scanning laser microscopy images of CXCR4 expression in MCF-7 cells post the

chitosan–siRNA–CXCR4 delivery

siRNA–CXCR4 1 and siRNA–CTRL were delivered into 85% confluent MCF-7 cells with chitosan for 24 h, then the nucleus and the CXCR4

were respectively stained with 4’,6-diamidino-2-phenylindole (DAPI) (blue) and with Cy2 (green). (A–C) Representative confocal scanning

for nucleus (A), CXCR4 (B), or merged image (C) for siRNA–CXCR4 1-delivered cells; (D–F) Representative confocal scanning for nucleus

(D), CXCR4 (E), or merged image (F) for siRNA–CTRL-delivered cells.

Chitosan–siRNA–CXCR4 sensitizes breast cancer MCF-7 cells to cisplatin
We measured the viability of the MCF-7 cells post the chitosan-mediated delivery of siRNA–CXCR4 1 or
siRNA–CTRL (0, 25, or 50 nM) for 24 h, and no statistical differences were found between groups (Figure 5A and B).
The result indicated that chitosan-mediated delivery of siRNA–CXCR4 1 or siRNA–CTRL had no effect on cellular
viability. In the next step, we mapped the growth curve of the MCF-7 cells post the chitosan-mediated delivery of
siRNA–CXCR4 1 or siRNA–CTRL, in the presence of 50 μM mg/ml cisplain. We found siRNA–CXCR4 1 decreased
the cell counting per well by 25% (P<0.001) and 50% (P<0.001) respectively, at day 2 or 3 post-infection. We tested
the colonies formed by the MCF-7 cells post the chitosan-mediated delivery of siRNA–CXCR4 1 or siRNA–CTRL,
in the presence of 50 μM cisplain. As shown in Figure 5(C) and (D), the SiRNA–CXCR4-treated group clearly
down-regulated the colony numbers by 30% (P<0.05) as compared with the siRNA–control group.

Discussion
In the present study, we investigated the delivery efficiency of siRNA by chitosan into breast cancer cells, and examined
the regulatory role by chitosan nanoparticle-delivered siRNA on CXCR4 expression and on the chemosensitivity of
breast cancer cells. We found the siRNA could be efficiently capsuled by chitosan into nanoparticles, and that delivered
siRNA efficiently reduced the expression of CXCR4 in both mRNA and protein levels. Moreover, the reduced CXCR4
expression was associated with increased sensitivity of breast cancer cells to cisplatin. Our results present the treatment
potential of chitosan nanoparticle-delivered siRNA targeting CXCR4 in breast cancers.

Several reports have reported that chemokines and their receptors play critical roles in the development and pro-
gression of cancer. In all the known chemokine receptors, breast cancer cells specifically express active CXCR4,
which was associated with metastatic breast cancer. Therefore, novel drugs capable of decreasing the CXCR4 level
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Figure 5. chitosan–siRNA–CXCR4 sensitizes breast cancer MCF-7 cells to cisplatin in vitro

(A) MTT assay for the viability of the MCF-7 cells post the chitosan-mediated delivery of siRNA–CXCR4 1 or siRNA–CTRL (0, 25, or 50 nM)

for 24 h. (B) Growth curve of the MCF-7 cells post the chitosan-mediated delivery of siRNA–CXCR4 1 or siRNA–CTRL, in the presence of 50

μM cisplain. Cells were titered at the 0, 1, 2, or 3 day post siRNA delivery. (C) and (D) Images (C) and counting (D) of colonies formed by the

MCF-7 cells post the chitosan-mediated delivery of siRNA–CXCR4 1 or siRNA–CTRL (50 nM) for 48 h, in the presence of 50 μM cisplain.

The experiments were performed independently in triplicate. Statistical significance was shown as *P<0.05, **P<0.01, ***<0.001, ns, not

significant.

may be a potential therapy for breast cancer treatment. Here, we found that the reduced CXCR4 by chitosan
nanoparticle-delivered siRNA was associated with increased sensitivity of breast cancer cells to cisplatin. The re-
sult is in accordance with the previous report [17]. However, the clinical application of this strategy still needs more
supported in vivo experiments, because of the side effects from concomitant mobilization of bone marrow stem cells,
particularly, CXCR4 delivery technique might affect hematopoietic and progenitor cells in the bone marrow [18].

General strategy for cancer treatment is to use multiple drugs targeting different molecular targets. Decreasing
the levels of target proteins implied in signaling pathways of tumor cell survival or proliferation using the siRNA
technology has increased [19]. Viral vectors were initially used, but high cost and the host immune response have
limited its use in animals [20]. Novel vectors such as nanoparticles have been proposed as a good tool for delivering
siRNA to different cell types [21]. In our study, we found that the siRNA could be efficiently capsuled by chitosan
into nanoparticles with a diameter of 80–110 nm and with a zeta potential of 20–50 mV. The chitosan nanoparticle
delivered siRNA efficiently into MCF-7 cells and significantly reduced the expression of CXCR4 in both mRNA and
protein levels. Our results indicate that chitosan nanoparticle is an ideal tool to deliver siRNA into target cells.

In conclusion, our results present the treatment potential of chitosan nanoparticle-delivered siRNA targeting
CXCR4 in breast cancers. Further research on animal experiments will be performed in the near future.
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