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Synopsis
Human equilibrative nucleoside transporter 1 (hENT1) transports nucleosides and nucleoside analogue drugs across
cellular membranes and is necessary for the uptake of many anti-cancer, anti-parasitic and anti-viral drugs. Previ-
ous work, and in silico prediction, suggest that hENT1 is glycosylated at Asn48 in the first extracellular loop of the
protein and that glycosylation plays a role in correct localization and function of hENT1. Site-directed mutagenesis
of wild-type (wt) hENT1 removed potential glycosylation sites. Constructs (wt 3xFLAG-hENT1, N48Q-3xFLAG-hENT1 or
N288Q-3xFLAG-hENT2) were transiently transfected into HEK293 cells and cell lysates were treated with or without
peptide–N-glycosidase F (PNGase-F), followed by immunoblotting analysis. Substitution of N48 prevents hENT1 glyc-
osylation, confirming a single N-linked glycosylation site. N48Q-hENT1 protein is found at the plasma membrane in
HEK293 cells but at lower levels compared with wt hENT1 based on S-(4-nitrobenzyl)-6-thioinosine (NBTI) binding
analysis (wt 3xFLAG-ENT1 Bmax, 41.5+−2.9 pmol/mg protein; N48Q-3xFLAG-ENT1 Bmax, 13.5+−0.45 pmol/mg pro-
tein) and immunofluorescence microscopy. Although present at the membrane, chloroadenosine transport assays
suggest that N48Q-hENT1 is non-functional (wt 3xFLAG-ENT1, 170.80+−44.01 pmol/mg protein; N48Q-3xFLAG-ENT1,
57.91+−17.06 pmol/mg protein; mock-transfected 74.31+−19.65 pmol/mg protein). Co-immunoprecipitation analyses
suggest that N48Q ENT1 is unable to interact with self or with wt hENT1. Based on these data we propose that glyc-
osylation at N48 is critical for the localization, function and oligomerization of hENT1.
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INTRODUCTION

Membrane transporter proteins enable movement of molecules
across biological membranes. Nucleosides are hydrophilic mo-
lecules involved in cell signalling, DNA synthesis and energy
metabolism, and require trans-membrane transport. The equilib-
rative nucleoside transporters (ENTs) comprise the solute carrier
(SLC), SLC29, family [1]. ENTs passively facilitate movement
of nucleosides down their concentration gradients [2] whereas
CNTs (SLC28) are cation/nucleoside co-transporters which do
not possess any sequence or known structural homology to
ENTs [3].

ENTs are critical for the uptake of many classes of nucleos-
ide derivative drugs. ENT1 and ENT2 are clinically important
drug transporters that are critical for drug delivery, and therefore
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efficacy, of many anti-cancer, anti-parasitic and anti-viral agents
[4]. Moreover, ENTs modulate adenosine flux and thereby regu-
lating purinergic responses [5,6].

Like most SLC proteins [7], human ENT1, hENT1, is re-
ported as being glycosylated at the large extracellular loop
[8]. Glycosylation mutants of hENT2 expressed in mammalian
cells show reduced transport and protein levels at the mem-
brane [9]. In contrast, glycosylation mutants of hENT1, ex-
pressed in Saccharomyces cerevisiae, show increased expres-
sion at the plasma membrane and functional transport [10].
Therefore, the role of glycosylation of hENT1 in human cells is
unclear.

N-linked glycosylation of membrane transporters is import-
ant in function [11,12], trafficking [13,14], stability [15,16] and
sorting [17]. Therefore we hypothesized that non-glycosylated

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
Licence 4.0 (CC BY).

1

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/36/4/e00376/428569/bsr036e376.pdf by guest on 24 April 2024

mailto:imogen.coe@ryerson.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1042/BSR20160063&domain=pdf&date_stamp=2016-08-31


A. Bicket and I.R. Coe

hENT1 would exhibit reduced recruitment to the plasma
membrane resulting in lower hENT1-dependent transport. Re-
duced hENT1-dependent uptake of nucleoside analogue drugs
used in disease treatment has significant clinical implica-
tions since drug efficacy is correlated with hENT1 presence
[18]. Since cancerous cells can exhibit global changes in
cellular glycosylation [19], understanding the role of ENT1
glycosylation is clinically relevant. In the present study, we
show that N-linked glycosylation of hENT1 is necessary for
function.

MATERIALS AND METHODS

In silico detection of putative glycosylation sites
We used NetNGlyc 1.0 to determine putative N-linked glycosyla-
tion sites in full length human ENT1 sequence (accession number
NP_001071645).

Cell culture and transfection
HEK293 (human embryonic kidney cell line), commonly used in
membrane protein glycosylation studies [20–22], were grown in
Dulbecco’s Modified Eagle Media (DMEM) supplemented with
10 % (v/v) FBS in 10 cm2 plates [S-(4-nitrobenzyl)-6-thioinosine
(NBTI) binding and Western blotting] or six-well plates (trans-
port assays) at 37 ◦C with 5 % (v/v) CO2. Cells were transfected
using the standard Polyjet protocol (SignaGen Laboratories) and
incubated post transfection for ∼36 h. Equivalent transfection
efficiency in wild type (wt) and mutant-transfected cells was
confirmed by microscopy.

Generating N48Q-hENT1 and N288Q-hENT1 mutant
constructs
Full-length hENT1 conjugated with a 3xFLAG tag in a pCDNA
3.1 vector was used as the template and point mutations were
introduced using overlap extension PCR [23]. To create the
N48Q mutation, the AAT codon was substituted for a CAA,
whereas the N288Q mutation used an AAT codon substituted for a
CAG.

Immuno-blotting analysis
To determine which residues were N-glycosylated, we overex-
pressed wt, N48Q or N288Q mutant hENT1 protein in HEK293
cells, and treated lysates with and without peptide–N-glycosidase
F (PNGase-F), followed by immunoblotting analyses as previ-
ously described [24].

NBTI binding assay
NBTI is a high affinity, tight-binding, non-transportable, ENT1-
specific nucleoside analogue used which can be used to analyse

the presence of ENT1 [25–27] as previously described [28]. [3H]-
NBTI binding parameters (Kd and Bmax) were determined from
non-linear regression analysis using GraphPad Prism (v. 5.04).

[3H]-2-chloroadenosine transport assay
To determine the functionality of N48Q-hENT1, we conducted
[3H]-2-chloroadenosine transport assays using HEK293 cells as
previously described [29].

Immunofluorescence and point scanning confocal
microscopy
We used immunofluorescence microscopy to investigate localiz-
ation of wt 3xFLAG-hENT1 and N48Q-hENT1. wt 3xFLAG-
hENT1 and N48Q-3xFLAG-hENT1 vectors were transfected
into HEK293 cells as described above. Cells grown on cover-
slips were prepared as previously described [30] followed by
incubation with anti-FLAG primary and Alexa488 or Alexa594
fluorescent secondary antibody [1:500, in 1 % (v/v) milk in tris-
buffered saline and Tween 20 (TTBS), 45 min]. Slides were
viewed using a Zeiss LSM 700 Inverted Confocal microscope
with a Plan Apochromat 63× oil immersion objective lens (N.A.
= 1.40). Z-stacks (8–12 at ∼1 μm intervals) were collected. Zen
Black (Zeiss) software was used for image acquisition and image
processing.

Co-immunoprecipitation of wild type and
glycosylation mutant FLAG-ENT1 using HA-ENT1
bait
HEK293 cells co-transfected (as described above) with HA-
ENT1 and 3xFLAG-vector (either wt ENT1, N48Q-ENT1 or hLa
as a negative control) were lysed with Nonidet P-40 (octyl phen-
oxypolyethoxylethanol) (NP-40) buffer ∼36 h post-transfection.
Lysate was homogenized with 1 ml syringe and 26 g needle then
centrifuged at max speed (15 min) on a bench top centrifuge to
pellet cellular debris and organelles. Protein concentration was
determined by modified Lowry protein assay (Bio-Rad Labor-
atories). To best equilibrate the strength of transfected protein
bands between the constructs when immunoblotting, columns
were loaded with transfected cell lysate as follows: wt 3xFLAG-
ENT1 (100 μg), N48Q-3xFLAG-ENT1 (1000 μg) and 3xFLAG-
hLa (600 μg, RNA chaperone found primarily in the nucleus, but
also in the cytoplasm, used as a negative control), each with
20 μl of anti-HA beads (Thermo Scientific). Protein was agitated
overnight (approximately 18 h) at 4 ◦C and washed three times
with TTBS. Immuno-precipitated protein was recovered by boil-
ing with 2× elution buffer (Thermo Scientific) and supplemen-
ted with 1 M dichlorodiphenyltrichloroethane (DDT; 2 μl). Pro-
tein from elution and flow-through was resolved by SDS/PAGE
and subjected to immuno-blotting as described above. The en-
tire elution fraction added to the corresponding lane in the gel,
whereas flow through protein was loaded as follows: 1 μg wt,
10 μg N48Q, 1 μg hLa.
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hENT1 requires glycosylation of N48 for proper function

Figure 1 Predicted hENT1 topology and immunoblot identifying N48 as only N-linked glycan in human cells
(A) Putative 2D membrane topology with labelled Asn residues identified as putative N-glycosylation sites based on
NetNGlyc prediction. (B) Immunoblot with wt (3xFLAG-hENT1) and mutant (N48Q-3xFLAG-hENT1 and N288Q-3xFLAG-hENT1)
cell lysates from transfected HEK293 cells, with and without PNGase-F treatment (right). Mock transfected and
3xFLAG-hENT1 transfected cells (left) confirmed antibody specificity. Whole cell lysates were fractioned with SDS/12 %
(v/v) PAGE and immunoblotted with anti-FLAG antibody.

RESULTS

hENT1 possesses a single glycosylation site at
Asparagine-48
In silico analyses suggested that N48 and N288 had the highest
probability of glycosylation. N48 is the most plausible target
since it is within the large extracellular loop, whereas N288 is a
less likely target since it is near a transmembrane domain (TMD)
and is likely to exist within the cytosol [31]. Although N288
is less likely, a definitive 3D structure of ENT1 has not been
established so it is possible that this residue is exposed to the
extracellular space, thus, to be thorough, both targets were tested
(Figure 1A). Previous work suggested ENT1 was glycosylated

at N48 when expressed in S. cerevisiae [10]. Our results sug-
gest that wt hENT1, expressed in HEK293 cells, is a protein of
50–65 kDa and following PNGase-F treatment, the size of the
protein is reduced to 50–55 kDa (Figure 1B). In contrast, N48Q
hENT1 mutant protein is 50–55 kDa in the presence and absence
of PNGase-F confirming hENT1 is exclusively N-glycosylated at
N48 in human cells with no evidence of glycosylation at N288.

N-linked glycosylation of N48 is required for hENT1
movement to the plasma membrane
Transporters often require glycosylation for effective recruitment
to the plasma membrane and thus function [13,15,16,32–40].
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Figure 2 Loss of N-glycosylation reduces hENT1 presence at the plasma membrane
(A) HEK293 cells transfected with N48Q-3xFLAG-hENT1 exhibited a 3-fold decrease in hENT1 NBTI binding sites compared
with transfected 3xFLAG-hENT1. Both N48Q hENT1 and wt hENT1 transfected cells showed an increase in NBTI binding sites
compared with mock transfected. Error bars represent the mean+−S.D. Representative graph from three experiments, with
each point conducted in duplicate. (B) Confocal microscopy of fixed HEK293 cells transfected with HA-hENT1 and N-linked
glycosylation mutant N48Q-3xFLAG-hENT1. Cells were fixed and probed with anti-FLAG primary antibody then Alexa594
secondary and anti-HA primary antibody then Alexa488 secondary antibody, nuclei were stained with DAPI as described in
the Materials and Methods. Red fluorescence represents N48Q mutant hENT1, green fluorescence represents wt hENT1
and blue fluorescence represents DNA. Red, green and blue fluorescence were achieved by excitation with 555 nm, 488 nm
and 405 nm respectively, with each signal acquired separately. Altered distribution is observed between HA-hENT1 (green)
and 3xFLAG-N48Q-hENT1 (red). Single transfected 3xFLAG-N48Q-hENT1 and wt 3xFLAG-ENT1 have a similar distribution to
co-transfected cells (results not shown). Images represent a plane from a series of Z-stacks from one of three individual
experiments. Scale bars represent 5 μm.

We therefore predicted that lack of glycosylation would interfere
with trafficking of hENT1 at the plasma membrane and tested
this using NBTI binding site saturation assays. These assays
determine the number of total NBTI binding sites (where one
NBTI binding site is equivalent to one hENT1 protein) present
in a cell population. HEK293 cells transiently transfected with
wt 3xFLAG-hENT1 showed a higher maximal NBTI binding
(Bmax = 41.5+−2.9, n = 3) compared with mock transfected cells
(Bmax = 0.441+−0.027, n = 3) (Figure 2A). N48Q mutant hENT1
transfected cells showed an NBTI binding (Bmax = 13.5+−0.45,
n = 3) which is greater than that seen in the mock transfection,
but much lower (∼70 %) than wt 3xFLAG-ENT1 suggesting that
non-glycosylated hENT1 is greatly reduced in presence at the
plasma membrane.

Similarly, when we assessed presence of wt hENT1 and N48Q
hENT1 in HEK293 cells by microscopy, we noted that N48Q
hENT1 has a primarily cytosolic distribution with some presence
at the plasma membrane in punctate appearance (Figure 2B).
In contrast, wt hENT1 protein is clearly present almost exclus-
ively at the plasma membrane (Figure 2B). These findings are
consistent when co-transfected (Figure 2B), or when observed
separately as single transfections (results not shown).

N48Q mutant ENT1 is non-functional in HEK293
cells
N48Q hENT1, although less abundant, is still present at the mem-
brane and therefore we predicted that we would see reduced, but
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hENT1 requires glycosylation of N48 for proper function

Figure 3 Glycosylation is required for sodium-independent nucleoside uptake in HEK293 cells
HEK293 cells were either mock transfected, transiently transfected with wt 3xFLAG-hENT1, or with glycosylation mutant
3xFLAG-N48Q-hENT1. [3H]-chloroadenosine uptake was the same between mock transfected and N48Q-hENT1 transfected
cells, but both were significantly less than wt hENT1 transfected cells. Graph represents pooled data from three individual
experiments (n = 3), with each condition conducted in sextuplicate. Error bars represent the mean +− S.D. (One-way ANOVA
with Newman–Keuls multiple comparison post hoc test, ***P < 0.0001).

Figure 4 Co-immunoprecipitation analyses suggests glycosylation is required for hENT1–hENT1 interaction
HEK293 cells were transiently transfected with HA-ENT1 as well as with the indicated construct (WT, wild
type 3xFLAG-hENT1; N48Q, 3xFLAG-N48Q-hENT1; La, FLAG-hLa), lysed and co-immunoprecipitated using anti-HA beads
(Thermo Scientific) as described in the Materials and Methods. Co-immunoprecipitation only occurred with wt 3xFLAG-ENT1
(100 μg lysate loaded to column), and not with N-glycosylation mutant 3xFLAG-N48Q-ENT1 (1000 μg lysate loaded to
column) and negative control, cytosolic protein 3xFLAG-hLa (600 μg lysate loaded to column). Elution (bound protein) and
flow through (unbound protein) were fractioned with SDS/12 % (v/v) PAGE and immunoblotted with anti-FLAG antibody.

not absent, transport. However, data show an almost complete
lack of functional transport compared with wt hENT1. These
data suggest that N48Q hENT1, even if present at the plasma
membrane, is non-functional (Figure 3).

ENT1–ENT1 co-immunoprecipitation is disrupted
with mutation of glycosylation site
These data suggest that glycosylation of hENT1 may have a
functional role in addition to assisting trafficking of the protein
to the membrane. Oligomerization plays an important role for the
proper function of other SLC members [41–43]. Our data show
that ENT isoforms co-immunoprecipitate (ENT1–ENT1, ENT1–
ENT2 and ENT2–ENT1) suggesting that ENTs form complexes
with each other (N. Grañe-Boladeras, Z. Tarmakova, K. Stevan-
ovic, D. Williams, L. Villani, P. Mehrabi, K.W.M. Siu, M. Pastor-
Anglada and I.R. Coe, unpublished). ENT–ENT interactions
or oligomerization may have important functional roles, which
are yet to be identified (N. Grañe-Boladeras, Z. Tarmakova, K.

Stevanovic, D. Williams, L. Villani, P. Mehrabi, K.W.M. Siu, M.
Pastor-Anglada and I.R. Coe, unpublished). However, since we
suspect that ENTs form dimers and we know that glycosylation
of other transporters has been correlated with the formation of
oligomers [20,21], we investigated the role of glycosylation of
ENT1 in the formation of ENT dimers. As predicted, we ob-
served that wt ENT1 co-immunoprecipitated with itself (HA-
hENT1 with 3xFLAG-ENT1) but did not co-immunoprecipitate
with 3xFLAG-N48Q-ENT1, or 3xFLAG-hLa (Figure 4) suggest-
ing that N48Q mutant ENT1 is unable to form a complex with
wt ENT1.

DISCUSSION

Here, we provide evidence in support of the role of N-linked
glycosylation in the function and localization of hENT1. We have
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confirmed previous reports [8–10] that the N-linked glycosylation
site, N48, is unique for hENT1 expressed in a human cell line. The
removal of this site significantly affects functionality of hENT1
which contrasts with previous data that suggested N48Q-ENT1
expressed in S. cerevisiae is functional [10]. This difference may
be due to promiscuous glycosylation, which is known to occur
in the yeast model [44–46] resulting in N-glycosylation at non-
canonical sequences [47] which could play a compensatory role
and restore function of N48Q-hENT1. Our study also suggests
that glycosylation contributes to, but is not solely responsible
for, correct ENT1 localization, since non-glycosylated ENT1 is
present at the plasma membrane and that glycosylation is neces-
sary for hENT1 function. This corroborates previous work which
suggested that hENT1 mutant protein lacking the extracellular
loop expressed in X. laevis had reduced hENT1 protein abund-
ance at the plasma membrane [48]. Several members of the SLC
family experience only a small or no functional effect when the N-
linked glycosylation site is abrogated [11,12,49,50]. Typically, N-
glycosylation leads to reduced transport activity as a consequence
of reduced presence at the plasma membrane [13,15,16,32–40].
However, N-glycosylation may affect function in ways that are
not related to trafficking or sorting. For instance, N-glycan de-
ficient human erythrocyte anion transporter SLC4A1 (AE1) ex-
pressed in oocytes had reduced chloride transport yet had similar
levels of surface protein abundance which authors attributed to
non-ideal folding that effected function but not trafficking [51].
Aberrant glycosylation can also reduce protein half-life, which is
a common characteristic of other over expressed N-glycosylation
mutants from SLC family members [16,34,37,52]. Increased de-
gradation of protein can result from changes in protein folding,
as seen with OAT4 (SLC22A11) following N-glycan removal
[53].

Our data suggest that glycosylation of hENT1 contributes
to correct localization of the protein as well as functionality
of the protein at the membrane and we propose that this may
be correlated with glycosylation-dependent protein-interactions
between hENT1 proteins at the membrane as proposed for other
SLC members. Glycosylation of hOCT2 (SLC22A2) in HEK293
cells is required for the formation of hOCT2 dimers [42]. Sim-
ilarly, serotonin (5-hydroxytryptamine) transporter (SLC6A4)
monomer, when expressed in CHO hamster ovary cells, requires
N-glycan addition to associate into functional homo-oligomers
[41]. Our work (N. Grañe-Boladeras, Z. Tarmakova, K. Stevan-
ovic, D. Williams, L. Villani, P. Mehrabi, K.W.M. Siu, M.
Pastor-Anglada and I.R. Coe, unpublished) has revealed that
ENT isoforms interact with each other (ENT1–ENT1, ENT1–
ENT2, ENT2–ENT2, etc.) although the functional significance
of this observation remains unclear. In the present study, we
have shown that the loss of glycosylation abrogates interaction
of ENT1 monomers and we therefore predict that oligomeriz-
ation may be a fundamental form of regulation for the ENTs.
This mechanism could explain previous data [54] where a large
increase in hENT1 protein at the membrane yields a relatively
small increase in the translocation of substrate, as well explaining
the presence of distinct ENT1 populations (possibly differentially
glycosylated variants) at the plasma membrane [55].

CONCLUSION

We confirm that N48 is the single site of glycosylation
of hENT1 in human cells. NBTI binding, immunofluores-
cence microscopy, chloroadenosine uptake assays and co-
immunoprecipitation immunoblotting data suggest that hENT1
glycosylation at N48 is critical for the proper localization and
function of the protein.
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