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Synopsis
Abundant erythrocytes remain and lyse partially in the subarachnoid space after severe subarachnoid haemorrhage
(SAH). But the effect of subarachnoid erythrocyte lysate on brain injury is still not completely clear. In this study,
autologous erythrocytes (the non-lysate group) and their lysate (the lysate group) were injected separately into the
cistern magna of rabbits to induce a model of experimental SAH, although the control group received isotonic sodium
chloride solution instead of erythrocyte solution. Results showed that vasospasm of the basilar artery was observed
at 72 h after experimental SAH, but there was no significant difference between the non-lysate group and the lysate
group. Brain injury was more severe in the lysate group than in the non-lysate group. Meanwhile, the levels of
peroxiredoxin 2 (Prx2), IL-6 and TNF-α in brain cortex and in CSF were significantly higher in the lysate group than
those in the non-lysate group. These results demonstrated that brain injury was more likely to be caused by erythrocyte
lysate than by intact erythrocytes in subarachnoid space, and inflammation response positively correlated with Prx2
expression might be involved in mechanism of brain injury after SAH.
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INTRODUCTION

There were several common methods to induce an animal model
of experimental subarachnoid haemorrhage (SAH), such as auto-
logous blood injection into cisterna magna [1] or prechiasmatic
cistern [2], endovascular perforation [3]. The mechanisms of
brain damage after SAH were very complex and not yet fully
understood. Early studies mainly focused on cerebral vasospasm
(CVS), and recent studies were more inclined to early brain injury
(EBI). No matter what kind of study, the damage factor chosen
was usually the whole blood or its lysate.

There was a difficult problem during treatment to those patients
with severe aneurysmal SAH. Even though aneurysms had been
treated, abundant erythrocytes and its lysate in the form of blood
clots or free in the cerebrospinal fluid (CSF) still remained in the
subarachnoid space, and was hard to be cleared in a short time.
Therefore, it was extremely important to understand the role of
subarachnoid erythrocytes and their lysate on CVS or on brain
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injury. Previous studies showed that brain injury was observed
when the whole blood lysate was injected into the brain cortex of
mice [4] or cisterna magna of rabbits [5], although vasospasm of
the basilar artery was also existed when the whole blood lysate
was injected into cisterna magna of canine [6]. However, the roles
of subarachnoid erythrocytes and their lysate on brain injury are
still not absolutely understood.

The peroxiredoxins (Prxs) protein, which has six subtypes
(Prx1–6), is expressed widely in animal tissues and serves an an-
tioxidant function associated with removal of cellular peroxides.
Among them, Prx2 is the third most abundant protein in the
erythrocyte (5.6 mg/ml) [7–9], also selectively expressed in
the neuron [10], and mainly distributed in the cytoplasm and the
cell membrane. Prx2 would be free into CSF after lysis of erythro-
cytes. Besides, it has long been known that CVS after aneurysmal
SAH causes delayed cerebral ischemia (DCI) and the rate of DCI
still remains unacceptably high [11]. And once DCI appears,
Prxs would be released extracellularly from neural cells [12], ini-
tiated a destructive inflammatory response. What’s more, due to

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
Licence 4.0 (CC BY).

1

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/36/4/e00359/428293/bsr036e359.pdf by guest on 19 April 2024

mailto:hang_neurosurgery@163.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1042/BSR20160100&domain=pdf&date_stamp=2016-07-15


Z.-H. Zhang and others

neurons more susceptible to ischemia, intracellular Prx2 would
be more likely to be released and be finally free in CSF through
impaired brain-CSF barrier. Consequently, the source of Prx2 in
the subarachnoid space after SAH might be as follows: lysis of
subarachnoid erythrocytes and release from damaged neurons.
However, this speculation has not been confirmed and the role of
extracellular Prx2 after SAH has not yet known.

In this study, a rabbit model inducing SAH was built by inject-
ing autologous erythrocytes or their lysate into cistern magna, to
observe CVS and brain injury and explore potential mechanisms.

MATERIALS AND METHODS

Animals
Thirty-six adult male New Zealand white rabbits were purchased
from the Animal Center of Jinling Hospital, and randomly di-
vided into three groups of 12 rabbits each with a injection into
the cisterna magna: the control group (1.5 ml of isotonic sodium
chloride solution), the non-lysate group (1.5 ml of intact erythro-
cyte solution) and the lysate group (1.5 ml of erythrocyte lysate
solution). The rabbits were raised in a 12 h dark-light cycle with
free access to food and water during the experiment. The feeding
room and lab room were kept at 25 ◦C. Three days before SAH,
the rabbits underwent the following training (out / into the cage,
weighing, fixed in the groove), twice a day, in order to elimin-
ate fear and tension. All experimental protocols used for animals
(including all surgical procedures) were approved by the Animal
Care and Use Committee of Jinling Hospital and conformed to the
Laboratory Animal Care and Use Guidelines of Second Military
Medical University.

Erythrocyte lysate preparation
Three millilitres of arterial blood was withdrawn from the central
artery of the ear with a sterile syringe containing heparin (125
u/ml) as anticoagulant. Follow the steps of the past [6], blood was
centrifuged for 10 min at 500 g and the upper plasma/buffy coat
was aspirated. Erythrocytes were then similarly washed twice in
warm sterile isotonic sodium chloride solution and resuspended
in the same solution to 1.5 ml. The intact erythrocyte solution
was finally lysed by ultrasonic waves (Ultrasonic Cell Crusher,
XO-400S, Xianou Tech) as previously described [13]. The eryth-
rocyte lysate solution was kept at 39 ◦C until use. All above
operations were carried out strictly according to the principle of
aseptic.

Experimental SAH
Each rabbit was anesthetized by intravenous injection of
diazepam (1.6 mg/kg) and pentobarbital sodium (30 mg/kg), and
positioned left-laterally with the head slight extension. The at-
lantooccipital hair was shaved and the skin was sterilized with
75 % ethanol. A butterfly needle (black, 0.7X25TWSB) was

inserted percutaneously into the cisterna magna. After with-
drawal of 1.5 ml of CSF, the equal amount of intact erythro-
cyte solution or its lysate solution was slowly injected into the
cisterna magna during 2 min. The control group received iso-
tonic sodium chloride solution instead of erythrocyte solution.
The rabbits were placed in a head down position for 30 min
and then returned to the cage in the lateral position to prevent
asphyxia.

The detection time of the experiment was chosen in 72 h based
on the following reasons. Firstly, some study showed that under
the conditions (incubation at 37 ◦C in an artificial CSF), the rate
of haemolysis of erythrocytes was quite slow initially and be-
came more rapid after 4 days’ incubation [14]. Based on this, we
supposed that the difference of brain injury in rabbits between
the non-lysate group and the lysate group was maximized at 72 h
after injection. Secondly, numerous studies showed that EBI was
the main factor affecting the prognosis of patients with SAH
[15,16], although EBI was the brain damage occurring within the
first 72 h after SAH [17,18]. To sum up, we chose 72 h as the
detection time of the experiment.

Perfusion-fixation
At 72 h post-injection, the rabbits were anaesthetized by intra-
venous injection of diazepam (1.6 mg/kg) and pentobarbital so-
dium (60 mg/kg). 0.5 ml of CSF was withdrawn from the cistern
magna and centrifuged for 10 min at 500 g. The supernatant was
kept at -80 ◦C for measuring the levels of inflammatory factors.
Perfusion-fixation was then performed as previously described
[5]. After the thorax was opened, a cannula was placed in the
left ventricle, the descending thoracic aorta was clamped, and
the auricula dextra was opened. Perfusion was begun with 500 ml
of isotonic sodium chloride solution (4 ◦C), followed by
500 ml of 4 % formaldehyde under a perfusion pressure of 120
cmH2O in half of the rabbits in each groups. The brain was then
removed from the cranium and immersed in the same fixative.
The same part of the temporal cortex was obtained from the other
half of the rabbits without formaldehyde fixation and immediately
froze at -80 ◦C until use.

Total protein extraction
To extract cortex total protein, the frozen temporal tissue was
mechanically lysed in mM Tris pH 7.6, which contained 0.2 %
SDS, 1 % Triton X-100, 1 % deoxycholate, 1 mM phenylmethyl-
sulfonyl fluoride (PMSF), and 0.11 IU/ml aprotinin (Sigma). Lys-
ate was centrifuged at 12 000 g for 15 min at 4 ◦C. The supernatant
was collected and stored at -80 ◦C until use.

Evaluation of CVS
The degree of CVS was evaluated by measuring the cross-
sectional area of the basilar artery lumen. The formaldehyde-fixed
and paraffin-embedded basilar artery sections (4 μm thick) were
deparaffinized, hydrated, washed and stained with H&E. Micro-
graphs of the basilar arteries were analysed by using ZEN 2012
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SP2 blue edition (ZEISS). Cross-sectional areas of basilar arteries
were calculated from the perimeter of the luminal border. For each
vessel, three sequential sections (midpoint of proximal, middle
and distal) were taken, measured and averaged (Figure 2E). The
mean +− S.E.M. value obtained for each artery was used as the
final value for a particular vessel.

Evaluation of brain damage
Temporal lobes excised after perfusion-fixation were embedded
in paraffin (Figure 2E), and 4-μm-thick coronal sections were
examined to detect neural damage in cortical tissue by Nissl
staining and immunohistochemistry (IHC).

Nissl staining
Coronal sections of temporal lobe were stained with cresyl violet
as previously described [19]. Normal neurons had large cell bod-
ies, rich Nissl’s bodies in cytoplasm, with one or two big round
nuclei. In contrast, damaged cells show shrunken cell bodies,
condensed nuclei, dark cytoplasm.

IHC
Cleaved caspase-3 expression was evaluated by IHC as previ-
ously described [20]. For cleaved caspase-3 staining, coronal
sections of temporal lobe were deparaffinized and rehydrated
in graded concentrations of ethanol to distilled water. Sections
were placed in EDTA buffer (pH 9.0) and heated in a microwave
oven until boiling, then cooled at room temperature for 8 min,
heated again in a microwave oven at 70 ◦C for 7 min and rinsed
in PBS (pH 7.4). Endogenous peroxidase activity was blocked
with 3 % hydrogen peroxide (H2O2) for 25 min, followed by a
brief rinse in distilled water and a 15-min wash in PBS (pH 7.4).
Nonspecific protein binding was blocked by a 30-min incuba-
tion in 3 % BSA. Sections were incubated overnight at 4 ◦C with
a polyclonal anti-cleaved caspase-3 antibody (ab2302, Abcam,
UK; 1:150 dilution). Sections were then incubated with goat
anti-rabbit biotinylated secondary antibody (Santa Cruz Biotech-
nology) at room temperature for 50 min. Slides were visualized
by incubation with 3,3′-diaminobenzidine (DAB). Nucleus were
stained again with Harris haematoxylin for 3 min and blued with
ammonia after a temporary treatment with 1 % hydrochloric acid
alcohol solution (hydrochloric acid:70 % alcohol = 1:99).

Cell counting
One slice from every six serial cuttings in each segment was
chosen, and altogether six slices were collected and observed
under the light microscope. All surviving neurons (Nissl staining)
or positive cells (cleaved caspase-3 staining) in temporal cortex in
each section were counted in six microscope fields (magnification
×400) throughout the identical regions of temporal lobe, and the
average number per visual field was calculated. All the processes
were conducted by two independent, experienced pathologists
blinded to the grouping.

Western blotting analysis
Western blotting analysis was used to measure Prx2 expression
in the temporal cortex at 72 h after experimental SAH. Briefly,
equal amounts of samples were separated by SDS/12 % PAGE
and transferred on to polyvinylidene-difluoride membranes (Bio-
Rad Laboratories). Then, the membranes were blocked with 5 %
skimmed milk for 4 h at room temperature, incubated overnight
at 4 ◦C with anti-Prx 2 antibody (ab16765, Abcam; 1:1000
dilution), anti-IL-6 antibody (ab154367, Abcam; 1:500 dilu-
tion), anti-TNF-α (ab9739, Abcam; 1:3000 dilution) and anti-β
actin antibody (ab6276, Abcam; 1:5000 dilution), washed and
incubated with second antibody (ab131368, Abcam; 1:5000 di-
lution), and finally visualized by chemiluminescence.

Biochemical analysis
The levels of Prx2, IL-6 and TNF-α in CSF were measured re-
spectively using ELISA with the Prx2 kit (CK-E94047R, Calvin
Biological Technology), IL-6 kit CK-E80171R, Calvin Biolo-
gical Technology) and TNF-α kit (CK-E80109R, Calvin Biolo-
gical Technology) following the manufacturer’s instructions.

Statistical analyses
All data were presented as means +− S.E.M. IBM SPSS 19.0
was used for statistical analysis. Statistical comparisons between
groups were subjected to one-way ANOVA combined with the
Tukey multiple comparison test. Statistical significance was in-
ferred at P < 0.05.

RESULTS

General observations
Hours after anaesthesia recovery, rabbits in the lysate group ap-
peared to be more drooping and lumbering than that in the control
group and the non-lysate group. No rabbit died before perfusion-
fixation. There were obvious blood stains at the base of temporal
lobe and in basal cistern in the lysate group, but not obvious blood
stains in the non-lysate group or no blood stains in control group
at 72 h after being induced by subarachnoid erythrocytes or their
lysate (Figure 1).

Evaluation of CVS
The representative cross-sections of the basilar artery in each
group observed under the light microscope were shown in Fig-
ures 2(A)–2(C). The mean basilar artery cross-sectional area in
the control group was 416661.4 +− 17508.9 μm2. In the non-
lysate group and the lysate group, the mean basilar artery
cross-sectional areas decreased to 207722.9 +− 8822.6 μm2 and
235622.2 +− 12886.7 μm2 respectively. This decrease was stat-
istically significant (P < 0.01). Nevertheless, there was no sig-
nificant difference in the mean basilar artery cross-sectional
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Figure 1 Inferior view of rabbit brain at 72 h after being induced by subarachnoid erythrocytes or their lysate
(A) no blood stains; (B) not obvious blood stains at the base of temporal lobe and in basal cistern; (C) obvious blood
stains at the base of temporal lobe and in basal cistern.

Figure 2 Cerebral vasospasm in rabbits at 72 h after being induced by subarachnoid erythrocytes or their lysate
Representative histological cross-sections of the basilar artery in rabbits at 72 h after being induced by subarachnoid
erythrocytes or their lysate (A–C). Mean basilar artery cross-sectional areas (D). n = 6 for each group. Results represent
the mean +− S.E.M., *P < 0.01 compared with the control group. The rectangular part of the rat brain (coronal section) and
three segments of the basilar artery (transverse section) were used for histopathological study (E).
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Figure 3 Brain injury in rabbits at 72 h after being induced by subarachnoid erythrocytes or their lysate
Nissl staining of cortical tissue sections showed the ratio of neuron survival was lower in the non-lysate group, whereas
the lowest in the lysate group (A–C and G). IHC showed the ratio of cleaved caspase-3 positive cells was higher
in the non-lysate group, whereas the highest in the lysate group (D–F and H). n = 6 for each group. Results represent the
mean +− S.E.M., *P < 0.01 compared with the control group, #P < 0.01 compared with the non-lysate group.

areas between the non-lysate group and the lysate group
(Figure 2D).

Evaluation of brain damage
Nissl staining of cortical tissue sections showed the ratio of
neuron survival in the non-lysate group was 72.67 +− 1.34 %,
which was significantly lower than that in the control group
(86.80 +− 0.60 %; P < 0.01) and significantly higher than that
in the lysate group (52.68 +− 0.94 %; P < 0.01) (Figures 3A–
3C and 3G). IHC showed the ratio of cleaved caspase-3 ex-
pression in cytoplasm of neural cells in the non-lysate group
was 24.50 +− 1.17 %, which was significantly higher than that
in the control group (6.31 +− 0.77 %; P < 0.01) and significantly
lower than that in the lysate group (52.95 +− 1.86 %; P < 0.01)
(Figure 3D–3F and 3H).

Expressions of Prx2, IL-6 and TNF-α
The expressions of Prx2, IL-6 and TNF-α in brain cortex were
measured at 72 h after experimental SAH. As shown in Figure 4,
up-regulation of Prx2 (Figure 4B), IL-6 (Figure 4C) and TNF-α
(Figure 4D) in the temporal cortex was induced by subarachnoid
erythrocytes and their lysate. And the expressions of Prx2, IL-6
and TNF-α in the lysate group were significantly higher than
those in the non-lysate group (P < 0.01).

Biochemical analysis
ELISA analysis showed the levels of Prx2, IL-6 and TNF-α in
CSF increased at 72 h after experimental SAH (Figures 5A–5C).
Among them, the levels of these proteins in the non-lysate group
and the lysate group were significantly higher than those in the
control group (P < 0.01), whereas the levels of these proteins
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Figure 4 Up-regulation of the expressions of Prx2, IL-6 and TNF-α in the temporal cortex at 72 h after being induced by
subarachnoid erythrocytes or their lysate
Western blotting analysis showed the expressions of Prx2, IL-6 and TNF-α were increased in the non-lysate group and the
lysate group. Moreover, the levels of Prx2 (B), IL-6 (C) and TNF-α (D) in the lysate group were higher than those in the
non-lysate group. n = 6 for each group. Results represent the mean +− S.E.M., *P < 0.01 compared with the control group,
#P < 0.01 compared with the non-lysate group.

in the lysate group were significantly higher than those in the
non-lysate group (P < 0.01).

DISCUSSION

The mortality rate of patients subjected to SAH was 40–50 % in a
month [21]. The survivors still bore a high risk of disability [22–
25]. Previous research indicated that CVS and EBI were the main
factors affecting the prognosis of patients with SAH. It was once
thought that the high mortality and disability rates of patients
with SAH were mainly caused by CVS. In some clinical trials,
prevention of CVS had not improved the prognosis of patients
with SAH [26,27]. Besides, some patients with no obvious CVS
were found to have severe neurological disorders, suggesting
there would be other factors except CVS [28]. Therefore, recent
researches were more inclined to be about EBI. The mechanisms
of EBI after SAH were studied mainly through the following
aspects: primary mechanical damage [29], encephaledema and
blood brain barrier damage [30,31],inflammatory injury [32,33],
oxidative stress [34,35], toxicity of blood and its lysate [30,36],
etc. In these studies, whole blood was usually used as the injury
factor, although the lysis of erythrocytes was seldom concerned
about.

In clinical practices, it was often found that some complic-
ations (such as CVS, cognitive dysfunction, hypothalamic dys-
function, etc.) were still present in the patients with severe SAH
after operation of aneurysms [25]. Unfortunately, there were still
no effective ways to prevent these complications, as a result of not
yet understood mechanisms of these complications. Fortunately,
previous studies showed erythrocyte lysate (such as oxygenated
haemoglobin, ferri ion, calcium ion, etc.) was of cytotoxicity,
which was closely related to brain injury [30]. Based on these
results, erythrocyte lysate was supposed to be one of the causes
of these complications. Therefore, in order to further study the
role of erythrocyte lysate in the subarachnoid space on brain in-
jury, we established the animal model by injecting autologous
erythrocytes or its lysate into cistern magna of rabbits.

In this experiment, the animal model was stable and had a high
survival rate (no death in this study). Moreover, it was available
to detect biochemical indicators in CSF withdrawn from cistern
magna of rabbits. The results showed spasm of basilar artery and
brain injury (reduction in normal neuron and increase in neural
cells with cleaved caspase-3 positive expression) at the bottom
of temporal lobe were both observed in the non-lysate group
and the lysate group at 72 h after experimental SAH. Moreover,
there was not significantly different in spasm of basilar artery
between the non-lysate group and the lysate group. Nevertheless,
brain injury in the lysate group was significantly more severe
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Figure 5 The levels of Prx2, IL-6 and TNF-α in CSF of rabbits at 72 h after being induced by subarachnoid erythrocytes
or their lysate
ELISA analysis showed the levels of Prx2, IL-6 and TNF-α were simultaneously elevated in the non-lysate group and the
lysate group. Moreover, the levels of these proteins in the lysate group were higher than those in the non-lysate group. n = 6
for each group. Results represent the mean +− S.E.M., *P < 0.01 compared with the control group, #P < 0.01 compared
with the non-lysate group.

than that in the non-lysate group. From the above results, it could
be inferred that spasm of basilar artery was not the major factor
causing brain injury in this experiment. In addition, up-regulation
of the expressions of Prx2, IL-6 and TNF-α in brain cortex and in
CSF was detected at 72 h after experimental SAH. The degree of
inflammatory response positively correlated with Prx2 expression
in the lysate group was more significant than that in the non-lysate
group. In short, rabbits in the lysate group subjected to a more
destructive inflammatory response and a higher risk of brain
injury, and the former was likely to be one of the main causes to
the latter.

It had been confirmed that erythrocyte lysate could cause CVS
[6,14,37–39] and the mechanisms included oxidative stress [40],
inflammatory response [11,41–43], etc. The results of the lysate
group were consistent with that in the literature. It was confus-
ing that CVS was also observed in the non-lysate group, which
seemed to be inconsistent with the previous report [44]. From
the literature we knew, the rate of spontaneous haemolysis was
initially slow (approximately 1 %/day), and then became more
rapid after a 4-day incubation (at 37 ◦C in an artificial CSF) [14].
It might be possible that aging and lysis of erythrocytes acceler-
ated and arose in advance in the subarachnoid space due to some
certain conditions change, which finally led to spasm of basilar
artery.

As expected, it was confirmed that the level of subarachnoid
Prx2 was elevated at 72 h after being induced by subarachnoid
erythrocytes and their lysate in this experiment. And what was the
role of Prx2? For one thing, as one of the most abundant proteins
in erythrocytes after haemoglobin, Prx2 may cause brain injury,
like haemoglobin in the previous study [2], inducing release of
high-mobility group box 1 (HMGB1) and leading to EBI through
the Toll-like receptor (TLR) mediated inflammatory response.
For another, Shichita et al. [45] found Prxs released from damaged
neural cells after stroke, lost their neuroprotective function and
initiated activation of nuclear factor-κB (NF-κB) in these immune
cells and then led to production of proinflammatory cytokines,

which finally triggered a destructive inflammatory response. Prxs
played a key role in proinflammatory response. As Garcia-Bonilla
and Iadecola [12] suggested, Prxs set the brain on fire after stroke.
In this experiment, the levels of Prx2 and inflammatory cytokines
(IL-6, TNF-α) were simultaneously elevated after experimental
SAH and peaked in the lysate group with the most severe brain
injury. Therefore, the results suggested that the inflammatory
response positively correlated with Prx2 might be involved in the
mechanism of brain injury.

However, there were still some aspects not yet understood.
Firstly, were the roles of Prx2 from these two different sources
consistent? Secondly, what kind of source contributed more to
elevation of Prx2 level? Thirdly, was there a vicious circle that
Prx2, as a crucial link in the chain of events after SAH, ini-
tiated a destructive inflammatory response leading to brain in-
jury and intracellular Prx2 in damaged neuron was then released,
which eventually caused further damage? Fourthly, after SAH,
which pathway did Prx2 play a role through? The TLR2/4 -
NF-κB pathway? What kind of inhibitor could be chosen to block
the pathway? Fifthly, in addition to the destructive inflammatory
response, cortical neurons might be subjected to cytotoxicity of
erythrocyte lysate and oxidative stress, etc.

There were also some clinical implications. First of all, these
results in this experiment suggested that some delayed neuro-
logical disorders might be caused by subarachnoid erythrocyte
lysate, which should deserve more attention in clinic practices
despite of treatment of ruptured aneurysms. The next, some pa-
tients of severe SAH with a low Glasgow Coma Scale score and
a high Fischer scale score was badly sick, worsened rapidly,
and even died in a short time. In addition to some known causes
(such as intracranial hypertension, etc.), the massive lysis of sub-
arachnoid erythrocytes may be possible to cause the consequence
due to fragile brittleness of erythrocytes themselves or free into
CSF. Besides, extracellular Prx2 may act as a crucial link in the
inflammatory response after SAH. The level of Prx2 in CSF was
positively correlated with the degree of brain injury and would
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be used as an indicator of prognostic analysis. By inhibiting or
blocking the role of extracellular Prx2 with some specific anti-
bodies, it would be possible to reduce the inflammatory response
and play a neuroprotective role, leading to improve the prognosis.
And all above need further study.
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