
Biosci. Rep. (2014) / 34 / art:e00125 / doi 10.1042/BSR20140008

Drosophila neuroblasts as a new model for the
study of stem cell self-renewal and tumour
formation
Song LI*†, Hongyan WANG*†‡1 and Casper GROTH*

*Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Graduate Medical School Singapore, 8 College
Road, Singapore 169857, Singapore
†NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456,
Singapore
‡Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore

Synopsis
Drosophila larval brain stem cells (neuroblasts) have emerged as an important model for the study of stem cell
asymmetric division and the mechanisms underlying the transformation of neural stem cells into tumour-forming
cancer stem cells. Each Drosophila neuroblast divides asymmetrically to produce a larger daughter cell that retains
neuroblast identity, and a smaller daughter cell that is committed to undergo differentiation. Neuroblast self-renewal
and differentiation are tightly controlled by a set of intrinsic factors that regulate ACD (asymmetric cell division). Any
disruption of these two processes may deleteriously affect the delicate balance between neuroblast self-renewal and
progenitor cell fate specification and differentiation, causing neuroblast overgrowth and ultimately lead to tumour
formation in the fly. In this review, we discuss the mechanisms underlying Drosophila neural stem cell self-renewal
and differentiation. Furthermore, we highlight emerging evidence in support of the notion that defects in ACD in
mammalian systems, which may play significant roles in the series of pathogenic events leading to the development
of brain cancers.
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DISRUPTION OF ASYMMETRIC
DIVISION AND BRAIN TUMOUR
FORMATION

Apical–basal polarity
During asymmetric divisions, neuroblasts are polarized to form
distinct cortical domains, containing different sets of proteins
that are segregated into two different daughter cells by a neural
stem cell self-renewal mechanism conserved throughout the em-
bryonic and larval stages. Protein polarity is first established in
the prospective embryonic neuroblasts prior to their delamina-
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tion from the neuroectoderm by the apical localization of the
Par complex, consisting of Baz (Bazooka), aPKC (protein kinase
C) and Par6 (partitioning-defective 6). All subsequent neuroblast
self-renewal divisions, during embryonic and larval stages, re-
capitulate this initial protein localization asymmetry and use it as
the initiating cue for the execution of the ACD (asymmetric cell
division) programme by regulating the asymmetric localization of
basal proteins (Figure 1; [1–4]). aPKC functions as the effector in
this complex and directly phosphorylates the basal proteins Mira
(Miranda) and Numb to restrict their asymmetric localization
[5–7]. In aPKC mutants, there are fewer neuroblasts per brain
lobe compared with wild-type and the neuroblasts stop dividing
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Figure 1 Asymmetric protein localization in the mitotic larval brain neuroblast
Apical (in green) and basal (in red) proteins localize asymmetrically in neuroblasts at metaphase. The apical Baz–aPKC–Par6
complex is required for establishing cell polarity, and the Gαi–Pin-s-Loco complex at the apical side regulates the spindle
orientation. These two complexes are linked by Insc. The basal protein complexes (Mira–Pros–Brat and Pon–Numb)
control differentiation of the daughter GMC independently of each other. Centrosomes and centrosomal proteins are in
purple.--indicates the direct interaction; → indicates the positive regulation; � indicates the negative regulation.

prematurely to generate smaller lineages [2,8]. Conversely, the
activation of aPKC at the entire cell cortex of neuroblasts results
in asymmetric division defects, leading to a dramatic increase
in the number of neuroblasts [8]. The asymmetric localization
of the basal protein is regulated by apical proteins through cor-
tical tumour suppressor proteins Lgl (lethal (2) giant larvae) and
Dlg (discs large) [9,10]. Lgl associates with aPKC and Par6 and is
subject to aPKC-dependent phosphorylation and inactivation at
the apical cortex. This leads to its disassociation from membranes
and the actin cytoskeleton, thus restricting the localization of Mir
to the basal cortex [11]. Lgl also acts as an inhibitor of aPKC
in neuroblasts, restricting aPKC apical localization [8]. The Par
complex is also regulated by Aur-A (Aurora-A) in neuroblasts.
At the onset of mitosis, Aur-A-mediated phosphorylation of Par6
releases Lgl from the complex, thus enabling Baz to form a tri-
partite complex with aPKC and Par6, which facilitates the phos-
phorylation of Numb by aPKC [6,7,11]. The transcription factor
Zif (zinc-finger protein) binds directly to the promoter region
of aPKC gene and acts to repress the expression of aPKC [12].
Interestingly, aPKC-dependent phosphorylation of Zif, leads to
its exclusion from the nucleus and makes it functionally inact-
ive [12]. Therefore the mutual interplay between Zif and aPKC is
critical for proper activity of aPKC during neuroblast asymmetric
division. The components of the Par complex are evolutionarily
highly conserved and mutations in genes encoding Par complex

proteins are associated with hyperproliferation, tumour formation
and increased metastasis in humans [13]

Basally localized proteins are segregated into the GMC (gan-
glion mother cell) during neuroblast asymmetric division and
are important for GMCs to undergo differentiation pathway. The
proliferative potential of the GMC is limited to a single divi-
sion, which generates two post-mitotic neurons or glial cells with
distinct cell fates [14]. To date, three proteins, Numb, Pros (Pros-
pero) and Brat (Brain Tumour) have been identified to specify
the GMC fate in Drosophila neuroblasts (Figure 1; [15–18]. The
localization of both Pros and Brat at the basal cortex is depend-
ent on their interaction with the adaptor protein Mira [19–21]. In
the absence of Mira, Pros and Brat are localized throughout the
cytoplasm of neuroblasts at metaphase, and are segregated into
both the GMC and the neuroblast during ACD. Pros is a member
of the ProX1 family of transcription factors, which translocates
to the nucleus to repress the genes for neuroblast self-renewal
and promote the genes for GMC differentiation, following its se-
gregation into the GMC [22]. Brat acts redundantly with Pros to
control the GMC fate in Drosophila embryos, whereas in larval
brains it functions as a tumour suppressor to inhibit neuroblast
self-renewal and promote neuronal differentiation [20,21,23]. A
second basal complex is composed of Numb and the adaptor pro-
tein Pon (partner of Numb) [24]. Pon facilitates the polarized loc-
alization and segregation of Numb during neuroblast asymmetric
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division [24,25]. Numb inhibits the Notch signalling pathway by
binding to the NICD (Notch Intracellular Domain) and promot-
ing the endocytosis of the Notch receptor, thereby reducing the
signalling competent Notch pool available at the cell surface (see
below; [26]). Following GMC division, two neurons or glia with
different fates are generated, and Numb is asymmetrically se-
gregated into one neuronal sibling [26]. In the absence of Numb,
the GMC produces two daughter cells with the same identity
[26]. Moreover, Numb functions as a tumour suppressor in lar-
val brains and supernumerary neuroblasts form in numb-deficient
neuroblasts [21,27,28].

Interestingly, when larval brain tissue, mutant for genes en-
coding ACD regulators (e.g., aur-A, lgl and mira) or cell fate
determinants (brat, numb and pros), is implanted into the abdo-
men of adult wild-type hosts, tumour formation ensue [29]. The
implanted cells in the tumours become immortal and can prolif-
erate almost indefinitely [29]. These data suggest a link between
the disruption of asymmetric division and tumourigenesis in Dro-
sophila larval brain tissue.

Spindle orientation
The alignment of the apical–basal polarity axis with the mitotic
spindle is referred to as spindle orientation. It is essential to posi-
tion the cleavage furrow during cytokinesis to ensure the exclus-
ive segregation of apical or basal proteins into different daughter
cells. The apical protein Insc (inscuteable) is a key regulator of
neuroblast mitotic spindle orientation in Drosophila [30]. Insc is
recruited by the Par complex during neuroblast mitosis and binds
co-dependently to the Pins (partner of inscuteable) complex to
secure their asymmetric localization at the apical cortex (Fig-
ure 1; [31,32]). Pins contains multiple mushroom body defect
TPR (tetratricopeptide) motifs and three GoLoco (Gαi/o-Loco
interaction) repeats at its C-terminus, which interact to form an
inactive protein [32,33]. Activation of Pins is achieved by the
binding of the heterotrimeric G protein Gαi to the GoLoco re-
peats, resulting in a conformational change and activation of the
Pins protein [33]. Active Pins can interact with Mud (mushroom
body defect) directly through TPR domains and recruit Mud to
the apical cortex [33,34]. Drosophila Mud is an orthologue of the
mammalian NuMA (nuclear mitotic apparatus) protein, which is
critical for aster formation and stability of microtubules in mam-
mals [35]. Mud localizes at both the apical side and centrosomal
regions in neuroblasts, and is important for proper spindle ori-
entation [34,36,37]. Another pathway implicated in regulating
neuroblast spindle orientation is composed of Pins, Gαi and the
tumour suppressor Dlg [38,39]. Dlg binds to the Pins linker do-
main, which connects the Pins TPR and GoLoco domains [40].
A plus-end-directed microtubule motor protein Khc73 (Kinesin
heavy chain 73) interacts with Dlg to control spindle orienta-
tion through regulating Pins cortical polarity in neuroblasts [39].
Therefore Pins regulates neuroblast spindle orientation by inter-
acting with downstream proteins Mud or Dlg.

Centrosomes serve as the main MTOC (microtubule-
organizing centre) of the animal cell and is an organelle that
plays a key role during cell division. A centrosome consists of

two centrioles surrounded by an amorphous mass of proteins
called PCM (pericentriolar material) [41]. What is the correla-
tion between mother versus daughter centrosome segregation and
asymmetric cell fate in stem cells? In Drosophila male germline
stem cells, the mother centrosome is retained by the stem cells,
whereas the daughter centrosome is segregated into the differen-
tiating gonial cell following division [42]. Interestingly, the two
centrosomes also behave differently during asymmetric division
of neuroblasts. After centriole duplication at interphase, the two
centrioles split and are functionally different [43,44]. The daugh-
ter centriole is active and retains PCM, thus becoming a MTOC
of the cell [43–45]. This centrosome remains at the apical side
and is segregated into the new-born neuroblast after cell divi-
sion. Conversely, the mother centriole loses the PCM soon after
centriole duplication and separation and moves to the basal side
of the neuroblast, and is segregated into the cell fate-restricted
daughter cell [43–45]. Centrobin is an essential centriolar pro-
tein required for centrioles in order to retain PCM and organize
the interphase aster in neuroblasts in a Polo phosphorylation-
dependent manner [46]. In contrast, the PLP (pericentrin-like
protein) that is enriched on the inactive interphase centrosome,
blocks the recruitment of Polo to the centrosomes and in turn in-
hibits the activity of interphase centrosomes [47]. In the absence
of this centrosome asymmetry, the site of GMC budding is not
efficiently maintained from one cycle to the next [46].

Loss of either centrioles or PCM would compromise the func-
tions of centrosomes in the neuroblasts; hence, in mutants that
lack centrioles or PCM, spindle misorientation phenotypes are
often observed. For example, in centrosomin (cnn) mutant neur-
oblasts, microtubule defects and spindle misorientation pheno-
types occur, and this may lead to a significant increase in the
number of neuroblasts because of missegregation of cell fate de-
terminants [48,49]. Consistently, mutants of several centriolar
proteins, including asl (asterless), ana2 (anastral spindle 2) and
Sas-4 (spindle assembly abnormal 4), display spindle misorient-
ation and/or neuroblast overgrowth phenotypes [50–52]. ana2
mutant larval neuroblasts lack centrosomes and display severe
spindle orientation defects [52]. Ana2 directly interacts and an-
chors Ctp (Cut up), a cytoplasmic dynein light chain, at the centro-
somes [52]. Ana2 and Ctp bind to Mud, and are important for the
Pins–Mud interaction by controlling the centrosomal and apical
localization of Mud [52]. Therefore Ana2 is important for neur-
oblast spindle orientation by regulating microtubule-mediated
spindle–cortex interactions [52].

Failure in proper mitotic spindle orientation may result in
missegregation of asymmetrically localized proteins and lead
to neuroblast overgrowth [34,36,52]. In mud or ana2 mutants,
neuroblast symmetric divisions occur most probably because of
orthogonal divisions that result from severe defects in the orient-
ation of the spindle. In this abnormal form of division, apical and
basal proteins are found equally segregated into the two daughter
cells, making the two daughter cells both capable to self-renew
[34,36]. Consistently, the mutant brain tissues of pins, mud or
genes encoding centrosomal proteins, such as cnn, asl, sas-4 and
ana2, can induce the formation of tumours in allograft assays
[50–53].
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Cell-cycle regulators and post-translational
modifications in neuroblasts
The cell polarity in neuroblast is determined in the early in-
terphase; however, the polarized proteins begin to localize asym-
metrically at the prophase during the cell cycle, suggesting the
roles of cell-cycle regulators in monitoring neuroblast asymmet-
ric division. Two cell-cycle-related kinases have been well char-
acterized in Drosophila neuroblasts: Aur-A and Polo kinases
[25,28,48,54,55]. Loss of Aur-A or Polo leads to the forma-
tion of ectopic neuroblasts in larval brains [25,28]. In aur-A
mutant larval neuroblasts, aPKC is delocalized to the entire cor-
tex and the asymmetric distribution of Numb is largely disturbed
[28,48]. Moreover, Aur-A directly phosphorylates Par6 at in-
terphase, which facilities the formation of the Baz/Par6/aPKC
complex and is essential for aPKC-mediated regulation of Numb
[7]. Aur-A phosphorylates a specific site within the evolution-
arily highly conserved Pins linker domain of the Pins protein
to orient the mitotic spindle [40]. Aur-A may also regulate mi-
totic spindle orientation by controlling the apical localization of
Mud, as Mud is distributed throughout the cell cortex in aur-A
mutant neuroblasts [28]. Polo kinase controls Numb asymmetry
by phosphorylating Pon, the binding partner of Pon, leading
to the polarized localization of Pon and Numb in neuroblasts
[25]. In addition, Polo is required for the proper localization of
aPKC and correct spindle orientation in neuroblasts, suggest-
ing that Polo inhibits neuroblast self-renewal through regulating
the localization/activity of Numb and the orientation of mitotic
spindles [25].

Given the critical roles that protein kinases (Aur-A, Polo,
aPKC) play in neuroblast self-renewal and differentiation, it is
likely that protein phosphatases may regulate neuroblast homoeo-
stasis by counteracting the activities of these kinases. Surpris-
ingly, PP2A (protein phosphatase 2A) loss-of-function mutants
result in defects in asymmetric division and form supernumer-
ary neuroblasts in Drosophila larval brains [56,57]. PP2A is a
conserved serine/threonine phosphatase that functions as a het-
erotrimeric complex comprising a catalytic C subunit [Mts (mi-
crotubule star)], a scaffolding A subunit (PP2A-29B) and one
of the variable regulatory B subunits; Twins (Tws), Widerborst
(Wdb), B56-1 or PR-72. The A subunit of PP2A bridges the
catalytic subunit and the B subunits, which provide the substrate
specificity [58]. PP2A inhibits neuroblast self-renewal by func-
tioning upstream of Polo [57]. On the other hand, PP2A also
negatively regulates aPKC activity by associating with Par6 and
dephosphorylating Par6 in order to counteract Aur-A-mediated
phosphorylation of Par6 [59]. In addition, PP2A interacts with
Baz via its catalytic subunit (Mts) and dephosphorylates Baz at
the conserved serine 1085, which is important for the proper
cell polarity in embryonic neuroblasts [60]. Moreover, PP2A can
directly dephosphorylate Numb to facilitate the repression of
neuroblast self-renewal [61].

Another protein phosphatase reported to mediate neuroblast
ACD is PP4 (protein phosphatase 4). Loss of Flfl (Falafel), a
regulatory subunit of PP4, leads to a mis-localization phenotype
of the basal protein complex including Mira and its cargo proteins
Pros, Brat and Stau (Staufen) in metaphase/anaphase neuroblasts

[62]. Flfl interacts with Mira, indicating that Flfl might target
PP4 to the Mira complex for its proper association/asymmetric
localization during neuroblast asymmetric division [62].

In addition to protein phosphorylation, the E3 ligase APC/C
(APC/cyclosome) complex has been shown to regulate asym-
metric localization of Mira and its cargo proteins during neur-
oblast asymmetric division [63]. Mira is ubiquitinated through
its C-terminal domain, which contains an APC/C destruction
motif [63]. The ubiquitination of Mira is important for its po-
larized localization during neuroblast asymmetric division, and
attenuation of APC/C activity in neuroblasts displayed a Mira-
delocalization phenotype similar to mira mutants in which the
C-terminal Mira is dysfunctional [63]. Interestingly, SCFSlimb, an
evolutionarily conserved E3 ubiquitin ligase complex, consisting
of Cul1 (Cullin1), SkpA, Roc1a and the F-box protein Slimb
(Supernumerary limbs), regulates asymmetric division of neuro-
blasts and inhibits the formation of ectopic neuroblasts [64]. Two
direct targets of SCFSlimb, SAK (Sak kinase) and Akt (protein
kinase B) function downstream of the SCFSlimb complex during
neuroblast self-renewal [64].

Neuroblast lineages in Drosophila central brains
The larval central brain contains approximately 100 neuroblasts
in each brain hemisphere, which are divided into type I and II
lineages, based on differences in gene expression and progeny
types (Figure 2; [27,65,66]). Both types of neuroblasts divide
asymmetrically to generate two distinct daughter cells during
larval development. Type I neuroblasts constitute the predomin-
ant population, and express asense (ase), a proneural gene that
encodes a nuclear transcription factor [67], and cytoplasmic or
basally localized Pros [16]. A type I neuroblast undergoes asym-
metric division to generate a self-renewing neural stem cell and a
GMC, which divide once more to produce two postmitotic neur-
ons or glia. Type II neuroblasts constitute a minor population
with only 8 per hemisphere, which do not express Ase and Pros,
and divide asymmetrically to generate a neuroblast and a small
daughter cell, termed an INP (intermediate neural progenitor).
The new-born INP is present in an immature, non-proliferative
state characterized by the lack of Ase and Pros expression. The
immature INP quickly transits to become an Ase-positive mature
INP, in a process dependent on Brat and Numb activity. The ma-
ture INP is competent to undergo several rounds of asymmetric
divisions, each time generating a self-renewing INP and a GMC
[27,65,66]. Therefore, a type II neuroblast generates a larger lin-
eage than a type I neuroblast in Drosophila larval brains due to
the restrictive self-renewal capability of the INPs. Among eight
type II neuroblast, six of them locate at the DM (dorsomedial)
larval brain lobe named DM1–DM6, and the other two locate at
more lateral positions [66].

The development of type II neuroblast lineages in Drosophila
mimics that of mammalian neural stem cells, which contain
transit-amplifying cells [68,69]. Therefore Drosophila type II
neuroblast lineages have emerged as an attractive model system
to study the fundamental molecular network controlling the cell
fate specification and proliferation of neural stem cell lineage
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Figure 2 Neuroblast lineages in the Drosophila larval brain
(A) A dorsal view of Drosophila third instar larval brain which contains three main neurogenic regions: central brain (CB),
optic lobe (OL) and ventral nerve cord (VNC). Type I neuroblasts (in red) and type II neuroblasts (in purple) are located at
CB. (B) Type I neuroblasts divide asymmetrically to self-renew and produce a GMC (in light red). GMC divides one more
time to generate neurons (in grey). (C) Type II neuroblasts divide unequally to generate a self-renewing neuroblast and an
immature intermediate neural progenitor (INP, in yellow). After maturation, the INP (in orange) divides asymmetrically to
self-renew and generate a GMC.

progenitors. Brat and the Notch antagonist Numb, function co-
operatively to ensure that immature INPs undergo maturation and
commit to the INP fate [27]. Several transcription factors have
been identified to be bona-fide regulators of neuroblast lineage
identity. Earmuff (erm), which is an orthologue of the vertebrate
Fezf (Forebrain embryonic zinc-finger family) genes, encoding
transcription factors, functions specifically in INPs [70]. Loss of
Erm in type II neuroblast lineages leads to a failure in the ability
of the INPs to maintain their cell fate identity, allowing some
INPs to dedifferentiate back into a neuroblast state [70]. Erm
restricts the potential of INPs by attenuating their response to
self-renewal factors [71]. The Brahma remodelling complex, to-
gether with histone deacetylase 3, physically associates with Erm
to suppress INP dedifferentiation back into neuroblasts [72]. Osa,
a subunit of the Brahma chromatin-remodelling complex, induces
the expression of hamlet (ham), a member of the Prdm gene fam-
ily, in INPs to limit the proliferation of INPs [73]. PntP1 (pointed
P1), which belongs to the Ets (E26 transformation-specific) tran-
scription factor family, is a key player in the control of type II
neuroblast lineage identity. It suppresses Ase expression in type II
neuroblasts and promotes the generation of INPs, as loss of PntP
activity in type II neuroblasts leads to the reduction or elim-
ination of INPs [74]. The zinc-finger transcription factor, Klu
(Klumpfuss), acts as a neuroblast self-renewal factor, and its
expression distinguishes a type II neuroblast from an INP in
larval brains. Misexpression of Klu triggers immature INPs to
revert to type II neuroblasts [75,76]. A number of transcription

factors regulate the expression of neuronal identity factors to
maintain neuroblast homoeostasis. For example, the Snail family
protein Worniu maintains neuroblast self-renewal by preventing
Elav-induced premature neuronal differentiation [77], and Mid-
life crisis, a conserved zinc-finger protein, maintains Pros and
Elav in post-mitotic neurons to inhibit neuronal dedifferentiation
[78]. Other mechanisms that prevent dedifferentiation of INPs,
GMCs or neurons will be of great interest for neural stem cell
studies.

THE NOTCH SIGNALING PATHWAY
AND NEURAL STEM CELL
SELF-RENEWAL

The Notch signalling pathway
The Notch signalling pathway plays essential roles in many cel-
lular processes, including cell fate specification, cell prolifera-
tion and cell death events in order to regulate the establishment
and maintenance of cell types and tissues during embryonic
development and adult tissue homoeostasis (reviewed in [79]).
Notch-dependent signal transduction ensures a local and highly
specific signal exchange between neighbouring cells engaged
in cell–cell interactions. The interaction between ligand- and
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Notch-expressing cells directs the transmission of a signal to
the nucleus of the Notch-expressing cell to regulate target gene
expression without the involvement of any enzymatic amplific-
ation steps. This feature is achieved by the stepwise proteolytic
processing of the Notch receptor, ultimately leading to the re-
lease of a nucleus-targeted gene-regulatory intracellular domain,
termed the NICD (reviewed in [79]). The maturation and activ-
ation of Notch is orchestrated by a series of enzymatic cleav-
ages found near its TM (transmembrane) domain (Figure 3).
Notch is synthesized as a precursor protein of approximately
300 kDa, which is predominantly cleaved by furin-like conver-
tases in the trans-Golgi compartment to form NTF (N-terminal
fragment) and CTF (C-terminal fragment), respectively. The two
fragments are subsequently linked by non-covalent bonding to
form the mature Notch heterodimer [80,81]. Following protein
maturation, Notch is trafficked to the cell surface and activ-
ated as a consequence of conformational changes facilitated by
specific binding to ligands of the DSL family, which includes
Delta and Serrate/Jagged in Drosophila and mammals as well
as LAG-2 in Caenorhabditis elegans. Ligand binding then trig-
gers a second cleavage event in the extracellular region of the
Notch CTF mediated by ADAM metalloproteases, which leads
to the shedding of the extracellular domain [82–84]. The re-
maining membrane-anchored Notch fragment is subsequently
cleaved by the intramembrane aspartyl protease γ -secretase
to release the nuclear-bound NICD fragment (Figure 3; [85–
87]). In addition to the control of Notch processing, Notch sig-
nalling is also regulated by post-translational modifications, con-
trol of protein trafficking and degradation through the secretory
pathway and endocytic and lysosomal compartments (reviewed
in [79]).

The role of Notch in asymmetric division and stem
cell self-renewal
Notch-mediated binary pattering processes are essential in reg-
ulating cell fate specification events associated with neuroblast
self-renewal and differentiation in the developing brain (reviewed
in [88]). During larval neurogenesis, type I and II neuroblasts are
to a variable degree dependent on the Notch pathway to maintain
neuroblast self-renewal [27,28,89]. A common regulator between
the two distinct stem cell populations is the Notch pathway in-
hibitor Numb [27,28,48]. This protein plays a pivotal role by en-
abling binary cell fate specification events to occur as a result of
its asymmetric sequestration in post-mitotic neurons [28,88,90],
How Numb exert its inhibitory function on Notch signalling re-
mains poorly understood. However, a number of studies have im-
plicated Numb as an endocytic regulator of the Notch signalling
enhancer Sanpodo [91]. Numb interacts with both Sanpodo and
the endocytic sorting machinery protein α-adaptin to promote
Sanpodo endocytosis [92–94]. This leads to a reduction of San-
podo at the cell surface and, consequently, the down-regulation
of the Notch pathway in the Numb-positive daughter cell. Con-
versely, the Numb-negative cell has high Sanpodo levels and
retains its neuroblast identity [95,96].

If Numb activity is abnormal in the larval brain, then the bal-
ance between neuroblast self-renewal and differentiation will be
compromised. As a consequence, Notch signalling becomes dys-
regulated in neuroblasts, which leads to cell fate transformation
and cause daughter cells to adopt a neuroblast-like identity at the
expense of neuronal differentiation. This leads to unrestrained
proliferation of self-renewing neuroblast-like cells, and tumour
formation ensues in the larval brain [27–29]. Importantly, the
two distinct neuroblast lineages show important differences in
their responsiveness towards Notch signalling. In type II neur-
oblasts, an increase of activated Notch or NICD activity, or the
lack of Numb protein in numb mutant tissue, lead to neuroblast
hyperplasia and a concomitant reduction in the number of differ-
entiating cells, while Notch loss-of-function or down-regulation
of Notch signalling using RNAi-mediated inhibition of Notch ex-
pression leads to the elimination of type II neuroblasts [27,28,97–
99]. The same Notch hyperactivity lesions in type I neuroblasts
exhibit significantly lower penetrance of the overgrowth pheno-
type, suggesting that Notch signalling may be of less importance
in controlling proliferation of type I neuroblasts. Alternatively,
Notch in conjunction with other proteins may act redundantly
to secure robust control of type I neuroblast homoeostasis (see
below; [89]). As the main difference between the two neuroblast
lineages lies in the presence on an extra cellular amplification
step in the form of INP cells in type II neuroblast lineages, this
strongly suggests that Notch activity and the regulatory function
of Numb may prevent INP populations from resuming neuroblast
identity [27,100]. So control of protein polarity and the fidelity
of the ACD machinery emerge as important control mechanisms
to ensure neuroblast homoeostasis and the prevention of tumour
formation in Drosophila.

While Notch-dependent control of neuroblast homoeostasis is
predominantly mediated via NICD and its interaction with Su(H)
to regulate target gene expression [27,70,100], non-canonical
Notch signalling also plays a role in maintaining the neuroblast
pool. Notch can interact with the Parkinson’s disease and can-
cer associated PINK1 protein to regulate mitochondrial function
via mTORC2 (mammalian target of Rapamycin complex 2/AKT
signalling [101,102]. The canonical and non-canonical Notch
signalling pathways act in conjunction to secure neuroblast ho-
moeostasis. If the activity of the Notch/PINK1/mTORC2/AKT
signalling axis is reduced, neuroblast maintenance is comprom-
ised [101]. Interestingly, maintenance of Drosophila and human
neural cancer stem cells exhibit a preferential dependency on the
non-canonical Notch pathway compared with normal stem cells
[101].

The role of Notch target genes in neuroblast
homoeostasis and beyond
Notch signalling transduction relies on the nuclear translocation
of the gene regulatory NICD fragment to control target gene
expression. In the absence of NICD, most Notch target genes
are maintained in an inactive state because of their interaction
with a transcriptional repressor complex, encompassing the CSL
[CBF1 (CCAAT-binding factor 1)/suppressor of Hairless/Lag-
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Figure 3 The Notch signalling pathway and dMyc-mediated cell growth
(A) The Notch receptor is processed sequentially by three enzymatic activities. In the Golgi compartment, Notch is cleaved
by furin to produce two covalently linked fragments, which form the mature protein. After reaching the cell surface, Notch
is activated and processed following the interaction with a ligand and an ADAM protease to release its ectodomain into the
extracellular matrix. This shedding event renders the truncated membrane-bound Notch remnant accessible to the action
of the γ -secretase complex, which cuts Notch within the confines of the lipid bilayer to release the Notch intracellular
domain, NICD. This gene regulatory fragment then moves to the nucleus where it interacts with various co-activators,
including CSL and MAM to regulate target gene expression. (B) The growth regulator dMyc is a target of the Notch pathway.
One of the targets regulated by dMyc is the translation initiation factor eIF4E, which acts as a cell growth mediator. The
dMyc/eIF4E regulatory loop functions to control cell growth and cell fate choices in type II neuroblast lineages (based on
[100]).

1] transcription factor Suppressor of Hairless, Su(H), and vari-
ous corepressors. In the presence of NICD, the corepressors
associated with Su(H) binding are displaced with Mastermind
and other gene coactivators, leading to activation and transcrip-
tion of Notch target genes (reviewed in [79]). Given the essen-
tial role of Notch signalling in controlling numerous cell fate
specification and differentiation events during development and
adulthood, we know surprisingly little about the genes targeted
by Notch to regulate these processes [88]. Among the identified
Notch targets in Drosophila are a number of genes encoding
bHLH-O (basic helix-loop-helix-orange) transcription factors,
implicated in controlling neurogenesis by acting as neural dif-
ferentiation repressors, including neuroblast marker Dpn (Dead-
pan) and members of the Enhancer of split complex, E(spl)
[89,103].

Hyperactivity of Dpn in type II neuroblasts mimics the Notch
pathway overexpression phenotype with accompanying over-

growth of neuroblast-like cells and tumour formation [103]. How-
ever, loss of dpn activity does not recapitulate the neuronal hypo-
plasia seen in Notch pathway mutants [74,103]. This conundrum
seems to indicate that Dpn may act redundantly with other pro-
teins to regulate type II neuroblast homoeostasis. Indeed, recent
reports suggest that both Dpn and members of the E(spl) com-
plex may act synergistically to retain the self-renewing status of
type II neuroblasts [89,103].

Recently, hey has been identified as a putative Notch tar-
get gene and is broadly expressed in Notch-responsive newly
born postmitotic sibling neurons during embryonic and lar-
val development [104]. Contrary to most bHLH-O transcrip-
tion factors identified so far, Hey is not a repressor of neur-
onal identify and is accordingly not expressed in neuroblasts,
but rather exerts its function by promoting the Notch-
dependent fate decision in one of the asymmetrically divid-
ing and emerging sibling neurons. This further emphasizes the
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importance of the link between protein polarity and ACD in
neurogenesis.

MAMMALIAN STUDIES OF
ASYMMETRIC DIVISION AND HUMAN
CANCERS

Significant progress has been made to identify and elucidate the
core molecular machinery behind the homoeostatic balance regu-
lating Drosophila neuroblast self-renewal and differentiation and
the genetic mutations leading to tumourigenesis. Although the
components of the ACD machinery, polarity proteins and po-
larized cell fate determinants are highly conserved in evolution,
it remains largely unknown how significant a role ACD plays
in human tumour formation [105,106]. However, a number of
recent studies have elucidated various aspects of ACD and tu-
mourigenesis. For example, Izumi and Kaneko [107] reported
on the incidence of ACD versus SCD (symmetric cell division)
in neuroblastoma cell lines. Neuroblastomas are common child-
hood solid tumours with variable treatment prognosis. Among
the abnormal chromosomal and genetic features associated with
this class of tumours is the amplification of the proto-oncogene
MYCN, a member of the MYC gene family, which encode tran-
scription factors involved in the regulation of cell proliferation
and growth [108]. The copy number of MYCN has been shown
to be a good predictor of phenotypic aggressiveness and clinical
outcome [109]. In neuroblastoma cell lines with normal MYCN
copy number the presence of ACD is significantly higher than in
cell lines with MYCN amplification. Moreover, overexpression
of MYCN in cells with normal MYCN copy number shows an in-
crease of SCD. Conversely, RNAi-mediated inhibition of MYCN
expression in MYCN-amplified neuroblastoma cell lines causes a
further increase in the proportion of cells undergoing ACD [107].
These data suggest that MYCN may act as a regulator of the ACD
machinery.

Pathogenic disruption of the homoeostatic balance of neural
stem cell self-renewal and maintenance is bound to involve the
dysregulation of numerous genes to generate the tumourigenic
phenotype. For example, CD133, a stem cell marker known to
be hyperactivated in cancer stem cells [110], was found to be
exclusively expressed in MYCN-amplified neuroblastoma cell
lines, where it promotes the survival and proliferation of the tu-
mour cells [107], and was shown to asymmetrically co-segregate
with Numb during ACD in glioma stem cells [111].

Mechanistic insight into the role of MYC proteins in neural
stem cell homoeostasis has been gained from studies of the single
MYC gene present in the Drosophila genome. dMyc (Droso-
phila Myc) encodes a transcription factor [112], which regulates
cell and organismal growth [113] by controlling the expression
of genes involved in ribosome biogenesis [114], and RNA and
protein synthesis [115], including transcription and translation
factors [100,116–118]. Interestingly, recent findings suggest that
the regulation of growth rate and cell size may be a contributing

factor in the control of neuroblast cell identity and maintenance
[100].

During larval neuroblast cell divisions, the tumour suppressor
Brat is asymmetrically segregated into one of the two daughter
cells, where it acts as a post-transcriptional regulator of dMyc
to inhibit cell growth and proliferation of the cell destined to
become the GMC [15]. However, overexpression of dMyc alone
is insufficient to induce neuroblast overgrowth [15]. Hyperactiv-
ation of the Notch pathway in type II neuroblasts, leads to up-
regulation of dMyc, and together with the eIF4E (eukaryotic
translation initiation factor 4E), their combined action appear
to be sufficient to cause the dedifferentiation of immature INPs
to type II neuroblast-like progenitor cells (Figure 3; [100]). Ec-
topic neuroblasts show a significant higher growth rate than nor-
mal neuroblasts, while at the same time their ability to sustain
growth is more dependent on eIF4E function [100]. This raises
the hope that differences in the properties of the gene regulat-
ory network underlying normal and cancer neuroblasts may be
exploited therapeutically [100].

A switch from ACD to SCD has also been described to oc-
cur in malignant gliomas. Using single-cell-based lineage tracing
of tumour cells obtained from human clinical specimens, it was
recently established that GSCs (glioma stem cells) employ both
symmetric and asymmetric modes of propagation to self-renew
and generate tumours [111]. Symmetric divisions was found to
be the predominant form of GSC propagation, while a lesser por-
tion of the GSCs undergo ACD and may account for a minor part
of the cellular heterogeneity in the tumour [111]. Interestingly,
in normal brain tissue, OPGs (oligodendrocyte progenitors) un-
dergo ACD as a prominent mode of cell division to self-renew,
while tumourigenic OPGs found in human oligodendrogliomas
show reduced ACD. This switch in cell division mode is associ-
ated with dysfunctional regulators of ACD, including Trim32, a
mammalian protein related to Drosophila Brat [119]. Moreover,
during mitosis of OPGs, the lineage marker NG2 (neuron-glial
antigen 2) becomes asymmetrically inherited to one of the daugh-
ter cells, which continues to have progenitor identify and self-
renewal capacity due to its ability to promote asymmetric local-
ization of EGFR (epidermal growth factor receptor), a transducer
of proliferation and self-renewal signals, while the NG2-negative
daughter undergo differentiation. Importantly, in a mouse model,
the degree of NG2 asymmetry has been causally linked to its
tumour-initiating potential [119].

The optic lobe of Drosophila is a brain centre involved in
the processing of visual information, and its development has
provided valuable insights into the molecular mechanisms under-
lying the switch between SCD and ACD. Neuroepithelial cells
in the larval optic lobes undergo symmetric divisions to expand
the neural stem cell progenitor pool, whereas the neuroepithelial
cell-derived neuroblasts undergo ACDs to produce the differen-
tiated neurons of the visual processing center [68,120–122]. The
transition between the two modes of division is dependent on the
Notch signalling pathway. A key function of Notch activity is
to maintain the neuroepithelial cell state and prevent the trans-
ition and development of the optic lobe neuroblasts, as absence
of Notch activity in neuroepithelial cells leads to a switch from
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SCD to ACD and the extrusion of neuroblasts from the neuroep-
ithelium, causing premature neurogenesis [121,123]. Cross-talk
between the Notch, EGFR, JAK/STAT and Fat-Hippo pathways
are needed for the precise timing and execution of the cell fate
specification programme underlying the neuroepithelial to neur-
oblast cell transition [121,123–128]. The integration of the out-
put from these pathways promote the transient expression of the
proneural gene lethal of scute (l’sc), which propagates through
the neuroepithelium and initiate the transformation of neuroep-
ithelial cells into neuroblasts by regulating the switch from SCD
to ACD [68]. This switch also requires signals emanating from
a subpopulation of optic lobe-associated cortex glial cells. The
microRNA mir-8 from these glial cells promotes the expression
of Spitz, an EGFR ligand, which binds and activates the EGFR
receptor, leading to the promotion of neuroepitheilial cell prolif-
eration and neuroblast formation [129].

Tumours can arise in optic lobes due to dysregulated sig-
nalling in neuroepithelial cells or dedifferentiation of neurons.
Derepression of the Hippo pathway in l(3)mbt [lethal (3) malig-
nant tumour] mutant neuroepithelial cells promotes brain tumour
formation [130]. After neurons are born, it is important to pre-
vent them from dedifferentiating back into dividing neuroblasts.
A recent finding showed that a BTB-Zn finger transcription factor
Lola (longitudinals lacking) represses neural stem cell genes and
cell-cycle genes in post-mitotic neurons [131]. In lola mutants,
newly born post-mitotic neurons can dedifferentiate and assume
neural stem cell-like properties, leading to tumour formation in
the optic lobe of the adult brain [131].

CONCLUSIONS AND FUTURE
PERSPECTIVES

Much of our basic knowledge about the molecular machinery
controlling neural stem cell homoeostasis and ACD has been
gained from Drosophila neuroblasts. With the identification of
the type II neuroblast lineages in Drosophila that are analogous
to mammalian neural stem cell lineages, we anticipate that un-
ravelling the molecular machinery controlling the self-renewal
and differentiation of type II neuroblasts and INPs will provide
valuable insights relevant to our understanding of mammalian
neural stem cell biology and the pathological processes involved
in neural stem cell-dependent brain tumour formation and disease
progression.

Although the core components and the regulatory machinery
needed for the segregation of asymmetric cell fate determinants
in the neuroblast have been determined, it remains largely un-
resolved how their asymmetry translates into different cell fate
acquisitions by their progeny. In type II neuroblast lineages, the
INPs are subject to progressive restrictions in their developmental
potential, thus allowing them to undergo a limited number of cell
division cycles to generate GMCs that give rise to post-mitotic
neurons without disrupting the homeostasis of the neuroblast
pool. The molecular gatekeepers and mechanisms upholding the
developmental barrier, which under normal conditions prevent

immature INPs from dedifferentiating and assuming neural stem
cell-like properties, are only now slowly beginning to be identi-
fied. This area of research deserves special focus, as the develop-
mental switch from neural stem cell to precursor cell identity is
a likely key event in the pathogenic cascade responsible for the
transformation of neural stem cells to tumourigenic cancer stem
cells.

The brain consists of a vast variety of neuronal cell types.
How this cellular diversity is generated is one of the greatest
unsolved mysteries found in the intersection between stem cell
and developmental biology. It is clear that the Notch signalling
pathway plays a pivotal role in this process. How Notch signalling
asymmetries integrate into the spatiotemporal molecular code
underlying neuronal cell diversity promise to be a fruitful avenue
of Drosophila research in the coming years. Advances in lineage
tracing and single-cell transcriptome analysis technologies can
be readily adopted for use in this model organism, which will
allow us to dissect the molecular identity of individual cells in
the fly brain, as well as identify new Notch target genes involved
in the complex interplay of genetic networks generating the cell
type diversity of the brain.

A number of promising research directions are emerging in the
study of Drosophila neuroblasts. The type II neuroblast lineages
are an excellent comparative model for the study of mammalian
neural stem cell lineages due to the presence of analogous transit-
amplifying cell populations, which may be regulated by evolu-
tionarily highly conserved mechanisms. In the future, it is crit-
ical to further understand how INPs undergo maturation and how
they are prevented from dedifferentiation. The neuroepithelial
stem cells in the larval optic lobe will continue to serve as an
alternative good model to study the transition from SCD to ACD
as well as tumourigenesis. Besides, a recent Drosophila study
revealed that mutations in l(3)mbt cause brain tumour induction
due to soma-to-germline transformation of the l(3)mbt-deficient
cells [132]. In humans, cancer-testis genes, or cancer-germline
genes, are aberrantly activated in various malignancies (reviewed
in [133]). Studying these related genes in Drosophila are likely
to provide important insight into the pathological mechanisms
underlying the generation of soma-to-germline transformation-
induced tumours.

The genes encoding the core proteins of the ACD appar-
atus and the asymmetrically localized polarity proteins and cell
fate specification determinants are highly conserved in evolution.
Therefore the findings obtained from studying Drosophila neuro-
blast self-renewal, cell fate specification and ACD regulation may
be readily applicable and transferable for the unravelling of the
mechanisms governing human neural stem cell biology and the
pathological lesions underlying tumour formation derived from
cancer stem cell populations. In this review, we present results
from recent studies, which shows that the ACD apparatus and
regulatory machinery required for polarity axis formation and
control of ACD are operational in a number of neuroblastoma
cell lines, and in human and rodent brain tumour specimens. Im-
portantly, ACD seems to be compromised in brain tumours with
a preponderance of SCD over ACD compared with wild-type
tissue. This change in mode of cell division in cancer stem cells
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is accompanied with cell fate specification defects promoting a
tumourigenic phenotype in the resulting progeny. Thus, these
results encouragingly suggest that many of the molecular play-
ers and cellular processes identified in Drosophila neuroblasts
are also actively involved in regulating human neural stem cell
lineages.

From the perspective of mitigating hyper-proliferation in brain
tumours it is quite an interesting and surprising observation that
the treatment of neuroblastoma cells with a MYC inhibitor was
shown to change the balance between ACD and SCD in favour
of cells undergoing ACD [107]. This raises the hope that thera-
peutic agents may be developed to affect the balance between
SCD and ACD in tumour-initiating cell populations and cancer
stem cells in order to modulate cancer malignancy and improve
clinical outcome. Of course, a detailed understanding of the mo-
lecular mechanisms regulating ACD would profoundly help us in
our efforts to find candidate targets suitable for pharmaceutical
intervention. In this respect, the Drosophila neuroblast model,
the genetic amenability of the fly and the availability of large
RNAi stock collections targeting most genes in the fly genome
are going to help advance and accelerate the discovery of genes
regulating ACD. This will further our understanding of the reg-
ulatory networks controlling neural stem cell homoeostasis and
help elucidate the pathological series of changes underlying the
transformation of neural stem cells to tumour-forming neural
cancer stem cells.
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