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Synopsis
Since cancer is one of the leading causes of death worldwide, there is an urgent need to find better treatments.
Currently, the use of chemotherapeutics remains the predominant option for cancer therapy. However, one of the
major obstacles for successful cancer therapy using these chemotherapeutics is that patients often do not respond
or eventually develop resistance after initial treatment. Therefore identification of genes involved in chemotherapeutic
response is critical for predicting tumour response and treating drug-resistant cancer patients. A group of genes
commonly lost or inactivated are tumour suppressor genes, which can promote the initiation and progression of cancer
through regulation of various biological processes such as cell proliferation, cell death and cell migration/invasion.
Recently, mounting evidence suggests that these tumour suppressor genes also play a very important role in the
response of cancers to a variety of chemotherapeutic drugs. In the present review, we will provide a comprehensive
overview on how major tumour suppressor genes [Rb (retinoblastoma), p53 family, cyclin-dependent kinase inhibitors,
BRCA1 (breast-cancer susceptibility gene 1), PTEN (phosphatase and tensin homologue deleted on chromosome 10),
Hippo pathway, etc.] are involved in chemotherapeutic drug response and discuss their applications in predicting the
clinical outcome of chemotherapy for cancer patients. We also propose that tumour suppressor genes are critical
chemotherapeutic targets for the successful treatment of drug-resistant cancer patients in future applications.
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INTRODUCTION

Cancer is one of the leading causes of human death world-
wide, accounting for 7.6 million deaths each year (World
Health Organization, 2008). Various therapies have been
developed to treat cancer patients such as radiotherapy,
chemotherapy and targeted therapy, biological therapy (immuno-
therapy) and gene therapy. However, chemotherapy, which ran-
domly kills rapidly growing cancer cells using chemotherapeut-
ics and targeted therapy, which specifically kills cancer cells
by targeting oncogenic molecules, are still the most commonly
used treatment options for cancer patients. Clinically admin-
istered chemotherapeutic drugs are grouped into several fam-
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ilies: DNA damaging agents [platinum compounds (cisplatin and
carboplatin), anthracyclines (doxorubicin, epirubicin, etc.), al-
kylating agents (cyclophosphamide, temozolomide, carmustine,
etc.) and topoisomerase inhibitors (irinotecan, etoposide, etc.),
anti-metabolites [5-FU (5-fluorouracil), methotrexate, capecit-
abine, etc.], anti-microtubule agents [taxanes (paclitaxel/taxol,
docetaxel, etc.) and the Vinca alkaloids (vinblastine, vincristine
and vindesine)] and oncoprotein targeting agents [humanized
monoclonal antibodies such as trastuzumab/herceptin for
HER2, cetuximab for EGFR (epidermal growth factor re-
ceptor), etc., anti-hormone agents (tamoxifen, flutamide, etc.),
and small molecule inhibitors (erlotinib/gefitinib for EGFR,
apatinib for VEGFR (vascular endothelial growth factor), etc.)]
[1–4]. Although these chemotherapeutics kill cancer cells and
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Figure 1 Signalling pathways mediating tumour suppressor function in chemotherapeutic drug response
Tumour suppressors are shown in orange and chemotherapeutic drugs are shown in pink. JNK, c-Jun N-terminal kinase;
MAPK, mitogen-activated protein kinase.

can sometimes effectively suppress tumour growth in cancer pa-
tients, a significant proportion of tumours either do not respond or
later develop resistance to these chemotherapeutics after primary
therapy. This leads to tumour recurrence, disease relapse and
ultimately patient mortality, which remains a major challenge
for successful cancer treatments [2,5–7]. Therefore the identi-
fication and characterization of cellular genes responsible for
chemotherapeutic drug response is critical for successful pro-
gnosis and treatment of cancers. Although many cellular genes,
including MDR1 (multidrug resistant gene 1) and c-Myc, have
been shown to be involved in the resistance of specific cancer
types to some chemotherapeutics [6,8,9], the molecular mech-
anisms underlying the resistance of distinct types of cancers to
different groups of therapeutic drugs remain largely unknown.
Most recently, a group of genes called TSGs (tumour suppressor
genes) have emerged as important mediators of chemotherapeutic
responses. TSGs are frequently dysregulated by mutations or epi-

genetic modifications in both hereditary cancer syndromes and/or
somatically non-hereditary cancers and are also responsible for
the initiation and progression of all types of cancers, thereby
composing an essential class of signalling molecules within the
cell. In this review, we will summarize for the first time the
roles of these TSGs in predicting the sensitivity of cancer cells
and patients to various chemotherapeutics and their underlying
molecular mechanisms. We have also proposed the signalling
pathways (Figure 1) illustrating how these TSGs co-ordinately
regulate drug sensitivity in cancer cells.

TSGs

Rb (retinoblastoma)
The Rb gene was the first TSG originally identified in retino-
blastoma [10]. Later studies show that loss of heterozygosity,
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down-regulation and mutations of Rb have been detected in
various human cancers [11–13]. Rb protects against tumori-
genesis by regulating cell cycle progression, cellular senes-
cence, differentiation, apoptosis and chromosomal integrity
[11,14,15]. Importantly, mounting evidence suggests that Rb
status is indicative of predicting chemotherapeutic response.
In general, cell culture studies in MEFs (mouse embryonic
fibroblasts), MAFs (mouse adult fibroblasts) and human can-
cer cells (e.g. breast, prostate, lung, etc.) have shown that
various chemotherapeutic treatments activate Rb, resulting in
cell cycle arrest and activation of DNA repair mechanisms,
thereby rendering cells resistant to chemotherapeutics [16–21].
Alternatively, loss of Rb expression in these cell lines using
RNAi (RNA interference) bypasses the Rb-induced checkpoint
response, sensitizing cells to chemotherapeutic drug-induced
apoptosis.

Several mechanisms have been proposed to explain how
loss of Rb increases sensitivity to different chemotherapeut-
ics. First, in the absence of Rb, cells continue to replicate
unchecked. This continued replication of the damaged genome
induced by DNA-damaging chemotherapeutics leads to the accu-
mulation of double strand breaks and enhanced genomic instabil-
ity [22]. When this DNA damage is irreparable, cells will trigger
apoptosis to prevent the propagation of unstable cells. Secondly,
it has also been shown that after DNA-damaging drug treatment,
the E2F family of transcription factors, normally unrestrained
in the absence of Rb, can induce apoptosis by transcriptionally
activating pro-apoptotic genes such as the caspases, APAF1, and
p73 [23–25]. In addition, DNA damage can also directly activate
E2F through ATM (ataxia telangiectasia mutated)/ATR (ataxia
telangiectasia mutated- and Rad3-related) and/or Chk2-mediated
phosphorylation, thereby stimulating its pro-apoptotic activity
[26,27].

Significantly, xenograft mouse models and clinical studies also
support these cell line studies showing that loss of Rb increases
the sensitivity of tumours to chemotherapeutics regardless of drug
class or cancer type. For example, Zagorski et al. [28] demon-
strated that tumours in mice xenografted with Rb knockdown
lung cancer cell lines (H1299 and H520) regressed significantly
when treated with the chemotherapeutics cisplatin, etoposide,
or 5-FU compared with their Rb expressing tumours. Similarly,
Rb-deficient xenograft mammary tumours responded favourably
to cisplatin [19]. Furthermore, clinical studies extend these res-
ults demonstrating that Rb-deficient breast cancers treated with
chemotherapy are associated with good clinical outcome com-
pared with Rb-proficient breast cancers [20,29–31]. Therefore
Rb status can serve as an important marker for predicting chemo-
therapeutic response.

However, it is worth noting that several studies present con-
flicting evidence where increased chemoresistance results from
Rb deficiency. For example, several studies using sarcoma cell
lines show that Rb-deficient cells are resistant to anti-metabolites,
topoisomerase inhibitors (etoposide and camptothecin) and DNA
damaging agents (doxorubicin and cisplatin) [32–34]. In addi-
tion, Rb deficiency in prostate cancer and hepatocellular car-
cinoma lines are resistant to cisplatin [18,33], whereas Rb-

deficient glioblastoma cells are resistant to doxorubicin and
etoposide [34].

p53 family (p53, p63 and p73)
p53
p53 is the most frequently mutated TSG in human cancer and is
the founding member of the p53 family. In response to various
cellular stresses, p53 regulates a variety of cellular functions
including cell cycle progression, apoptosis, senescence, cell
motility, DNA repair, genetic instability and cell metabolism by
transcriptionally activating a variety of cellular genes [35–38].
Significantly, there is evidence from cell, animal and clinical
studies that the status of p53 is also associated with cancer cell or
patient sensitivity in response to various chemotherapeutics [39–
41]. It has been well established that p53 not only induces apo-
ptosis in response to chemotherapeutic drug-induced apoptosis, it
can also induce cell cycle arrest, which protects tumour cells from
further cytotoxic damage [38]. Despite this apparent discrepancy,
in general, studies on various human cancer cell lines demonstrate
that cells with mutant p53 are more resistant to drugs compared
with those with wild-type p53 when treated with a wide variety
of clinically used chemotherapeutic drugs [42–44]. Since p53
induces apoptosis by up-regulating pro-apoptotic genes such as
PUMA (p53 up-regulated modulator of apoptosis), Bax, Bid and
Noxa, it has been demonstrated that loss of p53 many cause drug
resistance due to down-regulation of these genes [37–39,45–47].

However, preclinical and clinical studies also suggest that the
relative contribution of p53 status to drug response varies de-
pending on cellular context or the class of anticancer drugs used.

In one study, Vasey and Jones [48] showed that inactivation
of p53 is associated with reduced sensitivity of ovarian cancer
cells to cisplatin but not to the anti-microtubule drug paclitaxel.
In addition, p53 disruption rendered colorectal cancer cells res-
istant to the anti-metabolite 5-FU but sensitized these cells to
the DNA damaging drug doxorubicin [49]. Furthermore, the mo-
lecular mechanism underlying this distinct role of p53 in the
response of different tumour cell types to various drug groups
is not fully understood. However, previous studies suggest that
diverse functions of p53-induced cell cycle arrest and apoptosis
in response to different drugs may contribute to this variability.
For example, in response to DNA damaging anthracycline-based
therapy, p53 usually activates the apoptotic cascade rather than
cell cycle arrest, resulting in tumour regression after drug treat-
ment. However, in response to other drugs such as alkylating
agents, p53 may induce cell cycle arrest, which allows the re-
covery of damaged cells and protect them from drug treatment,
resulting in drug resistance and subsequent tumour growth [40].
In addition, p53 can induce cell cycle arrest in ovarian carcino-
mas, but apoptosis in other cancers after paclitaxel treatments.
This may explain why the presence of p53 leads to resistance
of ovarian cancer patients to some chemotherapeutic treatments
[50]. Therefore the role of p53 in mediating a chemotherapeutic
response is complex and depends on both cellular context and
class of chemotherapeutics.
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p63
p63 is another member of the p53 family. It contains all of the
functional domains of p53: an acidic N-terminal TA (transactiv-
ation) domain, a highly conserved core DBD (DNA-binding do-
main) and a C-terminal oligomerization domain. p63 also con-
tains a unique sterile α-motif domain implicated in protein–
protein interaction. Besides the TAp63 (full-length p63), p63
can also be expressed as an N-terminal truncated isoform lacking
the TA domain [�Np63 (N-terminal truncated p63)] transcribed
from a second downstream promoter. This �Np63 isoform can
act as a dominant-negative inhibitor of the full-length TAp63 and
p53 [51] and have anti-apoptotic and pro-proliferative functions
[52]. Unlike p53, mutations of the p63 gene are rarely detected in
human cancer. Instead, down-regulation of p63 has been found
to be associated with tumorigenesis and metastasis [53,54]. Most
significantly, recent studies show that the level of p63 strongly
correlates with the response of tumour cells to chemotherapeut-
ics [55–57]. Chemotherapeutic agents induce TAp63 expression,
which subsequently causes apoptosis by directly activating pro-
apoptotic genes CD95, Bcl-2-family members such as bax and
BCL2L11 as well as Apaf1 [55]. Consequently, inhibition of
TAp63 function, which causes reduced apoptosis, leads to drug
resistance in various cancers [55,58–60].

Apart from its roles in mediating a chemotherapeutic response,
p63 also functions in the drug-induced side effect on fertility. It
was recently shown that chemotherapeutic drugs may elicit the
death of germ cells, particularly oocytes, through activation of
TAp63 rather than p53, which can result in reproductive failure
[61]. Most significantly, inhibition of TAp63 activation by block-
ing its activator c-Abl using an Abl-specific inhibitor imatinib
protects mouse oocytes from chemotherapy-induced cell death
[62]. Therefore, although inhibition of TAp63 may lead to a lim-
ited chemotherapeutic response, its inhibition may also protect
from some of the side effect of this treatment, thereby improving
the quality of life for patients.

p73
p73 is the third member of the p53 family. Similar to p63, it
is also expressed as both a full-length TAp73 (or p73) and a
dominant-negative truncated form �Np73. Although no muta-
tions in p73 have been detected in human cancers, TAp73 and
�Np73 are commonly dysregulated [63–67]. Several lines of
evidence support a role for p73 in determining chemothera-
peutic drug response in cancer treatment. First, TAp73 is in-
duced by diverse groups of chemotherapeutics such as doxor-
ubicin, etoposide, cisplatin and paclitaxel [68–72]. Secondly,
p73 knockout (p73 − / − ) MEFs are more resistant to chemo-
therapeutics compared with their wild-type counterparts [73].
Thirdly, down-regulation of TAp73 caused by overexpression of
its dominant-negative mutant �Np73 or siRNA (small interfer-
ing RNA) leads to enhanced resistance of human tumour cells
to chemotherapeutics even when p53 is mutated, whereas over-
expression of TAp73 enhances chemosensitivity [66,70,71,74–
79]. Finally, these results are supported by in vivo clinical data
showing that overexpression of the dominant-negative p73 iso-

form �Np73 contributes to drug resistance to platinum-based
therapy [80].

Several proteins have been shown to regulate p73 activity in
response to chemotherapeutic drug treatments. For example, it
has been shown that endogenous p73 is activated in response to a
variety of chemotherapeutic drugs in a c-Abl-dependent manner
[68,74,81]. Specifically, following drug treatment the tyrosine
kinase c-Abl phosphorylates p73 on the tyrosine residue at posi-
tion 99 (Tyr99) and potentiates p73-mediated transactivation and
apoptosis [68,74,81]. c-Abl can also phosphorylate the transcrip-
tional co-activator YAP (Yes kinase-associated protein), which
enhances its affinity to p73 and co-activates p73 pro-apoptotic
target genes [82]. In addition, chemotherapeutic drug treatment
can enhance the interaction between the prolyl isomerase Pin1
and p73 to promote p73 acetylation by acetyltransferase p300,
which increases p73 stability and transcriptional activity [83].
Furthermore, it has also been shown both in vitro and in clinical
cancers that mutant p53, �Np63 and �Np73 can directly bind
and inhibit p73, resulting in reduced transcriptional activation of
pro-apoptotic genes Bax, PUMA and p53AIP1, ultimately ren-
dering cancers cells and patients resistant to chemotherapeutic
drug treatment [52,70,71,84,85].

CKIs [CDK (cyclin-dependent kinase) inhibitors]
The CKI proteins primarily function as negative regulators of
CDKs and cell cycle progression, although each member has
also been associated with additional cellular functions, including
apoptosis, senescence, transcription, or cell migration [86–88].
CKIs are divided into two families including the INK4 (inhibitor
of CDK4) family (p16INK4a, p15INK4b, p18INK4c and p14INK4d)
and the Cip/Kip family (p21Cip1, p27Kip1 and p57Kip2). INK4
family proteins inhibit CDK4 and CDK6 to prevent G1–S cell
cycle progression, whereas the Cip/Kip family proteins inhibit
all CDKs and modulate progression through each stage of the
cell cycle [86]. Importantly, several of these CKIs including
p16INK4a, p14INK4d, p21Cip1 and p27Kip1 are implicated in mod-
ulating chemotherapeutic sensitivity.

INK4 family
The INK4a-ARF (ADP-ribosylation factor) locus, encoding both
p16INK4a and p14INK4d (p19Arf in mice) through alternative spli-
cing, plays a prominent role in tumour development and is one of
the most frequently inactivated TSGs in cancer through a com-
bination of mutations and/or epigenetic silencing mechanisms
[87,88]. Together p16INK4a and p14INK4d regulate Rb and p53
respectively [89,90]. Although p16INK4a and p14INK4d function
through different signalling pathways, their response to various
chemotherapeutics is quite similar.

In response to almost all chemotherapeutics and across all cell
lines examined, expression of p16INK4a or p14INK4d increases apo-
ptosis in cell lines with functional p53. For example, ectopic
expression of p16INK4a expression in nasopharyngeal cell lines
led to an increase in apoptosis in response to the anti-metabolite
5-FU or the DNA cross-linking agent cisplatin [91] and inducible
p16INK4a expression in a melanoma cell line increased sensitivity
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to the DNA alkylating agent melphalan [92]. Similarly, ectopic
expression of p14INK4d in breast carcinoma MCF-7 cells or os-
teosarcoma U2OS cells enhanced chemosensitivity to cisplatin
or doxorubicin [93–95]. On the other hand, down-regulation of
either p16INK4a or p14INK4d leads to drug resistance in wild-type
p53 models. Specifically, in a mouse lymphoma model, Schmitt
et al. [96,97] showed that knockout of either p16INK4a or p19Arf

in MEFs leads to resistance to the alkylating agent cyclophos-
phamide. In addition, loss of p14INK4d in MEFs leads to res-
istance to doxorubicin [98]. Interestingly, in response to topoi-
somerase inhibitors, overexpression of either p16INK4a or p14INK4d

had no effect on cell death [94,95], suggesting that p16INK4a

and p14INK4d are specifically activated in response to certain
chemotherapeutics.

Importantly these cell line studies correlate with in vivo pa-
tient clinical studies. Whereas high p16INK4a predicts a positive
response to melphalan treatment in patients with melanoma [92]
or 5-FU treatment in colorectal cancer patients [99], ovarian can-
cer patients with a p16INK4a deletion were less likely to respond
positively to cisplatin-based chemotherapy after surgery [100]. In
addition, loss of heterozygosity of p16INK4a in childhood B-cell
precursor acute lymphoblastic leukaemia predicts for a slower
response to induction therapy and poorer prognosis [101]. Thus,
expression of p16Ink4a may be a useful marker for predicting
chemosensitivity.

Cip/Kip family (p21Cip1 and p27Kip1)
Due to their role in regulating cell cycle progression in response
to DNA damage signals or anti-mitogenic cues, a role for p21Cip1

and p27Kip2 in mediating a chemotherapeutic response became
apparent. In general, increased expression of p21Cip1 or p27Kip1

leads to chemoresistance, whereas loss of p21Cip1 or p27Kip1 ex-
pression sensitizes cell lines to various chemotherapeutics [102–
123]. Studies in patients with lung cancer or acute myelogenous
leukaemia also show that high expression of p21Cip1 predicts for
a less favourable response to their respective chemotherapy re-
gimens [124,125]. However, exceptions to this rule occur. For
example, several studies show that in ovarian cancer, head and
neck carcinoma, or A549 lung cancer cells, ectopic expression
of p21Cip1 and/or p27Kip1 enhanced cisplatin-induced apoptosis
[126–128], although no mechanisms were proposed. In addition,
low levels of p27Kip1 in ovarian cancer patients correlates with
chemoresistance to paclitaxel/cisplatin-based therapy [129], and
high levels of p27Kip1 were observed in 47 % of breast cancer
patients who were significantly more susceptible to doxorubi-
cin treatment [130]. Thus, the roles of Cip/Kip in determining
chemosensitivity may also depend on cell type and/or cellular
localization, as well as the involvement of other signalling mech-
anisms.

Several mechanisms have been described for how p21Cip1 and
p27Kip1 may inhibit drug-induced cell death. Expectedly, one
potential mechanism relies on the primary role of p21Cip1 and
p27Kip1 as CDK inhibitors. For example, in response to the micro-
tubule inhibitor paclitaxel, p21Cip1 and p27Kip1 induce G2/M arrest
[106,112,115,123]. In particular, paclitaxel treatment of breast

cancer cells leads to transcriptional up-regulation of p21Cip1,
which inhibits Cdc2 (cell division cycle 2)/cyclin B kinase activ-
ity, thereby delaying entry into mitosis where the microtubule
inhibitor paclitaxel is most active [115,119,123]. Alternatively,
when the S phase is perturbed due to DNA damaging agents
such as cisplatin or doxorubicin, p21Cip1 halts the cell cycle and
initiates a repair mechanism, thereby allowing cells to continue
proliferating [110,114].

Besides a direct role in mediating cell cycle arrest, both p21Cip1

and p27Kip1 also participate in the mitochondrial or intrinsic apo-
ptotic pathways. For example, loss of p21Cip1 increases p14INK4d

and p53 expression. This leads to a reduction in the membrane
mitochondrial potential, activation of caspase 9 and an increase in
pro-apoptotic Bax with a decrease in the anti-apoptotic Bcl-2 pro-
tein [107]. In leukaemia cells, p21Cip1 prevents down-regulation
of c-IAP1 (cellular inhibitor of apoptosis protein 1), an inhibitor
of apoptosis [118], whereas overexpression of p27Kip1 inhibits
activation of procaspase 3, mitochondrial potential changes and
cytochrome c release in response to etoposide [104]. Thus, de-
pending on cell type or drug treatment, expression and localiz-
ation of p21Cip1 and p27Kip1 can mediate a variety of apoptotic
effects leading to enhanced chemosensitivity.

PTEN (phosphatase and tensin homologue deleted
from chromosome 10)
PTEN is a dual protein and lipid phosphatase that is com-
monly mutated in many human malignancies [131–133]. Loss of
PTEN results in reduced dephosphorylation of PIP3 (phosphoin-
ositide 3,4,5-trisphosphate), which allows PI3K (phosphoinos-
itide 3-kinase) to phosphorylate PIP2 (phosphatidylinositol 4,5-
bisphosphate) and enhance levels of PIP3. PIP3 induction causes
increased cell proliferation and cell migration, cell survival and
cell size through activation of downstream proteins such as Akt
[134,135]. Recently, several reports have also shown that PTEN
plays an important role in the response of human cancer cells
to oncoprotein targeting agents. Nagata et al. [136] showed that
treatment of HER2-overexpressing breast cancer cells with the
HER2-targeting antibody, trastuzumab (herceptin), quickly in-
creased PTEN membrane localization and phosphatase activity
by reducing PTEN tyrosine phosphorylation via SRC kinase in-
hibition. On the other hand, down-regulation of PTEN in breast
cancer cells results in trastuzumab-resistance both in vitro and
in vivo. In addition, miR (microRNA)-21 can also cause drug
resistance by down-regulation of PTEN [137]. Most importantly,
clinical studies demonstrate that PTEN status can be used as a
predictive marker for determining breast cancer patient response
to trastuzumab. Patients with PTEN-deficient breast cancers had
significantly poorer response to trastuzumab and shorter overall
survival than those with PTEN expression [136,138]. Later stud-
ies demonstrated that PTEN down-regulation can be also used
as a biomarker to predict low response to the EGFR inhibitors
(cetuximab, gefitinib and erlotinib) for treatment of colorectal
and lung cancers [138–140].

Several mechanisms have been proposed to explain the re-
quirement of PTEN in response of cancers to oncoprotein
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targeting drug therapy. First, activation of PI3K pathway has been
shown to be responsible for loss-of-PTEN-induced drug resist-
ance [141,142]. In support of this notion, PI3K inhibitors can re-
verse loss-of-PTEN-induced trastuzumab resistance, whereas ac-
tivation of the components of the PI3K pathway, namely PI3K3A
and pAkt, caused trastuzumab resistance [136,138,141,143]. In
addition, it has been shown that activation of PI3K induces drug
resistance by inducing MRP1 (multidrug resistance protein-1)
[144]. Secondly, a recent discovery has uncovered a new mech-
anism of PTEN in regulating trastuzumab resistance. Zhang et
al. showed that the non-receptor tyrosine kinase SRC is a key
modulator of trastuzumab response [145]. Activation of SRC by
EGFR further activates Akt, which leads to both acquired and
de novo trastuzumab resistance in breast cancer. Most signific-
antly, they found that PTEN could dephosphorylate and inhibit
SRC kinase activity. Therefore loss of PTEN leads to increased
phosphorylation/activation of SRC and subsequent trastuzumab
resistance, which can be reversed by inhibiting SRC with the
SRC-specific inhibitor saracatinib [145].

BRCA1 (breast-cancer susceptibility gene 1)
BRCA1 is frequently mutated in inherited breast cancers
[146,147]. Although somatic mutations of BRCA1 are rare in
sporadic breast and ovarian cancers, epigenetic down-regulation
of BRCA1 is a more frequent event [148,149]. BRCA1 func-
tions as a tumour suppressor by regulating transcription, cell
cycle checkpoint and DNA repair [150–152]. Most importantly,
BRCA1 plays a significant role in the repair of DNA DSBs
(double stranded breaks) through HR (homologous recombin-
ation) [153].

The participation of BRCA1 in DNA repair provides a strong
rationale for a role of BRCA1 in the response to DNA-damaging
drugs. Early studies using BRCA1− / − (BRCA1 knockout) ESCs
(embryonic stem cells) showed that BRCA1− / − ESCs were
more sensitive to cisplatin, a DNA cross-linking platinum-based
drug, compared with WT (wild-type) ESCs [154]. Later stud-
ies using BRCA1− / − MEF demonstrated that loss of BRCA1
leads to increased sensitivity to a number of DNA-damaging
agents, including the anthracycline doxorubicin, the platinum
compound carboplatin, and topoisomerase inhibitors irinotecan
and etoposide [155]. Moreover, various other studies further con-
firmed that while reduction of BRCA1 expression by siRNA
results in increased sensitivity, overexpression of BRCA1 causes
resistance to platinum compounds and topoisomerase inhibitors
[156–158]. Most significantly, clinical studies further establish
BRCA1 as a biomarker in predicting the outcome of breast, lung
and ovarian cancer treatment with DNA-damage-based therapy
[159–163]. Together, data from both in vitro and in vivo stud-
ies suggest that low BRCA1 expression, which causes defects
in DNA damage repair, represents tumours with high sensitivity
to DNA damaging drugs such as cisplatin and PARP [poly(ADP-
ribose) polymerase] inhibitors [156,157,159,164–166]. Interest-
ingly, in contrast with DNA-damaging therapy, preclinical and
clinical studies also show that loss of BRCA1 causes resistance
of cancer cells to other chemotherapeutics including the anti-

microtubule agents paclitaxel and docetaxel as well as targeting
agents such as the ER (oestrogen receptor) antagonist tamoxifen
[5,160,161,163,167,168,170]. Thus, depending on the type of
chemotherapeutics, BRCA1 can have either a positive or negat-
ive role in mediating chemosensitivity.

Several studies have elucidated the molecular mechanism un-
derlying the opposing effects of BRCA1 on the response of can-
cer cells to DNA damaging versus anti-microtubule agents. It has
been shown that BRCA1 inhibits DNA damaging drug-induced
apoptosis by either transcriptionally activating cell cycle check-
point genes [p21Cip1 and GADD45 (growth-arrest and DNA-
damage-inducible protein 45)] or facilitating DNA damage re-
pair processes by interacting with proteins involved in HR (e.g.
RAD50/MRE11/NBS1) [171]. Therefore when BRCA1 is in-
activated by mutations, deletions or down-regulation, cancer
cells will no longer be able to repair the drug-induced DNA
damage and will therefore trigger apoptosis, which explains
why loss of BRCA1 sensitizes cancer cells to DNA damaging
agents. On the other hand, in response to microtubule damage in-
duced by anti-microtubule agents such as paclitaxel or docetaxel,
BRCA1 is activated to induce mitotic arrest and apoptosis by
transcriptionally activating the spindle assembly checkpoint pro-
tein MAD2 (myoadenylate deaminase 2) [172] thereby activating
the JNK (c-Jun N-terminal kinase) pathway via direct interaction
with the JNK–MEKK3 {MEK [MAPK (mitogen-activated pro-
tein kinase)/ERK (extracellular-signal-regulated kinase) kinase]
kinase 3} complex [167]. Therefore when BRCA1 is lost cancer
cells will no longer activate the mitotic spindle checkpoint pro-
tein MAD2 and subsequent activation of the pro-apoptotic JNK
pathway, resulting in resistance to anti-microtubule agents.

The Hippo tumour suppressor pathway
The emerging Hippo tumour suppressor pathway was originally
identified in Drosophila and later in mammals [173–177]. In this
pathway, the serine/threonine kinases Mst1/2 (Hippo in Droso-
phila) and LATS1/2 together with an adaptor protein hMOB1 are
the core players, which transmit signals from upstream tumour
suppressors (Fat4, RASSF1A, Kibra, Merlin, hEx, hWW45, etc.).
This inhibits the transcriptional co-activators and oncoproteins
YAP (Yes kinase-associated protein) and TAZ (transcriptional co-
activator with PDZ-binding motif), resulting in reduced cell pro-
liferation and enhanced cell death through modulation of down-
stream transcriptional targets [178]. In addition, we and others
have also shown that the Hippo tumour suppressor pathway can
be negatively regulated by several proteins such as the Itch ubi-
quitin ligase, HA (hyaluronan) receptor CD44 and p53 regulator
ASPP1 [179–182]. Most significantly, recent studies show that
the Hippo tumour suppressor pathway plays important roles not
only in cancer but also in various biological processes such as
organ size control, stem cell renewal and differentiation, tissue
regeneration, neuronal dendrite growth and mechanotransduction
[174,176,183].

Recently, mounting evidence strongly suggests that the Hippo
tumour suppressor pathway may also regulate the response of
cancer cells to chemotherapeutics. We have recently shown that
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knockdown of both LATS1 and its homologue LATS2 by siRNA
causes resistance of HeLa cervical carcinoma cells to paclitaxel
[184]. Consistent with our findings, in a screen of shRNAs (short
hairpin RNAs) targeting TSGs, LATS1 was identified as one of
the genes causing paclitaxel resistance upon knockdown in A549
lung cancer cells [185]. In addition, loss of LATS2 in leukaemic
cells renders cells more resistant to the DNA-damaging agents
doxorubicin and etoposide through promoting YAP and p73 inter-
action thereby inhibiting transcription of the pro-apoptotic gene
PUMA [186]. Moreover, we have recently shown that enhanced
levels of TAZ, a substrate and downstream target of LATS1/2
kinases (Figure 1), in breast cancer cells correlates with resistance
to paclitaxel [187]. Specifically, overexpression of TAZ in TAZ-
low MCF-10A immortalized mammary cells causes resistance to
paclitaxel whereas knockdown of TAZ in TAZ-high paclitaxel-
resistant MDA-MB231 breast cancer cells sensitizes those cells
to paclitaxel [187]. This increased paclitaxel resistance results
from TAZ activation of TEAD family of transcription factors,
which induces transcription and expression of the extracellular
matrix genes Cyr61 (cysteine-rich 61) and CTGF (connective
tissue growth factor; Figure 1). Similarly, overexpression of the
TAZ paralogue, YAP, has also been shown to cause paclitaxel
and cisplatin resistance in mammary and ovarian cells [188,189].
Since LATS1/2 and YAP/TAZ have opposing effects on drug
response and LATS1/2 can inhibit YAP/TAZ function through
phosphorylation [190–192], we propose that YAP/TAZ-TEAD-
Cyr61/CTGF is a novel signalling pathway mediating loss-of-
LATS-induced drug resistance in the treatment of human cancers
(Figure 1). It has also been shown that loss of other important
TSGs in the Hippo pathway such as Mst1, hEx and RASSF1A
also leads to drug resistance [193–196], whereas overexpression
of CD44 or Itch, the negative regulators of the Hippo pathway,
induces drug resistance [180,197]. Interestingly, it has also been
shown that CD44 induces resistance of glioblastoma cells to the
DNA damaging drugs temozolomide and carmustine by inactiv-
ating the Mst/LATS/YAP signalling pathway (Figure 1) [180].
Together, these findings clearly demonstrate that the Hippo path-
way plays very important roles in the response of cancer cells to
chemotherapeutics.

Other TSGs
Besides the TSGs mentioned above, many other TSGs have also
been reported as critical regulators of cancer cells to chemothera-
peutics. Loss of the TSGs including SMAD4 (response to pacl-
itaxel), LZTS2, ST14 and VHL increases the cells’ sensitivity to
different chemotherapeutics [185,199], whereas loss of ARID1A,
Caveolin-1, PDCD4, PCDH10, FBW7, SMAD4 (response to 5-
FU), FUS1 and p33ING1b causes drug resistance [200–207].
In addition, many miRs functioning as TSGs have also been
shown to regulate drug sensitivity [208]. For example, down-
regulation of Let-7, miR-34, or miR-181 increases chemosensit-
ivity, whereas down-regulation of miR-127 causes chemoresist-
ance [209]. In addition, overexpression of miR-125a-5p increases
sensitivity to drugs [210], whereas overexpression of miR-15-
5p is associated drug resistance [211,212]. The growing list of

tumour suppressor genes and their growing importance for medi-
ating a chemotherapeutic response suggests their importance in
regulating tumorigenesis and predicting overall survival.

Interaction of TSGs in chemotherapeutic response
Although different TSGs have distinct biological functions, they
can co-operate co-ordinately in response to drugs in common
signalling pathways as summarized in Figure 1. For example,
p53 may interact with many other TSGs in the chemothera-
peutic response [16,19,28,32,34]. First, p53 can modulate the
TAp73/TAp63-mediated drug response by activating commonly
regulated genes such as pro-apoptotic genes Bax and PUMA or
the CKI p21Cip1 (Figure 1). In addition, p53 status can be used
to predict the clinical outcome of breast cancer patients treated
with adjuvant chemotherapy (5-FU, methotrexate and cyclophos-
phamide) only when Rb is active [213]. However, when Rb is
deleted or down-regulated by methylation, p53 status has no
predictive value for chemosensitivity in these patients. Further-
more, it has also been shown that the combined status of p53
and ATM are also important in predicting drug sensitivity. While
suppression of ATM protects tumours from chemotherapeutic
treatment in the presence of p53, suppression of ATM dramatic-
ally sensitizes tumours to DNA-damaging chemotherapy when
p53 is inactivated (Figure 1) [214]. Moreover, p53 function also
dictates how p16INK4a or p14INK4d mediate a chemotherapeutic
response. In cell lines without functional p53 caused by muta-
tion or down-regulation, increased expression of either p16INK4a

or p14INK4d leads to resistance to different chemotherapeutics
including anti-metabolites such as folate antagonists, the anti-
microtubule paclitaxel, or the DNA intercalating agent cisplatin
[116,215,216]. Since p14INK4d primarily functions as an inhibitor
of Mdm2 (murine double minute 2), an inhibitor of p53 (Figure 1)
[90], loss of p53 in this scenario provides a clear explanation for
the inability of p14INK4d to enhance chemosensitivity [98]. The
connection between p53 and p16INK4a is less clear and requires
further study. Besides p53 and BRCA1 can also functionally in-
teract with other TSGs such as the other p53 family members
or PTEN through the modulation of p21Cip1 or JNK in response
to chemotherapeutic drugs (Figure 1). All together, the complex
interactions between TSGs suggest that modulation of TSGs will
likely affect multiple signalling pathways and lead to a complex
drug response.

CONCLUDING REMARKS

Through the use of mainly human cancer cell lines and mouse
models, numerous studies have provided strong evidence that
TSGs can either enhance or reduce the sensitivity of cancer cells
to chemotherapeutic drugs depending on the cellular context or
class of chemotherapeutics (Figure 1). Although some of the
TSGs such as BRCA1 have been used as a biomarker in predict-
ing the outcome of chemotherapeutic drug treatment in cancer
patients, most of the findings from cell lines and mouse model
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remain to be further verified by large-scale screening of clinical
cancer patients treated by chemotherapeutics. Furthermore, the
complexity of cellular signalling programmes suggests that single
gene biomarkers are insufficient for determining treatment out-
come. Instead, understanding the contribution of each key player
such Rb, p53, the CKIs, PTEN and the Hippo pathway in context
with each other will provide a more reliable predictor for tumour
response. We anticipate that in the next decade increasing num-
bers of TSGs will be established as important prognostic markers
in predicting the chemotherapeutic response of cancer patients.
This will lead to a promising therapeutic strategy whereby drug-
resistant patients can be successfully treated through the modu-
lation of tumour suppressor signalling pathways.
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