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Synopsis
RNA splicing is one of the fundamental processes in gene expression in eukaryotes. Splicing of pre-mRNA is catalysed
by a large ribonucleoprotein complex called the spliceosome, which consists of five small nuclear RNAs and numerous
protein factors. The spliceosome is a highly dynamic structure, assembled by sequential binding and release of the
small nuclear RNAs and protein factors. DExD/H-box RNA helicases are required to mediate structural changes
in the spliceosome at various steps in the assembly pathway and have also been implicated in the fidelity control of
the splicing reaction. Other proteins also play key roles in mediating the progression of the spliceosome pathway. In
this review, we discuss the functional roles of the protein factors involved in the spliceosome pathway primarily from
studies in the yeast system.
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INTRODUCTION

Most eukaryotic genes are disrupted by intervening sequences
(introns or IVS) that are removed after transcription by RNA poly-
merases in a process called RNA splicing. Different classes of
RNAs use different chemical strategies and different machineries
to splice out their introns. Among them, the process of pre-mRNA
splicing is the most complicated. Splicing of pre-mRNA takes
place on a large ribonucleoprotein particle called the spliceo-
some, within which two transesterification reactions take place
(Figure 1) [1–3]. The spliceosome comprises five snRNAs (small
nuclear RNAs), U1, U2, U4, U5 and U6, and many other protein
factors. It is assembled through ordered binding of these factors to
the pre-mRNA for each round of splicing, and then disassembled
after completion of the reaction to recycle the splicing factors
(Figure 2) (reviewed in [4,5]). Since the splicing reactions are
mechanistically identical with those of Group II self-splicing in-
trons [6,7], it is widely believed that pre-mRNA splicing is also an
RNA-catalysed reaction [8]. The spliceosome presumably plays
a role in folding the pre-mRNA for proper alignment of the two
splice sites so that the splicing reaction can take place. While the
RNA–RNA interactions involved in spliceosome formation have
been extensively studied [9,10], the functional roles of protein
factors have only been better studied more recently.
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OVERVIEW OF THE SPLICEOSOME

Most introns have common consensus sequences near their 5′

and 3′ ends that are recognized by the spliceosomal compon-
ents (Figure 1). Metazoan genes, however, have been found to
contain a different class of rare introns that have non-canonical
consensus sequences and use a distinct set of snRNAs for their
recognition [11]. These snRNAs, U11, U12, U4atac and U6atac,
are functionally analogous to U1, U2, U4 and U6 used in the spli-
cing of the major class of introns [12]. This review focuses on the
U2-dependent spliceosome with emphasis on findings from yeast.
The known spliceosomal protein components are listed in Table 1.

snRNPs (small nuclear ribonucleoprotein particles)
and their protein components
Each of the snRNAs, except for U6, is in complex with Sm
core proteins and several other proteins unique to the snRNA
to form an snRNP [13,14]. U4 forms base-pairs with U6 to
form a single RNP, the U4/U6 di-snRNP, which can further
interact with U5 snRNP to form the U4/U6.U5 tri-snRNP
[15–18]. The protein components of the snRNPs are evolu-
tionarily conserved, but some mammalian proteins contain ad-
ditional domains, presumably to increase their capacity for
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Figure 1 Two-step transesterification reaction of pre-mRNA
splicing
Yeast splice site conserved sequences are shown in red. The splicing
reaction takes place in two steps. The first step is cleavage of the 5′
splice site and formation of lariat intron–exon 2 via a 2′–5′ phospho-
diester linkage. The second step is cleavage of the 3′ splice site and
ligation of the two exons.

protein–protein interactions and/or for regulation. The protein
components of snRNPs not only function in maintaining the
structure of the snRNPs but also in regulating the splicing activity
by interacting with other spliceosomal components.

Prp8, Brr2 and Snu114 are integral components of the U5
snRNP. Prp8 is a large protein of more than 250 kDa in size and
is one of the most highly conserved nuclear proteins [19,20]. Prp8
interacts with many spliceosomal proteins, with snRNAs and with
both 5′ and 3′ splice sites [21–26]. Prp8 contains an RRM (RNA-
recognition motif) domain in the middle of the protein (amino
acid residues 1059–1151 in yeast), and a Jab1/MPN domain at
its C-terminus (amino acid residues 2173–2310 in yeast) [25,27].
Several mutations linked to human RP (retinitis pigmentosa) are
located at the extreme C-terminus of Prp8. They were found to af-
fect splicing and U5 snRNP maturation [28]. Prp8 lacks the cata-
lytic residues in its Jab1/MPN domain required for the activity
of deubiquitination, but has been shown to bind ubiquitin in vitro
[29]. Although ubiquitin has been implicated in the spliceosome
pathway [30], the functional significance of ubiquitin binding or
whether this function is related to Prp8 is not known. Upstream
from the Jab1/MPN domain, a segment of ∼250 amino acids
has been demonstrated to form an RNase H-like structure (1833–
1950 in yeast) [31–34]. Since the putative catalytic residues of
the RNase H enzyme are displaced in the Prp8 domain, whether
Prp8 retains its nuclealytic function is questionable. A C-terminal
fragment of Prp8 comprising the RNase H, Jab1/MPN and RP
domains has been shown to stimulate the unwinding activity of
Brr2 [35–37].

Brr2 is a DExD/H-box RNA helicase that mediates the un-
winding of U4/U6 helices to release U4 from the spliceosome
[38,39]. It has also been implicated in the mediation of spliceo-
some disassembly [40]. Unlike the other spliceosomal DExD/H-
box proteins, Brr2 has two helicase domains and remains associ-
ated with the spliceosome throughout the reaction after its associ-
ation as a component of tri-snRNP [41]. The N-terminal helicase
domain is responsible for the unwinding activity [42]. The C-
terminal helicase domain is not catalytically active, but serves as
a platform for interaction with many spliceosomal components
[26,37].

Snu114 is a GTPase that is highly homologous with translation
elongation factor G [43] and has been suggested to be involved
in spliceosome activation [44,45]. Despite never having been
shown to hydrolyse GTP in vitro, Snu114 has been demonstrated
to bind GTP by UV-cross-linking [43,46], and its binding of
GTP/GDP has been proposed to regulate spliceosome dynamics
mediated by Brr2 during spliceosome activation and disassembly
[40]. Furthermore, a functional GTPase domain is required for
assembly of Snu114 into U5 snRNP [47].

Prp24 is an RNA-binding protein containing four RRMs [48].
Prp24 has been shown to interact with U6 and U4/U6, and stim-
ulate annealing of U4 and U6 for formation of the di-snRNP
[49–52]. In extracts, while U4 always complexes with U6 as di-
snRNP or tri-snRNP, U6 also exists as a distinct RNP particle,
which contains Prp24. A role for Prp24 in recycling the spliceo-
some has been demonstrated [49].

DExD/H-box RNA helicases
DExD/H-box proteins are a ubiquitous class of enzymes that me-
diate rearrangement of RNA–RNA or RNA–protein interactions
in an ATP-dependent manner [53,54]. Eight DExD/H-box pro-
teins are required for the splicing process [55,56]. They function
in mediating structural rearrangements of the spliceosome at dif-
ferent steps in the spliceosome pathway. Several of them have
been shown to unwind RNA duplexes in vitro [38,39,57–60], but
no direct evidence shows that they catalyse RNA unwinding in
the spliceosome. Two of these proteins, Sub2 and Prp5, are in-
volved in the early steps of spliceosome assembly. Sub2 has been
proposed to displace Mud2 and BBP (branchpoint-binding pro-
tein), which bind to the 3′ splice site and branch site respectively
(see the section ‘Spliceosome assembly’ for details), to facilitate
the association of U2 snRNP with the spliceosome [61]. Prp5
also functions in facilitating U2 binding to the spliceosome, in
part by ATP-dependent displacement of Cus2 from U2 snRNP to
convert U2 into a functional form [62,63]. Prp28 and Brr2 are re-
quired for spliceosome activation in mediating the release of U1
and U4 respectively [38,39,64]. The requirement of Prp28 can be
bypassed if the interaction of U1C protein (Yhc1 in yeast) or U1
snRNA with the 5′ splice site is destabilized by mutations [65].
Brr2 is required for unwinding of U4/U6 during spliceosome
activation [38,39] and also for separation of U2/U6 interaction
in disassembly of the spliceosome [40]. Prp2 and Prp16 are in-
volved in catalytic steps [66,67]. The action of Prp2 is associated
with the release of SF3a/b after the activation of the spliceosome
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Figure 2 Schematic representation of the spliceosome pathway in yeast
The pathway can be divided into four stages: spliceosome assembly, spliceosome activation, catalysis and spliceosome
disassembly. Spliceosome assembly involves ordered interactions of snRNPs with pre-mRNA. Spliceosome activation
starts with the release of U1 and U4, followed by binding of the NTC. After the two catalytic reactions, the spliceosome is
disassembled first by releasing the mature mRNA, and the spliceosome is then dismantled.

[68,69], and that of Prp16 is associated with the release of Yju2
and Cwc25 after lariat formation [70]. After completion of spli-
cing, two DExD/H-box proteins are required to disassemble the
spliceosome. Prp22 first mediates the release of mature mRNA
from the spliceosome, and Prp43 then catalyses disassembly of
the intron-containing spliceosome [71,72].

In addition to these ATP-dependent functions, several
DExD/H-box splicing factors have been shown to have an ATP-
independent role in splicing. Although Prp5 is required for dis-
placement of Cus2 from U2 snRNP before the binding of U2
to the spliceosome, it is still needed for pre-spliceosome forma-
tion in the absence of Cus2 independent of its ATPase function
[63]. Prp2 has been implicated in a novel ATP-independent con-
formational change [68]. Prp16 has been shown to stabilize the
association of Cwc25 with the spliceosome formed on pre-mRNA
carrying mutations at the branchpoint [70]. Prp22 also particip-
ates in the second transesterification reaction independent of ATP
in addition to its role in mRNA release [59]. It will be interesting
to see whether it is a general property for splicing DExD/H-
box proteins to have both ATP-dependent and ATP-independent
functions.

The Prp19 complex
The Prp19 complex [or NTC (NineTeen Complex)] was identi-
fied as a large RNA-free protein complex associated with essential

splicing factor Prp19 [73,74]. Eight proteins, Prp19, Syf1/Ntc90,
Cef1/Ntc85, Clf1/Ntc77, Syf2/Ntc31, Isy1/Ntc30, Snt309/Ntc25
and Ntc20, have been shown to be components of the
complex, and several others have also been suggested to be putat-
ive NTC components [74–80]. The NTC is recruited to the spli-
ceosome after the release of U1 and U4 and remains associated
with the spliceosome until completion of the catalytic reactions.
The NTC is required for stabilizing the association of U5 and U6
with the spliceosome [81]. It promotes specific interactions of
U5 and U6 with pre-mRNA within several bases, and also trig-
gers the release of Lsm from binding to the 3′-end of U6 snRNA
to allow further interaction of U6 with the intron sequence near
the 5′ splice site [81,82]. Proteomic analysis of proteins associ-
ated with Cef1/Ntc85 has also identified a complex, called CWC
(complexed with Cef1), containing U2, U5 and U6 snRNAs and
more than 25 proteins, including all the NTC components [83].
Cwc2 directly interacts with U6 snRNA, and has been suggested
a role in linking the NTC to the spliceosome [84]. In contrast,
Cwc22 and Cwc25 are required for the catalytic steps, and only
bind to the spliceosome after its activation [85,86].

The functions of NTC and several of its putative compon-
ents in splicing have been characterized. Prp19 contains an U-
box motif for ubiquitin ligase at its N-terminus, a coiled-coil
domain for tetramerization at central region and a WD40 re-
peat domain as a splicing scaffold at its C-terminus [87–90].
Prp19 has been demonstrated to promote ubiquitination of Prp3
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Table 1 Protein splicing factors
SF3a and SF3b are subcomplexes of U2 snRNP. Asterisks mark proteins not found on the spliceosome. Non-snRNP proteins are sorted by their
functions.

(a) snRNP proteins

U1 U2 U4 U5 U6 U4/U6 U4/U6.U5

SmB, D1, D2, D3,
E, F and G

SmB, D1, D2, D3,
E, F and G

SmB, D1, D2, D3,
E, F and G

SmB, D1, D2, D3,
E, F and G

Lsm2–8 SmB, D1, D2, D3,
E, F and G

SmB, D1, D2, D3,
E, F and G

Snp1 Lea1 Prp3 Dib1 *Prp24 Lsm2–8 Lsm2–8

Mud1 Msl1 Prp4 Prp8 Prp3 Prp3

Yhc1 *Cus2 Snu13 Prp28 Prp4 Prp4

Luc7 SF3a Brr2 Snu13 Snu13

Nam8 Prp9 *Lin1 Prp31 Prp31

Prp39 Prp11 Snu114 Dib1

Prp40 Prp21 Prp6 Prp8

Prp42 SF3b *Aar2 Prp28

Snu56 Cus1 Brr2

Snu71 Rse1 Snu114

Hsh49 Prp6

Hsh155 Prp38

Rds3 Snu23

Ysf3 Snu66

RES Spp381

Ist3 *Sad1

Bud13

Pml1

(b) Non-snRNP proteins

Assembly Activation First reaction Second reaction Disassembly Unknown

Msl5 Prp19 Cwc22 Prp17 Spp382 Bud31

Mud2 Snt309 Spp2 Prp16 Ntr2 Cwc15

Sub2 Cef1 Prp2 Slu7 Prp43 Cwc24

Prp5 Syf1 Cwc25 Prp18 Cwc27

Clf1 Yju2 Prp22 Urn1

Syf2

Isy1

Ntc20

Cwc2

Prp45

Prp46

Ecm2

Cwc21

during the splicing reaction [91]. Snt309/Ntc25 is required for the
integrity of the NTC. It interacts with Prp19 to regulate the in-
teraction of Prp19 with Cef1/Ntc85, which further interacts with
Syf1/Ntc90 and Clf1/Ntc77 in the formation of the NTC [75,92].
Although Clf1/Ntc77 has been shown to bind to the spliceosome
as an integral component of the NTC, it has also been reported
to be required for the addition of tri-snRNP to the spliceosome
[75,93]. Syf1/Ntc90, Syf2/Ntc31, Isy1/Ntc30 and Ntc20 form a
stable subcomplex, which is not required for spliceosome activ-

ation, but is required for the recruitment of step-one factor Yju2
[94]. Deletion of ISY1/NTC30 gene was found to partially res-
cue the cold-sensitive growth phenotype of prp16-302 mutant
and restore fidelity of branchpoint usage in prp16-302 cells to
wild-type level, leading to the hypothesis that Isy1/Ntc30 can
regulate the function of Prp16 in splicing fidelity control [95].
Ecm2 was shown to be a component of the CWC complex, and
was also identified as Slt11 on the basis of synthetic lethality with
a mutation in the 5′-end of U2 snRNA that disrupts U2/U6 helix
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II [83,96]. Ecm2 contains two conserved zinc-finger motifs and
two regions of the RRM, and has been shown to bind specific
RNA structures reminiscent of U2/U6 helix II, suggesting a role
for Ecm2 in the formation of helix II [97]. Cwc2 has been shown
to interact with Prp19 directly by two-hybrid assays [79] and is
likely to be the Ntc40 detected to interact with Prp19 by far West-
ern blotting [74]. Cwc2 also contains an RRM and a zinc-finger
motif, and can directly bind U6 snRNA [84], but how binding
of Cwc2 to U6 mediates spliceosome activation remains to be
investigated.

SPLICEOSOME ASSEMBLY

The spliceosome is assembled via sequential binding of snRNPs
to the pre-mRNA in the order of U1, U2 and then U4/U6.U5
(as the preformed tri-snRNP) [17,98]. U1 snRNP binds to the 5′

splice site through base-pairing of U1 with the 5′ splice site to
form the commitment complex [99–101]. Binding of U1 to the
pre-mRNA is ATP-independent and can occur without incuba-
tion [98,99]. U2 binds to the branch site also through base-pairing
to form the pre-spliceosome, which requires ATP [98,102–105].
The U4/U6.U5 tri-snRNP is recruited to the spliceosome fol-
lowing binding of U2 [17,98] and interacts with the 5′ splice
site, but such interaction can occur independent of prior bind-
ing of U2 to the branch site in HeLa or nematode cell ex-
tracts [106,107]. The BBP [SF1 (splicing factor 1) in humans] is
thought to bind the branchpoint sequence early and can bridge
the 5′ splice site and the 3′ splice site by interacting with U1
components Prp40 and Mud2 (U2AF65 in humans) [108–110].
BBP is displaced by U2 snRNP in an ATP-dependent step upon
formation of the pre-spliceosome [111]. A large 45S particle
containing all five snRNAs, called penta-snRNP, has been de-
tected in yeast cell extracts and demonstrated to be functional
for splicing upon addition of pre-mRNA substrate [112]. It has
also long been known that large 200S complexes, containing all
five snRNAs and protein splicing factors exist in HeLa nuclear
extracts [113,114]. These observations raise the possibility that
splicing occurs on preassembled spliceosomes in vivo. However,
in vivo studies of spliceosome formation in yeast by chromatin
immunoprecipitation analysis suggest spliceosome assembly to
be co-transcriptional and occur in an ordered manner [115,116].

SPLICEOSOME ACTIVATION

After the binding of tri-snRNP, the spliceosome undergoes a
major conformational rearrangement in which U1 and U4 are
dissociated from the spliceosome [17,117]. The release of U1
and U4 requires the unwinding of U4/U6 duplexes and destabil-
ization of U1–5′ splice site base-pairing, both of which require
ATP. DExD/H-box RNA helicases Prp28 and Brr2 have been

implicated in the release of U1 and U4 respectively [38,39,64].
Brr2 is a component of the U5 snRNP [41] and has been demon-
strated to catalyse the unwinding of the U4/U6 RNA duplexes
in vitro [38,39]. Human, but not yeast, Prp28 is associated with
the tri-snRNP [118], which requires phosphorylation of Prp28 by
SRPK2 (serine/arginine protein-specific kinase2) [119]. Genetic
studies have revealed that Prp28 is required to destabilize U1–5′

splice site base-pairing [64], but the mechanism underlying the
action of Prp28 is not clear. Prp28 may act by directly unwinding
U1–5′ splice site duplex, although RNA unwinding activity has
not been demonstrated in vitro. Alternatively, Prp28 may displace
stabilizing proteins that bind to the 5′ splice site. Supporting this
notion, U1 component U1C has been shown to directly bind
to the 5′ splice site [120], and mutation in U1C was able to
bypass the requirement of Prp28 [65].

The release of U1 and U4 allows new base-pair formation
between U6 and the 5′ splice site and between U6 and U2, as
demonstrated by extensive genetic and UV-cross-linking analyses
[9,10] (Figure 3). Interactions between U5 and the exon sequence
at the splice junction have also been demonstrated [121–123].
Although such RNA base-pairings constitute the framework of
the catalytic core of the spliceosome, they are usually in short
stretches and require protein factors to stabilize their structure.
Prp8 has been shown to cross-link to both 5′ and 3′ splice site
regions, suggesting its binding to the pre-mRNA may stabilize
the base-pairing of U5 with the exon sequences for splice site
alignment [22,121].

The NTC was shown to be required for spliceosome activation
after the release of U1 and U4 [81]. The binding of NTC does
not require much of the sequence downstream of the branchpoint
[124], but how it is recruited to the spliceosome remains un-
known. The NTC is required for stabilizing the association of U5
and U6 with the spliceosome in formation of the active spliceo-
some [81]. In the absence of the NTC, both U5 and U6 interact
with the pre-mRNA in a dynamic manner after U1 and U4 are
released, as revealed by UV-cross-linking analysis. The presence
of the NTC renders base-pairings of U5 and U6 with defined
residues of the pre-mRNA [81,82]. The binding of the NTC also
promotes the release of Lsm proteins from U6 to allow for the
interaction of the Lsm-binding site near the 3′-end of U6 snRNA
with the intron in a region approximately 30 bp downstream from
the 5′ splice site [81].

CATALYTIC STEPS

After pairing of U6 to the 5′ splice site and to U2 snRNA, the cata-
lytic core of the spliceosome is established and stabilized by the
binding of the NTC and protein components of snRNPs. The spli-
cing reaction is completed via two consecutive transesterification
reactions on the activated spliceosome. The first step is cleavage
at the 5′ splice site and formation of the lariat intron–exon 2 via a
2′–5′ phosphodiester linkage. The second step is cleavage at the
3′ splice site and ligation of the two exons (Figure 1) [125–127].
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Figure 3 RNA–RNA interactions in pre-activated and activated spliceosomes
(A) The pre-activated spliceosome contains five snRNAs. U1 snRNA base-pairs with the 5′ splice site and U2 snRNA
base-pairs with the branch site with a stem IIa structure. U2/U6 helix II has been shown to be required for tri-snRNP
recruitment in mammalian cells. Loop I of U5 snRNA interacts with two broad regions of exon 1. (B) On the activated
spliceosome, base-pairings of the 5′ splice site with U1 are displaced by U6. In addition, the Lsm complex is dissociated
from U6 to allow interactions of its 3′ end with the intron sequence in a region downstream from the 5′ splice site.

Although transesterification reactions do not require energy, both
catalytic steps require DExD/H-box ATPases, Prp2 for the first
step and Prp16 for the second step, and several other proteins [56]
(Figure 4). Much of the work concerning the mechanism of the
catalytic steps has been conducted using the yeast Saccharomyces
cerevisiae.

First catalytic step
It has been shown that the 3′ splice site is not required for the
first reaction [128], but the lack of most nucleotides between
the branchpoint and the 3′ splice site blocks the first reaction
without affecting spliceosome activation, indicating that this re-
gion is important for the first reaction [81,124,129]. The first cata-

lytic step can be divided into two stages based on the ATP require-
ment, the Prp2-mediated ATP-dependent step with no chemical
change to the RNA substrate, followed by the ATP-independent
step, which requires additional protein factors to promote the
chemical reaction [130].

Prp2 can associate with the spliceosome and directly interact
with pre-mRNA in the absence of ATP prior to the first reaction
[66,131,132]. Upon ATP hydrolysis, Prp2 is dissociated from the
spliceosome [132]. The recruitment of Prp2 to the spliceosome
requires a co-factor Spp2, originally identified as a high-copy
suppressor of temperature-sensitive prp2-1 mutation [133,134].
The C-terminal region of Prp2 is important for its intera-
ction with Spp2 and for spliceosome binding [135,136]. Spp2
interacts with Prp2 through its G-patch domain, which has been
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Figure 4 Spliceosome dynamics during the catalytic steps
Both catalytic steps can be divided into ATP-dependent and ATP-independent steps. Prp2 and Prp16 are required in
ATP-dependent steps. Hydrolysis of ATP results in the release of SF3a/b and Yju2/Cwc25 in the first and second step
respectively. This allows Yju2/Cwc25 and Slu7/Prp18/Prp22 to bind to the spliceosome and promote the first and second
transesterification reactions respectively in an ATP-independent manner. Yellow circles with different colours in the centre
represent spliceosomes with different sets of splicing factors binding at the catalytic centre.

proposed to mediate RNA binding [136,137]. Spp2 can associate
with the spliceosome prior to the first reaction and is dissociated
from the spliceosome with Prp2 upon ATP hydrolysis [134].

The function of Prp2 in the first catalytic step was ob-
scure until recently, when it was demonstrated that the AT-
Pase function of Prp2 is associated with the release of SF3a
and SF3b from the spliceosome [68,69]. SF3a and SF3b are
subunits of U2 snRNP, comprising three and six or seven pro-
teins respectively. SF3b subunit SAP155 (Hsh155 in yeast)
has been shown to cross-link to intron sequences flank-
ing the branchpoint, suggesting a role for SF3b in stabiliz-
ing U2-branch site base-pairing during spliceosome assembly
[138–140]. Conceivably, the removal of SF3b from binding
to the branch site is necessary to expose the branchpoint to
initiate the chemical reaction. Prp2 and Spp2 are dissociated
from the spliceosome together with SF3a/b. More recently, an-
other splicing factor, Cwc22, was shown to be required for the
Prp2-dependent step [86]. Cwc22 is an eIF4G (eukaryotic initi-
ation factor 4G)-like protein and contains both MIF4G (middle
of eIF4G) and MA3 domains found in eIF4G. It binds to
the spliceosome after the binding of NTC and is not required
for spliceosome activation. Although Cwc22 is not required for
the binding of Prp2 to the spliceosome, in the absence of Cwc22,
Prp2 is released from the spliceosome upon ATP hydrolysis
without promoting the release of SF3a/b [86].

The release of SF3a/b, however, is not sufficient for the first re-
action to take place. A protein factor of unknown identity, named
HP (heat-resistant protein) for its heat-resistant property, was
previously shown to be required for the first catalytic reaction
independent of ATP [130]. Two proteins, Yju2 and Cwc25, were
later found to be required for the first reaction after the action of
Prp2. Yju2 has been shown to interact with the NTC via its in-
teraction with Ntc90 and Ntc77, and can bind to the spliceosome
before or after the action of Prp2 [141]. In contrast, Cwc25 is
recruited to the spliceosome exclusively after the action of Prp2
but only in the presence of Yju2 [85], and is the last protein
factor recruited to the spliceosome before the first catalytic re-

action [69,85]. Both Yju2 and Cwc25 become stably associated
with the spliceosome after the first reaction, but are released prior
to the second reaction [70] (see below).

Second catalytic step
The second catalytic step concerns the identification of the 3′

splice site to align with the 5′ splice site for exon ligation. U5
snRNP plays an important role in the alignment of exons. Loop
1 of U5 snRNA contains nine evolutionarily invariant nucleo-
tides that can interact with both exons at the splice junction
[122,142–144]. In yeast, loop 1 of U5 is required only for the
second reaction in vitro [145,146], but can play a role in the first
step [144]. Surprisingly, loop 1 is totally dispensable for the
human in vitro splicing reaction [147]. The U5 component Prp8
has been shown to cross-link to both exons at sites near the splice
junction, and proposed to stabilize the interaction of U5 with the
exon sequences during the second catalytic reaction [21,22,148].
Genetic interactions between Prp8 and the 5′ splice site, 3′ splice
site, and almost all the other second-step factors (see below) have
also been demonstrated [148–151]. In addition, the non-Watson–
Crick interaction between the first and last intron nucleotides has
been shown to be required for the second reaction [152,153], and
the interactions between both splice site consensus sequences and
U6 snRNA also play an important role to juxtapose the two exons
in the second step [154]. Mutations that affect these interactions
can be suppressed by allele-specific prp8 mutants [149,150,155],
suggesting that Prp8 may modulate the conformational transition
between the two transesterification reactions [156,157].

Like the first step, the second catalytic step also involves an
ATP-dependent step, which requires DExD/H-box protein Prp16,
followed by an ATP-independent step, in which transesterific-
ation occurs [158]. Prp16 was originally identified as a sup-
pressor of branchpoint mutant A259C (or brC) of the actin intron
[159,160], but was found to be only required for the second reac-
tion in vitro [67]. It has been shown that Prp16 can associate with
the spliceosome in the absence of ATP, and upon ATP hydrolysis,
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Prp16 is released from the spliceosome [67]. The N-terminus
of Prp16 is required and sufficient for its association with the
spliceosome [161]. UV-cross-linking analysis has revealed that
Prp16 interacts with pre-mRNA in the intron sequence near the
3′ splice site [23,138]. Prp17 has also been demonstrated to func-
tion in the ATP-dependent step, but the binding of Prp16 to the
spliceosome is not affected in the absence of Prp17 [23,162].
Prp16 has been proposed to mediate a conformational change in
the spliceosome prior to the second reaction, since the 3′ splice
site becomes protected from RNase H cleavage after Prp16 ac-
tion [163]. This protected region was later shown to cross-link
with Prp22, suggesting that the binding of Prp22 may confer the
nuclease protection phenotype [59,164].

Several cold-sensitive prp16 alleles have been shown to sup-
press mutations in U2 and U6 snRNAs in the regions that are
involved in the formation of RNA duplexes, suggesting a role of
Prp16 in disruption of these helices [165–167]. Although Prp16
has been shown to unwind synthetic RNA duplexes, there is no
direct evidence for such function on the spliceosome [57]. The
recent demonstration of Prp16- and ATP-dependent release of
the first step factors Yju2 and Cwc25 suggests that Prp16 may
play a role in remodelling the spliceosome to prepare the spli-
ceosome for the second catalytic reaction [70]. Whether destabil-
ization of Yju2 and Cwc25 by Prp16 leads to destabilization of
RNA structures, or vice versa, is unclear.

Following Prp16 action, Slu7, Prp18 and Prp22 join the spli-
ceosome to promote the second reaction in an ATP-independent
manner [59,158,168]. The fact that Yju2 and Cwc25 are removed
from the spliceosome prior to the association of Slu7, Prp18 and
Prp22 suggests that displacement of proteins binding to the cata-
lytic centre is necessary for positioning of the 5′ and 3′ splice
sites for exon ligation. These three proteins interact with the 3′

splice site, and both Prp22 and Slu7 directly contact the intron, as
revealed by cross-linking analysis [23,164]. Prp22 is a DExD/H-
box protein, but its role in the second catalytic step is ATP-
independent [59,72]. Prp22 is further required for the release of
mature mRNA after completion of splicing, which depends on its
ATPase activity, and together with Slu7 and Prp18, it is released
from the spliceosome along with mRNA [58,59,72,169]. Prp18
has been shown to stabilize the interaction between loop 1 of
U5 snRNA and both exons during the second reaction [142,170].
The requirement of Slu7, Prp18 and Prp22 for the second reaction
depends on the distance between the branch site and the 3′ splice
site of precursor mRNA [59,171,172]. None of the three proteins
is needed if the distance is less than 7 nt [171]. The binding of
these proteins follows an order of Slu7, Prp18 and then Prp22
[169]. Together, the second-step factors bind to the 3′ splice site,
and coordinate with Prp8 to stabilize interactions of U5
loop 1 and the exons for the second transesterification.

Similarities between the two steps
The two catalytic steps are mechanistically similar. Both steps
can be divided into two stages, an ATP-dependent step, which re-
quires a DExD/H-box protein, followed by an ATP-independent
catalytic reaction. Each step starts with displacement of protein

binding to the catalytic centre to allow binding of another set
of proteins to promote the catalytic reaction. Prp2 is required
to mediate the release of SF3a/b, which bind to the branch site, to
allow binding of Yju2 and Cwc25 to promote the first transes-
terification. Prp16 is required to mediate the release of Yju2 and
Cwc25, to allow binding of Slu7, Prp18 and Prp22 to promote the
second transesterification. Cwc25 binds to the branch site as it can
cross-link to substrate RNA near the branch site (H.-C. Chen and
S.-C. Cheng, unpublished work), and mutations at the branch-
point prevent its binding to the spliceosome [70]. Conceivably,
the removal of factors binding to the catalytic centre and func-
tioning in the previous step converts the catalytic centre into an
open state, allowing splice sites to interact in a dynamic manner.
Subsequent binding of specific protein factors, Yju2/Cwc25 for
the first step and Slu7/Prp18/Prp22 for the second step, facilitates
and confines the interaction at specific sites. It is interesting that
Cwc25 was shown to be dispensable for the first reaction if the
purified spliceosome was incubated in the presence of Mn2 + , sug-
gesting that increasing the dynamics of splice–site interaction can
bypass the need for Cwc25 [85]. Similarly, Slu7/Prp18/Prp22 can
be dispensable when the 3′ splice site is very close to the branch
site so that the 3′ splice site is more susceptible to interaction with
the 5′ splice site [59,171,172]. Moreover, both Prp16 and Prp22
have two roles in the splicing pathway. Prp22 has a primary role in
promoting mRNA release, which requires the ATPase function of
the protein, and is conditionally required for the second reaction
in positioning the 3′ splice site in an ATP-independent manner.
Prp16 also has an ATP-dependent role in promoting the release of
Yju2/Cwc25, and has an ATP-independent role in the first cata-
lytic step in stabilizing the binding of Cwc25 when pre-mRNA
carries a mutation at the branchpoint.

DISASSEMBLY OF THE SPLICEOSOME

mRNA release
Following exon ligation, the mature mRNA is released before the
spliceosome is disassembled. Prp22 was initially identified from
a genetic screen for factors defective in pre-mRNA splicing [173].
The prp22-1 mutant accumulates mRNA and excised lariat-intron
on the spliceosome at the non-permissive temperature [72]. Prp22
has been demonstrated to unwind RNA duplexes in vitro [58,59],
and the helicase activity is required for mRNA release [174].
Mutations in motif III (SAT) of the helicase domain are defective
in unwinding RNA duplex and releasing mRNA with no effect on
the ATPase activity or the binding of Prp22 to the spliceosome
[174]. It has been shown that cold-sensitive growth defect eli-
cited by Prp22 helicase-defective mutants can be suppressed by
several mutant alleles of Prp8 at Arg1753, suggesting that Prp22
may disrupt RNA–RNA or RNA–protein interaction stabilized by
Prp8 during mRNA release [175]. In agreement with this notion,
specific mutant alleles of U5 loop 1, which stabilizes the inter-
action of U5 loop 1 with splicing intermediate and suppresses
prp8-R1753 mutant, can aggravate the defect of Prp22 helicase-
defective mutants [151]. Prp22 was demonstrated to bind to the
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3′ splice site during the second step [164] and then translocate
to mRNA downstream of exon–exon junction after exon ligation
[176]. It is proposed that Prp22 functions to liberate mRNA by
moving along mRNA in a 3′ to 5′ directionality to disrupt U5–
mRNA interaction [176]. More than 13 nt of 3′ exon in length is
necessary for mRNA release, presumably to allow stable binding
of Prp22 after translocation [176].

Spliceosome disassembly
After mRNA is released, the spliceosome is disassembled to
free the lariat-intron and all associated spliceosomal compon-
ents for recycling of splicing factors. The free lariat-introns are
debranched, catalysed by debranchase (Dbr1), to yield linear in-
tron molecules, which are generally degraded [177,178]. Prp43,
a DExD/H-box RNA helicase, is the key player in mediating
disassembly of the spliceosome [71,178] and is also involved in
the biogenesis of both large- and small-subunits of the ribosome
[179–181]. Prp43 has been demonstrated to unwind RNA du-
plexes in vitro [60]. The ATPase activity of Prp43 is required
for spliceosome disassembly, but the level of the helicase activ-
ity does not have any apparent correlation with the disassembly
efficiency [60,178].

The function of Prp43 in mediating spliceosome disassembly
requires two co-factors, Ntr1 and Ntr2 [182,183]. Ntr1 interacts
with Ntr2 to form a stable complex, which further interacts with
Prp43 to form a functional NTR complex [182]. Spliceosome
disassembly can be assayed in vitro using purified NTR. The
post-splicing spliceosome isolated from NTR-depleted extracts,
containing the lariat-intron, is dissociated into U2, U5, U6 and
NTC upon incubation with purified NTR and ATP [182]. Ntr1
interacts with Ntr2 via the middle region of the protein, and with
Prp43 via the N-terminal G-patch domain [182]. The G-patch
domain of Ntr1 has been shown to stimulate the helicase activity,
but not the ATPase activity, of Prp43 [184]. Ntr2 interacts with
U5 snRNP via its interaction with U5 component Brr2, and such
interaction is suggested to mediate the recruitment of NTR to the
spliceosome [185].

How NTR mediates spliceosome disassembly is not known.
To disassemble the spliceosome, it is essential to disrupt base-
pairings of U6/5′ splice site, U2/U6 and U2/branch site. Prp43
has been shown to cross-link to U6, but the precise cross-link
sites have not been determined [186]. Prp43 may destabilize
base-pairings of U6/5′ splice site or U2/U6 by unwinding RNA
duplex or by displacing proteins binding to specific RNA struc-
tures, which then triggers disruption of other RNA duplexes. It
has also been shown that mutations in Brr2 impede disassembly
of the spliceosome isolated via its association with Prp43, and
the ATPase activity of Brr2 is regulated by Snu114 through its
binding of GTP versus GDP [40]. How Brr2 co-ordinates with
Prp43 to mediate spliceosome disassembly remains unknown.

NTR1, previously identified as SPP382, was shown to function
as a suppressor of prp38-1 mutation [187]. Prp38 is a component
of the yeast tri-snRNP [188,189]. Several mutations in PRP43
affecting the ATPase activity have been shown to suppress the
growth defect of prp38-1 with efficiencies inversely proportionate

to the measured ATPase activities [187], suggesting that reducing
the activity of Prp43 could partially compensate for impaired
spliceosome assembly. The involvement of Prp43 in the discard
of spliceosome intermediates is supported by the findings that
the dissociation of pre-mRNA or the lariat intermediate from the
impaired spliceosome depends on Prp43 [190,191].

SPLICING FIDELITY CONTROL

The mechanism of splicing fidelity control has been best stud-
ied in yeast. DExD/H-box protein Prp16 was first discovered to
have a function in promoting the fidelity of branch site recog-
nition [159,160]. Two other DExD/H-box proteins, Prp22 and
Prp5, were later also implicated in the control of splicing fidelity
[192,193]. Prp16 was identified in a genetic screen as a suppressor
of branchpoint mutation brC (changing A to C). ATPase-defective
mutants of Prp16 could suppress branchpoint mutation and ac-
cumulate lariat-intermediates with aberrant branch nucleotide,
suggesting that the ATPase activity of Prp16 is required to dis-
criminate mutations at the branchpoint [194]. Prp16 was further
found to be essential in vitro for the second reaction but dispens-
able for the first reaction [67]. Based on these studies, a model
for how splicing fidelity is controlled by a kinetic proofreading
mechanism was formulated [194]. It was proposed that kinetic
competition between a switch to the second-step conformation
and the ATP-dependent rejection of substrate mediated by Prp16
serves as the basis for the control of fidelity [194]. The kinetic
competition mechanism was further supported by a recent study
using a mutant U6 snRNA with sulfur substitution for pro-Sp
non-bridging oxygen at position U80 (U6–sU80) [190]. In the
first reaction, splicing was impeded in the presence of Mg2 +

using U6–sU80. Prp16 was able to bind to such spliceosomes
and mediates rejection of the slow spliceosome in the way that
requires ATP and the ATPase function of Prp16 [190].

An ATP-independent role for Prp16 in the first reaction has
recently been demonstrated [70]. Cwc25 is known to bind to the
spliceosome in the presence of Yju2 after the release of SF3a/b
to promote the first reaction on wild-type pre-mRNA [69,85].
Mutations at the branchpoint prevent binding of Cwc25, and con-
sequently inhibit the reaction [70]. It was found that the presence
of Prp16, regardless of its ATPase activity, stabilizes binding of
Cwc25 to the brC spliceosome and promotes the first reaction.
This ATP-independent function of Prp16 counteracts its ATP-
dependent function in mediating Cwc25 removal. The balance
between the two activities determines the level of splicing of brC
pre-mRNA. Reducing the ATPase activity of Prp16 promotes the
reaction. In this view, although Prp16 is the key player in mediat-
ing fidelity control of the first reaction, Cwc25 plays an important
role in enforcing specificity of branchpoint recognition [70,195].

Mutations at the 3′ splice site block exon ligation, which
requires Prp22. Prp22 was shown to repress exon ligation at
the mutated 3′ splice site in an ATP-dependent manner. Prp22
mutants that reduce ATPase activity compromise the fidelity of



C© 2012 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/
by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

353

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/32/4/345/474941/bsr0320345.pdf by guest on 24 April 2024



H.-C. Chen and S.-C. Cheng

exon ligation both in vivo and in vitro [192]. These results suggest
that Prp22 may play a role in proofreading exon ligation. It has
also been shown that mutations within Prp5 in motif III of the
helicase domain with reduced ATPase activity also increase
the splicing activity of suboptimal substrate with less stable
branch region-U2 snRNA pairing, suggesting a link between fi-
delity control in branch recognition and Prp5 ATPase activity
[193].

CONCLUSIONS AND PERSPECTIVES

Pre-mRNA splicing is a complex process requiring assembly of
a large ribonucleoprotein particle that involves a large number
of factors. Over the years, genetic and biochemical studies have
provided comprehensive insights into the mechanism of the spli-
cing reaction. Compositional and structural analyses of the spli-
ceosome and its components by MS, electron microscopy and
X-ray crystallography have facilitated further understanding of
the function of the spliceosome and its components at the struc-
tural level [196–201]. Approaches at the single-molecule level
are also expected to result in new mechanistic insights [202,203],
shedding further light on the molecular mechanism of nuclear
pre-mRNA splicing.
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111 Rutz, B. and Séraphin, B. (1999) Transient interaction of
BBP/ScSF1 and Mud2 with the splicing machinery affects the
kinetics of spliceosome assembly. RNA 5, 819–831

112 Stevens, S. W., Ryan, D. E., Ge, H. Y., Moore, R. E., Young, M. K.,
Lee, T. D. and Abelson, J. (2002) Composition and functional
characterization of the yeast spliceosomal penta-snRNP. Mol. Cell
9, 31–44

113 Ast, G., Goldblatt, D., Offen, D., Sperling, J. and Sperling, R.
(1991) A novel splicing factor is an integral component of 200S
large nuclear ribonucleoprotein (lnRNP) particles. EMBO J. 10,
425–432

114 Miriami, E., Angenitzki, M., Sperling, R. and Sperling, J. (1995)
Magnesium cations are required for the association of U small
nuclear ribonucleoproteins and SR proteins with pre-mRNA in
200 S large nuclear ribonucleoprotein particles. J. Mol. Biol. 246,
254–263

115 Lacadie, S. A. and Rosbash, M. (2005) Cotranscriptional
spliceosome assembly dynamics and the role of U1 snRNA:5′ss
base pairing in yeast. Mol. Cell 19, 65–75

116 Tardiff, D. F. and Rosbash, M. (2006) Arrested yeast splicing
complexes indicate stepwise snRNP recruitment during in vivo
spliceosome assembly. RNA 12, 968–979

117 Lamond, A. I., Konarska, M. M., Grabowski, P. J. and Sharp, P. A.
(1988) Spliceosome assembly involves the binding and release
of U4 small nuclear ribonucleoprotein. Proc. Natl. Acad. Sci.
U.S.A. 85, 411–415

118 Teigelkamp, S., Mundt, C., Achsel, T., Will, C. L. and Lührmann,
R. (1997) The human U5 snRNP-specific 100-kD protein is an RS
domain-containing, putative RNA helicase with significant
homology to the yeast splicing factor Prp28p. RNA 3, 1313–1326
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151 Aronova, A., Bačı́ková, D., Crotti, L. B., Horowitz, D. S. and
Schwer, B. (2007) Functional interactions between Prp8, Prp18,
Slu7, and U5 snRNA during the second step of pre-mRNA
splicing. RNA 13, 1437–1444

152 Parker, R. and Siliciano, P. G. (1993) Evidence for an essential
non-Watson–Crick interaction between the first and last
nucleotides of a nuclear pre-mRNA intron. Nature 361, 660–662

153 Chanfreau, G., Legrain, P., Dujon, B. and Jacquier, A. (1994)
Interaction between the first and last nucleotides of pre-mRNA
introns is a determinant of 3′ splice site selection in S.
cerevisiae. Nucleic Acids Res. 22, 1981–1987

154 Collins, C. A. and Guthrie, C. (2001) Genetic interactions
between the 5′ and 3′ splice site consensus sequences and U6
snRNA during the second catalytic step of pre-mRNA splicing.
RNA 7, 1845–1854

155 Umen, J. G. and Guthrie, C. (1996) Mutagenesis of the yeast
gene PRP8 reveals domains governing the specificity and fidelity
of 3′ splice site selection. Genetics 143, 723–739

156 Liu, L., Query, C. C. and Konarska, M. M. (2007) Opposing
classes of prp8 alleles modulate the transition between the
catalytic steps of pre-mRNA splicing. Nat. Struct. Mol. Biol. 14,
519–526

157 Query, C. C. and Konarska, M. M. (2004) Suppression of multiple
substrate mutations by spliceosomal prp8 alleles suggests
functional correlations with ribosomal ambiguity mutants. Mol.
Cell 14, 343–354

158 Horowitz, D. S. and Abelson, J. (1993) Stages in the second
reaction of pre-mRNA splicing: the final step is ATP independent.
Genes Dev. 7, 320–329

159 Burgess, S., Couto, J. R. and Guthrie, C. (1990) A putative ATP
binding protein influences the fidelity of branchpoint recognition
in yeast splicing. Cell 60, 705–717

160 Couto, J. R., Tamm, J., Parker, R. and Guthrie, C. (1987) A
trans-acting suppressor restores splicing of a yeast intron with a
branch point mutation. Genes Dev. 1, 445–455

161 Wang, Y. and Guthrie, C. (1998) PRP16, a DEAH-box RNA
helicase, is recruited to the spliceosome primarily via its
nonconserved N-terminal domain. RNA 4, 1216–1229

162 Jones, M. H., Frank, D. N. and Guthrie, C. (1995)
Characterization and functional ordering of Slu7p and Prp17p
during the second step of pre-mRNA splicing in yeast. Proc. Natl.
Acad. Sci. U.S.A. 92, 9687–9691

163 Schwer, B. and Guthrie, C. (1992) A conformational
rearrangement in the spliceosome is dependent on PRP16 and
ATP hydrolysis. EMBO J. 11, 5033–5039

164 McPheeters, D. S., Schwer, B. and Muhlenkamp, P. (2000)
Interaction of the yeast DExH-box RNA helicase prp22p with the
3′ splice site during the second step of nuclear pre-mRNA
splicing. Nucleic Acids Res. 28, 1313–1321

165 Mefford, M. A. and Staley, J. P. (2009) Evidence that U2/U6 helix I
promotes both catalytic steps of pre-mRNA splicing and
rearranges in between these steps. RNA 15, 1386–1397

166 Hilliker, A. K., Mefford, M. A. and Staley, J. P. (2007) U2 toggles
iteratively between the stem IIa and stem IIc conformations to
promote pre-mRNA splicing. Genes Dev. 21, 821–834

167 Perriman, R. J. and Ares, Jr, M. (2007) Rearrangement of
competing U2 RNA helices within the spliceosome promotes
multiple steps in splicing. Genes Dev. 21, 811–820

168 Ansari, A. and Schwer, B. (1995) SLU7 and a novel activity, SSF1,
act during the PRP16-dependent step of yeast pre-mRNA splicing.
EMBO J. 14, 4001–4009

169 James, S. A., Turner, W. and Schwer, B. (2002) How Slu7 and
Prp18 cooperate in the second step of yeast pre-mRNA splicing.
RNA 8, 1068–1077
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