Innate immune responses are tightly regulated by various pathways to control infections and maintain homeostasis. One of these pathways, the inflammasome pathway, activates a family of cysteine proteases called inflammatory caspases. They orchestrate an immune response by cleaving specific cellular substrates. Canonical inflammasomes activate caspase-1, whereas non-canonical inflammasomes activate caspase-4 and -5 in humans and caspase-11 in mice. Caspases are highly specific enzymes that select their substrates through diverse mechanisms. During inflammation, caspase activity is responsible for the secretion of inflammatory cytokines and the execution of a form of lytic and inflammatory cell death called pyroptosis. This review aims to bring together our current knowledge of the biochemical processes behind inflammatory caspase activation, substrate specificity, and substrate signalling.

Proteases are central enzymes that mediate numerous signalling roles to ensure cellular functions and organismal homeostasis [1]. Discovered more than 20 years ago, caspases are key signalling proteases that control various cell death processes and have been linked to inflammation and non-cell death-related functions [2–5].

Inflammatory caspases are a caspase subset activated by cellular platforms called inflammasomes [6–8]. Albeit mediating inflammasome signalling, our understanding of the biochemistry and the cellular processes governed by inflammatory caspases is limited. This mini-review aims to bring together our understanding of the mechanisms regulating inflammatory caspases activation, signalling and regulation.

The term caspase [2,9] is derived from the cysteine catalytic site used by the protease, and its rare specificity for cleavage at the carboxy-terminal side of Aspartic acid residues (D); cysteine-dependent aspartate-specific proteases. Caspases use a catalytic dyad composed of an histidine (H237 in caspase-1) and a cysteine (Cys285 in caspase-1) [2]. Initially discovered in Caenorhabditis elegans (C.elegans) [3,5], the role of caspases in development and innate immunity have since been characterised in a wide range of multicellular organisms. Recent work also clarifies important functions of caspases outside these processes, including proliferation, migration, and differentiation [10–13].

Caspases have a conserved modular organisation: a N-terminal domain (of variable length and function), a large catalytic subunit, and a small catalytic subunit [2] (Figure 1). These domains are separated by flexible linkers sensitive to proteolysis, the interdomain linker (IDL) and the recruitment domain linker (RDL). To date, twelve caspases have been identified in humans and ten in mice [2]. A classification system for caspases was developed, dividing each caspase into two main groups in accordance with their function, structure, and activation mechanism (Table 1).

Structural organisation of an inflammatory caspase.

Figure 1.
Structural organisation of an inflammatory caspase.

(A) Inflammatory caspases are composed of a CARD domain and a catalytic subunit, divided into a large and a small subunit. Caspases use a catalytic cysteine (shown as a star) to support their catalytic activity. Scissors represent inhibitory (red) and activating (green) self-processing sites. (B) Crystal structure of caspase-1 bound to the active-site inhibitor VX765 (PDB: 6PZP). The large subunit (pink) and the small subunit (cyan) of a caspase-1 dimer interacting with the active site inhibitor VX-765 (orange).

Figure 1.
Structural organisation of an inflammatory caspase.

(A) Inflammatory caspases are composed of a CARD domain and a catalytic subunit, divided into a large and a small subunit. Caspases use a catalytic cysteine (shown as a star) to support their catalytic activity. Scissors represent inhibitory (red) and activating (green) self-processing sites. (B) Crystal structure of caspase-1 bound to the active-site inhibitor VX765 (PDB: 6PZP). The large subunit (pink) and the small subunit (cyan) of a caspase-1 dimer interacting with the active site inhibitor VX-765 (orange).

Close modal
Table 1
Human caspases functions and activation mechanism overview
CaspaseFunction/activation mechanism
Inflammation/dimerisation 
Apoptosis/dimerisation 
Apoptosis (Executioner)/dimerisation 
Inflammation/dimerisation 
Inflammation/dimerisation 
Apoptosis (Executioner)/cleavage 
Apoptosis (Executioner)/cleavage 
Apoptosis (Initiator)/dimerisation 
Apoptosis (Initiator)/dimerisation 
10 Apoptosis (Initiator)/dimerisation 
12 Unclear, catalytically inactive 
14 Keratinocyte differentiation/dimerisation 
CaspaseFunction/activation mechanism
Inflammation/dimerisation 
Apoptosis/dimerisation 
Apoptosis (Executioner)/dimerisation 
Inflammation/dimerisation 
Inflammation/dimerisation 
Apoptosis (Executioner)/cleavage 
Apoptosis (Executioner)/cleavage 
Apoptosis (Initiator)/dimerisation 
Apoptosis (Initiator)/dimerisation 
10 Apoptosis (Initiator)/dimerisation 
12 Unclear, catalytically inactive 
14 Keratinocyte differentiation/dimerisation 

The first caspase group, the apoptotic caspases, can be further subdivided into initiator and executioner caspases based on their role within the apoptotic pathway. The initiator caspases (caspase-8, -9, and -10), are monomeric and contain a long homotypic N-terminal domain required for recruitment to their respective activation platform. The initiator caspases can then be further divided into whether they participate in the extrinsic or intrinsic apoptotic pathway. The extrinsic pathway involves caspase-8 and -10, which are activated by complexes like the death-inducing signalling complex (DISC) following binding of death ligands to their cognate receptors [14,15]. The intrinsic apoptotic pathway involves caspase-9, activated by the apoptosome following sensing of various intracellular signal like DNA-damage [16,17]. Once activated, the initiator caspases activate the executioner apoptotic caspases (caspase-3, -6 and -7) by cleaving their IDL [2,18].

Executioner caspases contain a short pro-domain (<30 residues) and are synthesised as inactive dimeric zymogens. Cleavage of executioner caspases by the initiator caspases allows full activation and therefore the cleavage of specific substrates to execute apoptotic cell death [19].

The second main caspase group is the inflammatory caspases [20]. The inflammatory caspases are encoded by three genes in humans (CASP1, CASP4, CASP5), and two in mice (casp1, casp11), clustered on a single locus, chromosome 11 in humans, and on chromosome 9 in mice. In mice, caspase-12 is also considered an inflammatory caspase [21] but roles of caspase-12 in inflammasome signalling have been debated [22]. Humans express a truncated and inactive version of caspase-12 [23,24], therefore this caspase will not be discussed further. The best characterised inflammatory caspase is caspase-1. This caspase, originally named IL-1β converting enzyme (ICE), was identified whilst studying the protease involved in the processing of the proIL-1β cytokine [4,25–27]. Shortly after, caspase-4, -5 and -11 [28] were linked to cell death and endotoxin responses. Caspase-1 is activated by a signalling complex called the canonical inflammasome, whereas caspase-4 and -11 (and potentially -5) are activated by the non-canonical inflammasome. Caspase-1 and caspase-4 are constitutively expressed in most cell types whereas caspase-5 expression is interferon inducible [29]. A recent study identified a gain-of-function mutation in CCAAT enhancer–binding protein epsilon (CEBPE) causes an autoinflammatory inflammasomopathy that leads to constitutive caspase-5 expression [30].

A few caspases fall out of the traditional classification due to their unique functions. An example of this is caspase-14, a caspase involved in keratinocyte differentiation [31]. Caspase-2 is another caspase member that has been linked with apoptotic processes and with innate immune functions, however does not comfortably fit into the current classification system [32].

The remainder of this review will focus on the mechanisms that govern inflammatory caspase activity.

Caspase-1

Inflammatory caspases exist as monomers under the cellular resting state and require dimerisation to become active. This dimerisation step is tightly regulated and is mediated by large, multi-protein signalling platforms called inflammasomes [6]. Inflammasomes are composed of a pattern recognition receptor (PRR) which senses danger-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs), an adaptor protein (Apoptosis-associated speck-like protein (ASC)) and an inflammatory caspase [7,8].

PRR-activating inflammasomes are diverse in nature and recognise or respond to a multitude of chemically different ligands (summarised in Table 2).

Table 2
Inflammasome-forming pattern recognition receptors
Pattern recognition receptorExamples of activating stimuli
NLRP1 Proteases from pathogens [39,40
viral dsRNA [41
Toxoplasma gondii [42
NLRP3 Pore-forming toxins (Hemolysin, Candidalysin) [43,44
B-glucan [45
ATP [46
Urate crystal [47
NLRP6 Lipoteichoic acid (LTA) [48
NLRP7 Lipopeptide [49
NLRC4/NAIP T3SS proteins, Flagellin [50
AIM2 Cytosolic DNA [51,52
Pyrin Rho GTPase inactivation [53
GBPs LPS [54–56
Pattern recognition receptorExamples of activating stimuli
NLRP1 Proteases from pathogens [39,40
viral dsRNA [41
Toxoplasma gondii [42
NLRP3 Pore-forming toxins (Hemolysin, Candidalysin) [43,44
B-glucan [45
ATP [46
Urate crystal [47
NLRP6 Lipoteichoic acid (LTA) [48
NLRP7 Lipopeptide [49
NLRC4/NAIP T3SS proteins, Flagellin [50
AIM2 Cytosolic DNA [51,52
Pyrin Rho GTPase inactivation [53
GBPs LPS [54–56

Inflammasome-activating PRRs contain either a Pyrin domain (PYD) or Caspase activation and recruitment domain (CARD), both of which belong to the death-fold domain family [33]. The presence of these homotypic domains is a unifying feature of inflammasome-activating PRRs, which can therefore be divided into PYD-containing (NLRP3, NLRP6, NLRP7, AIM2, Pyrin) or CARD-containing (NLRP1, NLRC4, CARD8) PRR. Following PRR activation and oligomerisation, these domains undergo homotypic domain–domain interactions (PYD–PYD or CARD–CARD) that allow the recruitment of the adaptor protein ASC. ASC is a 22 kD adaptor protein, containing both a PYD and CARD domain. ASC–PYD oligomerisation leads to the formation of ASC filaments, and interactions between these filaments through ASC–CARD leads to the formation of the ASC speck, with a single cellular focus of ∼1 µm [34,35]. The ASC speck recruits caspase-1 monomers through CARD–CARD homotypic interactions, increasing local caspase-1 concentration therefore promoting caspase-1 dimerisation and allowing its activation [36]. Caspase dimerisation occurs through an interface located in the small catalytic subunit [2]. Dimerisation of caspase-1 induces basal activity and allows for the processing of the interdomain linker (IDL), which leads to structural reorganisation and stabilises the active site to generate a fully active caspase-1 species called p33/p10 (Figure 1) [36]. This activation mechanism, shared with initiator caspases, is known as proximity-induced dimerisation [19]. The caspase-1 p33/p10 species has the ability to process its established substrates (IL-1β, IL-18 and GSDMD) to mediate cell death and cytokine secretion (Figure 3). Caspase-1 subsequently cleaves its RDL to generate the p20/p10 species and dissociate from the inflammasome and become inactive [36]. Dimeric full-length caspase-1 is also partially active and can mediate cell death, but not cytokines processing [37].

The ASC speck can also recruit and activate caspase-8 to trigger apoptosis [38].

Caspase-4 and -5

Inflammatory caspase-4 and -5 in humans, and caspase-11 in mice, are activated by the non-canonical inflammasome. Caspase-5 is conserved only in a few species (humans and great apes) and is believed to be the consequence of a genetic duplication. Until recently, these caspases were believed to directly binding lipopolysaccharide to trigger direct caspase dimerisation and activation [57]. However, recent studies identified cellular factors that facilitate the presentation of hydrophobic bacterial LPS to these caspases. Interferon-inducible guanylate binding proteins (GBPs) [58] recognise the outer section of LPS on cytosolic bacteria and allow for the assembly of an inflammasome directly on the bacteria. In human epithelial cells, this assembly platform is composed of GBP1, 2, 3 and 4 [54–56,59]. Outer membrane vesicles [60] can also activate the non-canonical inflammasome in a GBP-dependant manner [61]. In mice, GBPs facilitate the recruitment and localisation of IRGB10 to the membrane of invading pathogens, resulting in the destruction of the pathogen membrane and subsequent release of LPS and DNA, activating the non-canonical and AIM2 inflammasomes, respectively [62,63]. Humans do not express a functional orthologue of IRGB10. Caspase-4 and -5 active species are yet to be fully characterised; however, studies suggest that the p32/p10 form of caspase-4 could be the active species [64]. Studies into caspase-11 have supported this, showing that caspase-11 needs to be cleaved at the IDL to generate a fully active species [65,66]. Caspase-4 and -11 have also been suggested to be activated by the NLRP6 inflammasome downstream of Lipoteichoic acid (LTA) recognition [48]. However, the molecular basis of this process is not fully understood. Fatty acids and oxidised lipids have also been suggested to be endogenous ligands for the non-canonical inflammasome with cell-specific outcomes [67–69].

The cellular context controlling caspase-5 activation remain elusive. Specific LPS structures (e.g. Outer membrane vesicles from Pseudomonas aeruginosa) [70] and NLRP1 [6] were suggested to activate caspase-5. However, features enabling caspase-5 activation (instead of caspase-4) are subject of current investigations.

Inflammatory caspases are highly specific proteases that cleave defined protein substrates to orchestrate the innate immune responses. In the following section, we will discuss how caspases achieve this specificity through diverse mechanisms (Figure 2).

Substrate recognition mechanism by caspases.

Figure 2.
Substrate recognition mechanism by caspases.

(A) Representation of the caspase substrate-binding pocket. Four subsites on the caspase (Subsite 4 to Subsite 1) recognise the classical tetrapeptide on the substrate (P4 to P1). (B) Structure of the complex between caspase-11 (pink and cyan) and Gasdermin D (PDB: 6VIE) demonstrates that caspases can use exosite to recognise specific substrates. The structure shows the tetrapeptide recognise by the substrate-binding pocket (green) and the exosite (blue) that binds an additional region on Gasdermin D.

Figure 2.
Substrate recognition mechanism by caspases.

(A) Representation of the caspase substrate-binding pocket. Four subsites on the caspase (Subsite 4 to Subsite 1) recognise the classical tetrapeptide on the substrate (P4 to P1). (B) Structure of the complex between caspase-11 (pink and cyan) and Gasdermin D (PDB: 6VIE) demonstrates that caspases can use exosite to recognise specific substrates. The structure shows the tetrapeptide recognise by the substrate-binding pocket (green) and the exosite (blue) that binds an additional region on Gasdermin D.

Close modal

Canonical vs non-canonical inflammatory caspases signalling.

Figure 3.
Canonical vs non-canonical inflammatory caspases signalling.

(A) PRRs recognise recognise DAMPs and PAMPs to activate the canonical inflammasome. This results in the activation of caspase-1 which cleaves GSDMD leading to pore formation and pyroptosis. Caspase-1 also activates pro-inflammatory cytokines IL-18 and IL-1b, which are release during pyroptosis and other substrates with unknown functional consequences (protein X). (B) Intracellular LPS from Gram negative bacteria activates the non-canonical inflammasome. GBPs aid the activation of caspase-4 and -5 by LPS. Caspase-4 and -5 cleave GSDMD, inducing pyroptosis, and other substrates with unknown functional consequences (protein X).

Figure 3.
Canonical vs non-canonical inflammatory caspases signalling.

(A) PRRs recognise recognise DAMPs and PAMPs to activate the canonical inflammasome. This results in the activation of caspase-1 which cleaves GSDMD leading to pore formation and pyroptosis. Caspase-1 also activates pro-inflammatory cytokines IL-18 and IL-1b, which are release during pyroptosis and other substrates with unknown functional consequences (protein X). (B) Intracellular LPS from Gram negative bacteria activates the non-canonical inflammasome. GBPs aid the activation of caspase-4 and -5 by LPS. Caspase-4 and -5 cleave GSDMD, inducing pyroptosis, and other substrates with unknown functional consequences (protein X).

Close modal

Primary specificity

Caspases natural substrate must be present in the same cellular compartment as the caspase and their cleavage site present specific features. First, the P1′ position is usually occupied by a small aliphatic amino acid. Secondly, the cleavage site is usually located in a solvent-exposed flexible structural element and is accessible to the protease active site. Finally, caspase substrate often displays an optimal primary cleavage sequence [71].

The substrates primary cleavage sequence bind through the caspase substrate-binding pocket, which can generally accommodate four amino acids from the substrate. According to the Schechter-Berger nomenclature [72], caspases recognise an aspartate in position P1 and several different amino acids in position P4 to P2 (Figure 2). Using small peptide library, the preferred substrate sequence for each caspase has been defined. Inflammatory caspases prefer aromatic or hydrophobic amino acids in position P4, glutamic acids in position P3, and small aliphatic amino acids in position P2 [73].

Recently, caspases were shown to cleave artificial substrates containing glutamic acid and phosphorylated serine in position P1, expanding the potential sequence of substrates [74].

Although the focus has been towards the primary tetrapeptide, multiple studies have highlighted the influence of extended subsites on caspase specificity. The Salvesen group identified extended subsites in caspase-11 and caspase-5 substrates that increase cleavage of selected substrates [75,76]. Extended subsites have also been suggested in other caspases [32].

The ability of certain caspases to cleave these primary sequences can also be influenced by post-translational modifications of the substrates. For example, phosphorylation of the substrates primary tetrapeptide has been shown to influence the ability of apoptotic caspases to cleave certain substrates [74,77]. However, its influence on inflammatory caspase specificity is currently unclear.

Caspase specificity to small peptides led to the development of caspase inhibitors. However, these inhibitors display relative specificity as they can target other caspases [78]. For example, an inhibitor derived from caspase-8 favourite recognition sequence will also inhibit efficiently other caspases [78].

Determinants outside the substrate-binding pocket have also been shown to influence caspase specificity [79].

Exosites

Exosites are structural motifs that allow binding of substrates independently of the primary substrate binding pocket. Although insufficient to allow substrate cleavage on their own, exosites enhance the cleavage efficiency of specific substrates and are used by various proteases to achieve protease specificity.

Exosites were first observed in apoptotic caspases. Caspase-7 harbours an exosite in its N-terminal domain that consist of four lysines [79]. Recently, this exosite has been suggested to bind RNA, facilitating RNA-binding protein cleavage by caspase-7 [80]. Similar sequences have been found in other apoptotic caspases, such as caspase-6 [81].

Until recently, no structure of caspases with their protein substrates were available. However, two recent papers outline unprecedent details on how exosites allow substrate specificity by inflammatory caspases.

Shao's and Tsiao's lab reveal the structure of caspase-1, -4 and -11 bound to the C-terminal fragment of GSDMD [82] or the full-length GSDMD [83]. Their structures reveal that the interaction between the loop L2 and L2’ of the caspase IDL creates a new binding site for the C-terminal domain of GSDMD, increasing caspase affinity for GSDMD and reducing the impact of a defined primary sequence (positions P4–P1 according to Schechter–Berger nomenclature [72]) for GSDMD to be cleaved by inflammatory caspases (Figure 2).

So far, GSDMD is the only inflammatory caspases substrate that has been clearly shown to bind on an inflammatory caspase exosite. However, recent evidence suggests that similar sites are also present for IL-1β [84].

Developing inhibitors that target exosites instead of the primary substrate-binding pocket bear the promise of more specific inhibitors.

Caspase substrate cleavage has three functional consequences: a loss-of-functions, a gain of functions or a no-consequence effect. Caspase cleavage may also affect protein stability and target specific substrates to proteasomal degradation [85,86].

Proteomic studies have identified substrates for caspase-1 in mice [87,88] and humans [89] but so far failed to successfully identify caspase-4 and-5 substrates. Table 3 summarise substrates that have been identified by forward and reverse proteomics and shows that caspases are involved in multiple pathways (Figure 3).

Table 3
Inflammatory caspases substrates
SubstrateUniprot IDCleavage site (P4–P1′)FunctionCaspaseGain/LossConservedReference
IL-1a P01583 Ile/Ala/Asn/Asp(104)/Ser Pro-inflammatory cytokine M/H [95
IL-1B P01584 Phe/Glu/Ala/Asp(27)/Gly Pro-inflammatory cytokine 1/5 D/M/H [4,89
IL1B P01584 Tyr/Val/His/Asp(116)/Ala Pro-inflammatory cytokine D/M/H [4,89
IL-18 O95256 Leu/Glu/Ser/Asp(36)/Tyr Pro-inflammatory cytokine 1/4/5 M/H [75,111
IL-37 Q9NZH6 Trp/Glu/Lys/Asp(20)/Glu Anti-inflammatory cytokine [94
casp3 P42574 Ile/Gly/Thr/Asp(175)/Ser Apoptotic pathway 1/4 M/H [112,113
casp7 P55210 Ile/Gln/Ala/Asp(198)/Ser Apoptotic pathway D/M/H [87
Bid P55957 Ile/Glu/ala/Asp(75)/Ser Apoptotic pathway D/M/H [107,114
BAP31 P51572 Ala/Ala/Val/Asp(231)/Gly Apoptotic pathway D/H [115
PARP1 P09874 Asp/Glu/Val/Asp(214)/Gly Apoptotic pathway D/M/H [116
SYAP1 Q96A49 Phe/Val/Ser/Asp(278)/Ala Signal Transduction 1/5 UN D/M/H [89
GSDMD P57764 Phe/Leu/Thr/Asp(275)/Gly Pyroptosis 1/4/5 D/M/H [89,97,99
Actin P60709 Leu/Val/Val/Asp(11)/Asn Cell structure UN D/M/H [89
Actin P60709 Gly/Gln/Lys/Asp(51)/Ser Cell structure UN D/M/H [89
Actin P60709 Asp/Ser/Gly/Asp(157)/Gly Cell structure UN D/M/H [89
Gelsolin P06396 Asp/Glu/Thr/Asp(403)/Gly Cell structure M/H [89
Spectrin Q13813 Asp/Glut/Thr/Asp(1185)/Ser Cell structure UN D/M/H [117
ARPC5 O15511 Asp/Glu/Glu/Asp(29)/Gly Cell structure UN D/M/H [89
RCSD1 Q6JBY9 Glu/Glu/Val/Asp(272)/Gly Cell structure UN [89
IQGAP1 IQGAP1 Asp/Glu/Val/Asp(8)/Gly Cell structure UN D/M/H [89
GAPDH P04075 Lys/Thr/Val/Asp(189)/Gly Metabolism D/M/H [88
ENO1 P06733 Metabolism UN [88
TPI1 P60174 Metabolism UN [88
PIP4K2B Q9UBF8 Phe/Ser/Val/Asp(488)/Ser Kinase UN D/M/H [89
BASP1 P80723 Thr/Lys/Ser/Asp(165)/Gly Channel UN [89
CALU O43852 Tyr/Ile/Gly/Asp(216)/Met Calcium-binding UN D/M/H [89
USP10 Q14694 Leu/Glu/Asn/Asp(138)/Gly Ubiquitin protease UN D/M/H [89
HOIP Q96EP0 Leu/Glu/Pro/Asp(348)/Leu Ubiquitin ligase M/H [118
HOIP Q96EP0 Leu/Val/Val/Val/Asp(387)/Ser Ubiquitin ligase D/M/H [118
TFAP2A P05549 Asp/Arg/His/Asp(19)/Gly Transcription UN M/H [119
Max P61244 Ile/Glu/Val/Glu(10)/Ser Transcription UN M/H [110
SubstrateUniprot IDCleavage site (P4–P1′)FunctionCaspaseGain/LossConservedReference
IL-1a P01583 Ile/Ala/Asn/Asp(104)/Ser Pro-inflammatory cytokine M/H [95
IL-1B P01584 Phe/Glu/Ala/Asp(27)/Gly Pro-inflammatory cytokine 1/5 D/M/H [4,89
IL1B P01584 Tyr/Val/His/Asp(116)/Ala Pro-inflammatory cytokine D/M/H [4,89
IL-18 O95256 Leu/Glu/Ser/Asp(36)/Tyr Pro-inflammatory cytokine 1/4/5 M/H [75,111
IL-37 Q9NZH6 Trp/Glu/Lys/Asp(20)/Glu Anti-inflammatory cytokine [94
casp3 P42574 Ile/Gly/Thr/Asp(175)/Ser Apoptotic pathway 1/4 M/H [112,113
casp7 P55210 Ile/Gln/Ala/Asp(198)/Ser Apoptotic pathway D/M/H [87
Bid P55957 Ile/Glu/ala/Asp(75)/Ser Apoptotic pathway D/M/H [107,114
BAP31 P51572 Ala/Ala/Val/Asp(231)/Gly Apoptotic pathway D/H [115
PARP1 P09874 Asp/Glu/Val/Asp(214)/Gly Apoptotic pathway D/M/H [116
SYAP1 Q96A49 Phe/Val/Ser/Asp(278)/Ala Signal Transduction 1/5 UN D/M/H [89
GSDMD P57764 Phe/Leu/Thr/Asp(275)/Gly Pyroptosis 1/4/5 D/M/H [89,97,99
Actin P60709 Leu/Val/Val/Asp(11)/Asn Cell structure UN D/M/H [89
Actin P60709 Gly/Gln/Lys/Asp(51)/Ser Cell structure UN D/M/H [89
Actin P60709 Asp/Ser/Gly/Asp(157)/Gly Cell structure UN D/M/H [89
Gelsolin P06396 Asp/Glu/Thr/Asp(403)/Gly Cell structure M/H [89
Spectrin Q13813 Asp/Glut/Thr/Asp(1185)/Ser Cell structure UN D/M/H [117
ARPC5 O15511 Asp/Glu/Glu/Asp(29)/Gly Cell structure UN D/M/H [89
RCSD1 Q6JBY9 Glu/Glu/Val/Asp(272)/Gly Cell structure UN [89
IQGAP1 IQGAP1 Asp/Glu/Val/Asp(8)/Gly Cell structure UN D/M/H [89
GAPDH P04075 Lys/Thr/Val/Asp(189)/Gly Metabolism D/M/H [88
ENO1 P06733 Metabolism UN [88
TPI1 P60174 Metabolism UN [88
PIP4K2B Q9UBF8 Phe/Ser/Val/Asp(488)/Ser Kinase UN D/M/H [89
BASP1 P80723 Thr/Lys/Ser/Asp(165)/Gly Channel UN [89
CALU O43852 Tyr/Ile/Gly/Asp(216)/Met Calcium-binding UN D/M/H [89
USP10 Q14694 Leu/Glu/Asn/Asp(138)/Gly Ubiquitin protease UN D/M/H [89
HOIP Q96EP0 Leu/Glu/Pro/Asp(348)/Leu Ubiquitin ligase M/H [118
HOIP Q96EP0 Leu/Val/Val/Val/Asp(387)/Ser Ubiquitin ligase D/M/H [118
TFAP2A P05549 Asp/Arg/His/Asp(19)/Gly Transcription UN M/H [119
Max P61244 Ile/Glu/Val/Glu(10)/Ser Transcription UN M/H [110

Cytokines

Caspase-1 was originally identified as an Interleukine-1β (IL-1β)-converting enzyme and was originally characterised to cleave and mature this cytokine. Caspase-1 also processes the IL-18 pro-form into its mature form. The cytokines IL-1β and IL-18 are unconventionally secreted through GSDMD pores or following cell lysis [90,91]. Caspase-4 also cleave these cytokines, although much less efficiently than caspase-1 [75]. Cleavage of IL-1β and IL-18 leads to the recruitment of additional phagocytes and contributes to the generation of a fever. Caspase-8 also cleaves IL-1β and IL-18 during multiple situations [92,93].

Caspase-1 also cleaves IL-37, an anti-inflammatory cytokine, to promote IL-37 nuclear translocation and genetic repression of anti-inflammatory cytokines [94].

Caspase-5 has been reported to cleave IL-1α in senescent cells, a process that may contribute to aging-associated inflammation [95].

Gasdermin D

Gasdermin D (GSDMD) is a central executor of pyroptosis (Figure 3). Following cleavage by caspase-1, -4 (-11), -5 and -8, the GSDMD N-terminal fragment is freed from its inhibitory counterpart (C-terminal fragment) and is able to form pores at the plasma membrane and into different organelles [96–99]. GSDMD pores allow secretion of pro-inflammatory cytokines (IL-1β, IL-18) and the release of a myriad of DAMPS (e.g. ATP, Galectin-1) [100,101]. Additionally, GSDMD pores generate potassium efflux to allow caspase-1 activation through the NLRP3 inflammasome, downstream of the non-canonical inflammasome [102,103]. Terminal membrane rupture downstream of GSDMD pores has been shown to be mediated by the membrane protein NINJ1 [104]. In neutrophils, GSDMD cleavage by non-canonical inflammatory caspases allows the generation of neutrophil extracellular traps [105].

Other substrates

Caspase-1 can cleave proapoptotic proteins like Bid and caspase-3 and -7. It has been suggested to control infection by specific pathogens and stands as a backup cell death mechanism if pyroptosis is counteracted by pathogens [106–108].

Caspase-1, -4, -5, and -11 can cleave and inactivate cGAS to control type I IFN response and modulate antiviral responses [109].

Caspase-1 has been shown to cleave other substrates however, the functional relevance of these substrates remains unclear. For example, caspase-1 may contribute to cell demise by cleaving many structural proteins (e.g. vimentin, actin, gelsolin, IQGAP1 and others (Table 3)). Caspase-1 may also regulate RNA-mediated processes and metabolism by cleaving ribonucleoproteins [87,89] and glycolytic enzymes [88] (Table 3)).

Known caspase-4 and -5 substrates are minimal, and efforts to identify them thus far have been limited. Outside the substrates mentioned above, caspase-5 cleaves the transcription factor Max after glutamic acid [110], and SYAP1 at an unknown site [89].

Caspases and their substrates during evolution

Numerous caspase substrates are conserved throughout evolution. Inflammatory caspases are present in vertebrates, from the zebrafish [120,121] to higher primates [20] (Table 3; D (Danio rerio), M (Mus musculus), H (Homo sapiens)). Human inflammatory caspases share high similarities with higher primates caspases.

Multiple substrates seem to be conserved during evolution and many of their cleavage site position (Table 3) is highly conserved, suggesting a role for various caspases substrates throughout evolution. Ancestral reconstitutions of caspases support the co-evolution of caspases and their substrates [71,122].

Whereas apoptotic caspase activity is controlled by the inhibitors of apoptosis proteins (IAP) [123], endogenous inhibitors controlling inflammatory caspase activity are poorly characterised.

SerpinB1 was suggested to be an endogenous inhibitor of inflammatory caspases in some cell types, such as neutrophils [124].

The CARD-only proteins (COPs) and PYD-only proteins (POPs) can inhibit inflammatory caspases indirectly by regulating inflammasome formation and/or caspase recruitment to their activating platform [125].

The involvement of inflammatory caspases in a range of diseases containing an inflammatory component (from obesity to cancer and sepsis [126,127]) supports the urgency to develop specific inhibitors that can target one or multiple inflammatory caspases.

Vertex developed a caspase-1/4 inhibitor, VX765, that was taken to clinical trials [128]. However, the studies were halted in stage 2 due to liver toxicity [129].

The development of caspase inhibitors that target exosites highlights the possibility of more specific inhibitors.

In addition, the development of exosite inhibitors has the potential to generate inhibitors that target deleterious functions of caspases, without affecting the beneficial ones, by modulating the cleavage of selected substrates.

  • Importance in the field: Inflammatory caspases are crucial for regulated immune responses and linked to diverse pathologies from sepsis to cancer.

  • Summary of the current thinking: Inflammatory caspases are activated either by canonical or non-canonical inflammasomes. GBPs are novel innate immune sensors that form a non-canonical inflammasome and facilitate LPS presentation to caspase-4 and -11. Caspases recognise their substrates through substrate binding-pockets and use exosites to increase substrate selectivity.

  • Future directions: Research to identify and characterise novel caspase substrates will expand our understanding of inflammatory caspases in health and disease. Future research will address how inflammatory caspases activity is controlled by endogenous mechanisms and inhibitors. Targeting caspase exosites may allow for the development of more specific pharmacological inhibitors.

The authors declare that there are no competing interests associated with the manuscript.

The Boucher lab is supported by a Springboard award (SBF006\1025) from the Academy for Medical Science and institutional funding from the University of York.

Open access for this article was enabled by the participation of University of York in an all-inclusive Read & Publish pilot with Portland Press and the Biochemical Society under a transformative agreement with JISC.

G.B. and B.H. contributed equally to this work. G.B., B.H. and R.K. wrote the review. D.B. wrote the review and supervised.

The figures were generated using Biorender (biorender.com). We apologized to colleagues we did not cited due to limited space.

ASC

apoptosis-associated speck-like protein

CARD

Caspase recruitment and activation domain

COP

CARD-only protein

DAMP

danger-associated molecular patterns

IDL

interdomain linker

LTA

lipoteichoic acid

PAMP

pathogen-associated molecular patterns

POP

PYD-only protein

PRR

pattern recognition receptor

PYD

pyrin domain

RDL

recruitment domain linker

1
López-Otín
,
C.
and
Bond
,
J.S.
(
2008
)
Proteases: multifunctional enzymes in life and disease
.
J. Biol. Chem.
283
,
30433
7
2
Fuentes-Prior
,
P.
and
Salvesen
,
G.S.
(
2004
)
The protein structures that shape caspase activity, specificity, activation and inhibition
.
Biochem. J.
384
,
201
232
3
Ellis
,
H.M.
and
Horvitz
,
H.R.
(
1986
)
Genetic control of programmed cell death in the nematode C. elegans
.
Cell
44
,
817
829
4
Thornberry
,
N.A.
,
Bull
,
H.G.
,
Calaycay
,
J.R.
,
Chapman
,
K.T.
,
Howard
,
A.D.
,
Kostura
,
M.J.
et al (
1992
)
A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes
.
Nature
356
,
768
774
5
Yuan
,
J.
,
Shaham
,
S.
,
Ledoux
,
S.
,
Ellis
,
H.M.
and
Horvitz
,
H.R.
(
1993
)
The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme
.
Cell
75
,
641
652
6
Martinon
,
F.
,
Burns
,
K.
and
Tschopp
,
J.
(
2002
)
The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta
.
Mol. Cell
10
,
417
426
7
Schroder
,
K.
and
Tschopp
,
J.
(
2010
)
The inflammasomes
.
Cell
140
,
821
832
8
Broz
,
P.
and
Dixit
,
V.M.
(
2016
)
Inflammasomes: mechanism of assembly, regulation and signalling
.
Nat. Rev. Immunol.
16
,
407
420
9
Minina
,
E.A.
,
Staal
,
J.
,
Alvarez
,
V.E.
,
Berges
,
J.A.
,
Berman-Frank
,
I.
,
Beyaert
,
R.
et al (
2020
)
Classification and nomenclature of metacaspases and paracaspases: no more confusion with caspases
.
Mol. Cell
77
,
927
929
10
Baena-Lopez
,
L.A.
,
Arthurton
,
L.
,
Xu
,
D.C.
and
Galasso
,
A.
(
2018
)
Non-apoptotic caspase regulation of stem cell properties
.
Semin. Cell Dev. Biol.
82
,
118
126
11
Solier
,
S.
,
Fontenay
,
M.
,
Vainchenker
,
W.
,
Droin
,
N.
and
Solary
,
E.
(
2017
)
Non-apoptotic functions of caspases in myeloid cell differentiation
.
Cell Death Differ.
24
,
1337
1347
12
McArthur
,
K.
and
Kile
,
B.T.
(
2018
)
Apoptotic caspases: multiple or mistaken identities?
Trends Cell Biol.
28
,
475
493
13
Mukherjee
,
A.
and
Williams
,
D.W.
(
2017
)
More alive than dead: non-apoptotic roles for caspases in neuronal development, plasticity and disease
.
Cell Death Differ.
24
,
1411
1421
14
Kucka
,
K.
and
Wajant
,
H.
(
2020
)
Receptor oligomerization and its relevance for signaling by receptors of the tumor necrosis factor receptor superfamily
.
Front. Cell Dev. Biol.
8
,
615141
15
Tummers
,
B.
and
Green
,
D.R.
(
2017
)
Caspase-8: regulating life and death
.
Immunol. Rev.
277
,
76
89
16
Schafer
,
Z.T.
and
Kornbluth
,
S.
(
2006
)
The apoptosome: physiological, developmental, and pathological modes of regulation
.
Dev. Cell
10
,
549
561
17
Dorstyn
,
L.
,
Akey
,
C.W.
and
Kumar
,
S.
(
2018
)
New insights into apoptosome structure and function
.
Cell Death Differ.
25
,
1194
1208
18
Elmore
,
S.
(
2007
)
Apoptosis: a review of programmed cell death
.
Toxicol. Pathol.
35
,
495
516
19
Pop
,
C.
and
Salvesen
,
G.S.
(
2009
)
Human caspases: activation, specificity, and regulation
.
J. Biol. Chem.
284
,
21777
21781
20
Martinon
,
F.
and
Tschopp
,
J.
(
2007
)
Inflammatory caspases and inflammasomes: master switches of inflammation
.
Cell Death Differ.
14
,
10
22
21
Saleh
,
M.
,
Vaillancourt
,
J.P.
,
Graham
,
R.K.
,
Huyck
,
M.
,
Srinivasula
,
S.M.
,
Alnemri
,
E.S.
et al (
2004
)
Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms
.
Nature
429
,
75
79
22
Vande Walle
,
L.
,
Jiménez Fernández
,
D.
,
Demon
,
D.
,
Van Laethem
,
N.
,
Van Hauwermeiren
,
F.
,
Van Gorp
,
H.
et al (
2016
)
Does caspase-12 suppress inflammasome activation?
Nature
534
,
E1
E4
23
Skeldon
,
A.M.
,
Morizot
,
A.
,
Douglas
,
T.
,
Santoro
,
N.
,
Kursawe
,
R.
,
Kozlitina
,
J.
et al (
2016
)
Caspase-12, but not caspase-11, inhibits obesity and insulin resistance
.
J. Immunol.
196
,
437
447
24
Fischer
,
H.
,
Koenig
,
U.
,
Eckhart
,
L.
and
Tschachler
,
E.
(
2002
)
Human caspase 12 has acquired deleterious mutations
.
Biochem. Biophys. Res. Commun.
293
,
722
726
25
Howard
,
A.D.
,
Kostura
,
M.J.
,
Thornberry
,
N.
,
Ding
,
G.J.
,
Limjuco
,
G.
,
Weidner
,
J.
et al (
1991
)
IL-1-converting enzyme requires aspartic acid residues for processing of the IL-1 beta precursor at two distinct sites and does not cleave 31-kDa IL-1 alpha
.
J. Immunol.
147
,
2964
2969
PMID:
[PubMed]
26
Cerretti
,
D.P.
,
Kozlosky
,
C.J.
,
Mosley
,
B.
,
Nelson
,
N.
,
Van Ness
,
K.
,
Greenstreet
,
T.A.
et al (
1992
)
Molecular cloning of the interleukin-1 beta converting enzyme
.
Science
256
,
97
100
27
Kostura
,
M.J.
,
Tocci
,
M.J.
,
Limjuco
,
G.
,
Chin
,
J.
,
Cameron
,
P.
,
Hillman
,
A.G.
et al (
1989
)
Identification of a monocyte specific pre-interleukin 1 beta convertase activity
.
Proc. Natl Acad. Sci. U.S.A.
86
,
5227
5231
28
Wang
,
S.
,
Miura
,
M.
,
Jung
,
Y.K.
,
Zhu
,
H.
,
Li
,
E.
and
Yuan
,
J.
(
1998
)
Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE
.
Cell
92
,
501
509
29
Lin
,
X.Y.
,
Choi
,
M.S.
and
Porter
,
A.G.
(
2000
)
Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-gamma
.
J. Biol. Chem.
275
,
39920
6
30
Göös
,
H.
,
Fogarty
,
C.L.
,
Sahu
,
B.
,
Plagnol
,
V.
,
Rajamäki
,
K.
,
Nurmi
,
K.
et al (
2019
)
Gain-of-function CEBPE mutation causes noncanonical autoinflammatory inflammasomopathy
.
J. Allergy Clin. Immunol.
144
,
1364
1376
31
Denecker
,
G.
,
Ovaere
,
P.
,
Vandenabeele
,
P.
and
Declercq
,
W.
(
2008
)
Caspase-14 reveals its secrets
.
J. Cell Biol.
180
,
451
458
32
Brown-Suedel
,
A.N.
and
Bouchier-Hayes
,
L.
(
2020
)
Caspase-2 substrates: to apoptosis, cell cycle control, and beyond
.
Front. Cell Dev. Biol.
8
,
610022
33
Kersse
,
K.
,
Verspurten
,
J.
,
Vanden Berghe
,
T.
and
Vandenabeele
,
P.
(
2011
)
The death-fold superfamily of homotypic interaction motifs
.
Trends Biochem. Sci.
36
,
541
552
34
Dick
,
M.S.
,
Sborgi
,
L.
,
Rühl
,
S.
,
Hiller
,
S.
and
Broz
,
P.
(
2016
)
ASC filament formation serves as a signal amplification mechanism for inflammasomes
.
Nat. Commun.
7
,
11929
35
Lu
,
A.
,
Magupalli
,
V.G.
,
Ruan
,
J.
,
Yin
,
Q.
,
Atianand
,
M.K.
,
Vos
,
M.R.
et al (
2014
)
Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes
.
Cell
156
,
1193
1206
36
Boucher
,
D.
,
Monteleone
,
M.
,
Coll
,
R.C.
,
Chen
,
K.W.
,
Ross
,
C.M.
,
Teo
,
J.L.
et al (
2018
)
Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity
.
J. Exp. Med.
215
,
827
840
37
Broz
,
P.
,
von Moltke
,
J.
,
Jones
,
J.W.
,
Vance
,
R.E.
and
Monack
,
D.M.
(
2010
)
Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing
.
Cell Host Microbe
8
,
471
483
38
Sagulenko
,
V.
,
Thygesen
,
S.J.
,
Sester
,
D.P.
,
Idris
,
A.
,
Cridland
,
J.A.
,
Vajjhala
,
P.R.
et al (
2013
)
AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC
.
Cell Death Differ.
20
,
1149
1160
39
Levinsohn
,
J.L.
,
Newman
,
Z.L.
,
Hellmich
,
K.A.
,
Fattah
,
R.
,
Getz
,
M.A.
,
Liu
,
S.
et al (
2012
)
Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome
.
PLoS Pathog.
8
,
e1002638
40
Robinson
,
K.S.
,
Teo
,
D.E.T.
,
Tan
,
K.S.
,
Toh
,
G.A.
,
Ong
,
H.H.
,
Lim
,
C.K.
et al (
2020
)
Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia
.
Science
370
,
eaay2002
41
Bauernfried
,
S.
,
Scherr
,
M.J.
,
Pichlmair
,
A.
,
Duderstadt
,
K.E.
and
Hornung
,
V.
(
2021
)
Human NLRP1 is a sensor for double-stranded RNA
.
Science
371
,
eabd0811
42
Ewald
,
S.E.
,
Chavarria-Smith
,
J.
and
Boothroyd
,
J.C.
(
2014
)
NLRP1 is an inflammasome sensor for Toxoplasma gondii
.
Infect. Immun.
82
,
460
468
43
Kasper
,
L.
,
König
,
A.
,
Koenig
,
P.-A.
,
Gresnigt
,
M.S.
,
Westman
,
J.
,
Drummond
,
R.A.
et al (
2018
)
The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes
.
Nat. Commun.
9
,
4260
44
Murthy
,
A.M.V.
,
Sullivan
,
M.J.
,
Nhu
,
N.T.K.
,
Lo
,
A.W.
,
Phan
,
M.-D.
,
Peters
,
K.M.
et al (
2019
)
Variation in hemolysin A expression between uropathogenic Escherichia coli isolates determines NLRP3-dependent vs. -independent macrophage cell death and host colonization
.
FASEB J.
33
,
7437
7450
45
Gross
,
O.
,
Poeck
,
H.
,
Bscheider
,
M.
,
Dostert
,
C.
,
Hannesschläger
,
N.
,
Endres
,
S.
et al (
2009
)
Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence
.
Nature
459
,
433
436
46
Mariathasan
,
S.
,
Weiss
,
D.S.
,
Newton
,
K.
,
McBride
,
J.
,
O'Rourke
,
K.
,
Roose-Girma
,
M.
et al (
2006
)
Cryopyrin activates the inflammasome in response to toxins and ATP
.
Nature
440
,
228
232
47
Martinon
,
F.
,
Pétrilli
,
V.
,
Mayor
,
A.
,
Tardivel
,
A.
and
Tschopp
,
J.
(
2006
)
Gout-associated uric acid crystals activate the NALP3 inflammasome
.
Nature
440
,
237
241
48
Hara
,
H.
,
Seregin
,
S.S.
,
Yang
,
D.
,
Fukase
,
K.
,
Chamaillard
,
M.
,
Alnemri
,
E.S.
et al (
2018
)
The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection
.
Cell
175
,
1651
1664.e14
49
Khare
,
S.
,
Dorfleutner
,
A.
,
Bryan
,
N.B.
,
Yun
,
C.
,
Radian
,
A.D.
,
de Almeida
,
L.
et al (
2012
)
An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages
.
Immunity
36
,
464
476
50
Kay
,
C.
,
Wang
,
R.
,
Kirkby
,
M.
and
Man
,
S.M.
(
2020
)
Molecular mechanisms activating the NAIP-NLRC4 inflammasome: implications in infectious disease, autoinflammation, and cancer
.
Immunol. Rev.
297
,
67
82
51
Hornung
,
V.
,
Ablasser
,
A.
,
Charrel-Dennis
,
M.
,
Bauernfeind
,
F.
,
Horvath
,
G.
,
Caffrey
,
D.R.
et al (
2009
)
AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC
.
Nature
458
,
514
518
52
Roberts
,
T.L.
,
Idris
,
A.
,
Dunn
,
J.A.
,
Kelly
,
G.M.
,
Burnton
,
C.M.
,
Hodgson
,
S.
et al (
2009
)
HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA
.
Science
323
,
1057
1060
53
Xu
,
H.
,
Yang
,
J.
,
Gao
,
W.
,
Li
,
L.
,
Li
,
P.
,
Zhang
,
L.
et al (
2014
)
Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome
.
Nature
513
,
237
241
54
Santos
,
J.C.
,
Boucher
,
D.
,
Schneider
,
L.K.
,
Demarco
,
B.
,
Dilucca
,
M.
,
Shkarina
,
K.
et al (
2020
)
Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria
.
Nat. Commun.
11
,
3276
55
Wandel
,
M.P.
,
Kim
,
B.-H.
,
Park
,
E.-S.
,
Boyle
,
K.B.
,
Nayak
,
K.
,
Lagrange
,
B.
et al (
2020
)
Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms
.
Nat. Immunol.
21
,
880
891
56
Kutsch
,
M.
,
Sistemich
,
L.
,
Lesser
,
C.F.
,
Goldberg
,
M.B.
,
Herrmann
,
C.
and
Coers
,
J.
(
2020
)
Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions
.
EMBO J.
39
,
e104926
57
Shi
,
J.
,
Zhao
,
Y.
,
Wang
,
Y.
,
Gao
,
W.
,
Ding
,
J.
,
Li
,
P.
et al (
2014
)
Inflammatory caspases are innate immune receptors for intracellular LPS
.
Nature
514
,
187
192
58
Tretina
,
K.
,
Park
,
E.-S.
,
Maminska
,
A.
and
MacMicking
,
J.D.
(
2019
)
Interferon-induced guanylate-binding proteins: guardians of host defense in health and disease
.
J. Exp. Med.
216
,
482
500
59
Fisch
,
D.
,
Clough
,
B.
,
Domart
,
M.-C.
,
Encheva
,
V.
,
Bando
,
H.
,
Snijders
,
A.P.
et al (
2020
)
Human GBP1 differentially targets Salmonella and Toxoplasma to license recognition of microbial ligands and caspase-mediated death
.
Cell Rep.
32
,
108008
60
Vanaja
,
S.K.
,
Russo
,
A.J.
,
Behl
,
B.
,
Banerjee
,
I.
,
Yankova
,
M.
,
Deshmukh
,
S.D.
et al (
2016
)
Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation
.
Cell
165
,
1106
1119
61
Santos
,
J.C.
,
Dick
,
M.S.
,
Lagrange
,
B.
,
Degrandi
,
D.
,
Pfeffer
,
K.
,
Yamamoto
,
M.
et al (
2018
)
LPS targets host guanylate-binding proteins to the bacterial outer membrane for non-canonical inflammasome activation
.
EMBO J.
37
,
e98089
62
Man
,
S.M.
,
Karki
,
R.
,
Sasai
,
M.
,
Place
,
D.E.
,
Kesavardhana
,
S.
,
Temirov
,
J.
et al (
2016
)
IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes
.
Cell..
167
,
382
396.e17
63
Meunier
,
E.
,
Wallet
,
P.
,
Dreier
,
R.F.
,
Costanzo
,
S.
,
Anton
,
L.
,
Rühl
,
S.
et al (
2015
)
Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida
.
Nat. Immunol.
16
,
476
484
64
Casson
,
C.N.
,
Yu
,
J.
,
Reyes
,
V.M.
,
Taschuk
,
F.O.
,
Yadav
,
A.
,
Copenhaver
,
A.M.
et al (
2015
)
Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens
.
Proc. Natl Acad. Sci. U.S.A.
112
,
6688
6693
65
Ross
,
C.
,
Chan
,
A.H.
,
Von Pein
,
J.
,
Boucher
,
D.
and
Schroder
,
K.
(
2018
)
Dimerization and auto-processing induce caspase-11 protease activation within the non-canonical inflammasome
.
Life Sci. Alliance
1
,
e201800237
66
Lee
,
B.L.
,
Stowe
,
I.B.
,
Gupta
,
A.
,
Kornfeld
,
O.S.
,
Roose-Girma
,
M.
,
Anderson
,
K.
et al (
2018
)
Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation
.
J. Exp. Med.
215
,
2279
2288
67
Chu
,
L.H.
,
Indramohan
,
M.
,
Ratsimandresy
,
R.A.
,
Gangopadhyay
,
A.
,
Morris
,
E.P.
,
Monack
,
D.M.
et al (
2018
)
The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages
.
Nat. Commun.
9
,
996
68
Zanoni
,
I.
,
Tan
,
Y.
,
Di Gioia
,
M.
,
Broggi
,
A.
,
Ruan
,
J.
,
Shi
,
J.
et al (
2016
)
An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells
.
Science
352
,
1232
1236
69
Pillon
,
N.J.
,
Chan
,
K.L.
,
Zhang
,
S.
,
Mejdani
,
M.
,
Jacobson
,
M.R.
,
Ducos
,
A.
et al (
2016
)
Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release
.
Am. J. Physiol. Endocrinol. Metab.
311
,
E825
E835
70
Bitto
,
N.J.
,
Baker
,
P.J.
,
Dowling
,
J.K.
,
Wray-McCann
,
G.
,
De Paoli
,
A.
,
Tran
,
L.S.
et al (
2018
)
Membrane vesicles from Pseudomonas aeruginosa activate the noncanonical inflammasome through caspase-5 in human monocytes
.
Immunol. Cell Biol.
96
,
1120
1130
71
Timmer
,
J.C.
,
Zhu
,
W.
,
Pop
,
C.
,
Regan
,
T.
,
Snipas
,
S.J.
,
Eroshkin
,
A.M.
et al (
2009
)
Structural and kinetic determinants of protease substrates
.
Nat. Struct. Mol. Biol.
16
,
1101
1108
72
Schechter
,
I.
and
Berger
,
A.
(
1967
)
On the size of the active site in proteases. I. Papain
.
Biochem. Biophys. Res. Commun.
27
,
157
162
73
Thornberry
,
N.A.
,
Rano
,
T.A.
,
Peterson
,
E.P.
,
Rasper
,
D.M.
,
Timkey
,
T.
,
Garcia-Calvo
,
M.
et al (
1997
)
A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis
.
J. Biol. Chem.
272
,
17907
17911
74
Seaman
,
J.E.
,
Julien
,
O.
,
Lee
,
P.S.
,
Rettenmaier
,
T.J.
,
Thomsen
,
N.D.
and
Wells
,
J.A.
(
2016
)
Cacidases: caspases can cleave after aspartate, glutamate and phosphoserine residues
.
Cell Death Differ.
23
,
1717
1726
75
Bibo-Verdugo
,
B.
,
Snipas
,
S.J.
,
Kolt
,
S.
,
Poreba
,
M.
and
Salvesen
,
G.S.
(
2020
)
Extended subsite profiling of the pyroptosis effector protein gasdermin D reveals a region recognized by inflammatory caspase-11
.
J. Biol. Chem.
295
,
11292
11302
76
Ramirez
,
M.L.G.
,
Poreba
,
M.
,
Snipas
,
S.J.
,
Groborz
,
K.
,
Drag
,
M.
and
Salvesen
,
G.S.
(
2018
)
Extensive peptide and natural protein substrate screens reveal that mouse caspase-11 has much narrower substrate specificity than caspase-1
.
J. Biol. Chem.
293
,
7058
7067
77
Dix
,
M.M.
,
Simon
,
G.M.
,
Wang
,
C.
,
Okerberg
,
E.
,
Patricelli
,
M.P.
and
Cravatt
,
B.F.
(
2012
)
Functional interplay between caspase cleavage and phosphorylation sculpts the apoptotic proteome
.
Cell
150
,
426
440
78
McStay
,
G.P.
,
Salvesen
,
G.S.
and
Green
,
D.R.
(
2008
)
Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways
.
Cell Death Differ.
15
,
322
331
79
Boucher
,
D.
,
Blais
,
V.
and
Denault
,
J.-B.
(
2012
)
Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis
.
Proc. Natl Acad. Sci. U.S.A.
109
,
5669
5674
80
Desroches
,
A.
and
Denault
,
J.-B.
(
2019
)
Caspase-7 uses RNA to enhance proteolysis of poly(ADP-ribose) polymerase 1 and other RNA-binding proteins
.
Proc. Natl Acad. Sci. U.S.A.
116
,
21521
8
81
MacPherson
,
D.J.
,
Mills
,
C.L.
,
Ondrechen
,
M.J.
and
Hardy
,
J.A.
(
2019
)
Tri-arginine exosite patch of caspase-6 recruits substrates for hydrolysis
.
J. Biol. Chem.
294
,
71
88
82
Wang
,
K.
,
Sun
,
Q.
,
Zhong
,
X.
,
Zeng
,
M.
,
Zeng
,
H.
,
Shi
,
X.
et al (
2020
)
Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis
.
Cell
180
,
941
955.e20
83
Liu
,
Z.
,
Wang
,
C.
,
Yang
,
J.
,
Chen
,
Y.
,
Zhou
,
B.
,
Abbott
,
D.W.
et al (
2020
)
Caspase-1 engages full-length gasdermin D through two distinct interfaces that mediate caspase recruitment and substrate cleavage
.
Immunity
53
,
106
114.e5
84
Devant
,
P.
,
Cao
,
A.
and
Kagan
,
J.C.
(
2020
)
Evolution-inspired dissection of caspase activities enables the redesign of caspase-4 into an LPS sensing interleukin-1 converting enzyme
.
bioRxiv
85
Varshavsky
,
A.
(
2019
)
N-degron and C-degron pathways of protein degradation
.
Proc. Natl Acad. Sci. U.S.A.
116
,
358
366
86
Weaver
,
B.P.
,
Weaver
,
Y.M.
,
Mitani
,
S.
and
Han
,
M.
(
2017
)
Coupled caspase and N-end rule ligase activities allow recognition and degradation of pluripotency factor LIN-28 during non-apoptotic development
.
Dev. Cell
41
,
665
673.e6
87
Lamkanfi
,
M.
,
Kanneganti
,
T.-D.
,
Van Damme
,
P.
,
Vanden Berghe
,
T.
,
Vanoverberghe
,
I.
,
Vandekerckhove
,
J.
et al (
2008
)
Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes
.
Mol. Cell Proteomics
7
,
2350
2363
88
Shao
,
W.
,
Yeretssian
,
G.
,
Doiron
,
K.
,
Hussain
,
S.N.
and
Saleh
,
M.
(
2007
)
The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock
.
J. Biol. Chem.
282
,
36321
9
89
Agard
,
N.J.
,
Maltby
,
D.
and
Wells
,
J.A.
(
2010
)
Inflammatory stimuli regulate caspase substrate profiles
.
Mol. Cell Proteomics
9
,
880
893
90
Monteleone
,
M.
,
Stanley
,
A.C.
,
Chen
,
K.W.
,
Brown
,
D.L.
,
Bezbradica
,
J.S.
,
von Pein
,
J.B.
et al (
2018
)
Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion
.
Cell Rep.
24
,
1425
1433
91
Chan
,
A.H.
and
Schroder
,
K.
(
2020
)
Inflammasome signaling and regulation of interleukin-1 family cytokines
.
J. Exp. Med.
217
,
e20190314
92
Man
,
S.M.
,
Tourlomousis
,
P.
,
Hopkins
,
L.
,
Monie
,
T.P.
,
Fitzgerald
,
K.A.
and
Bryant
,
C.E.
(
2013
)
Salmonella infection induces recruitment of caspase-8 to the inflammasome to modulate IL-1β production
.
J Immunol.
191
,
5239
5246
93
Bossaller
,
L.
,
Chiang
,
P.-I.
,
Schmidt-Lauber
,
C.
,
Ganesan
,
S.
,
Kaiser
,
W.J.
,
Rathinam
,
V.A.K.
et al (
2012
)
Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner
.
J Immunol.
189
,
5508
5512
94
Bulau
,
A.-M.
,
Nold
,
M.F.
,
Li
,
S.
,
Nold-Petry
,
C.A.
,
Fink
,
M.
,
Mansell
,
A.
et al (
2014
)
Role of caspase-1 in nuclear translocation of IL-37, release of the cytokine, and IL-37 inhibition of innate immune responses
.
Proc. Natl Acad. Sci. U.S.A.
111
,
2650
2655
95
Wiggins
,
K.A.
,
Parry
,
A.J.
,
Cassidy
,
L.D.
,
Humphry
,
M.
,
Webster
,
S.J.
,
Goodall
,
J.C.
et al (
2019
)
IL-1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescence-associated secretory phenotype
.
Aging Cell
18
,
e12946
96
He
,
W.
,
Wan
,
H.
,
Hu
,
L.
,
Chen
,
P.
,
Wang
,
X.
,
Huang
,
Z.
et al (
2015
)
Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion
.
Cell Res.
25
,
1285
1298
97
Kayagaki
,
N.
,
Stowe
,
I.B.
,
Lee
,
B.L.
,
O'Rourke
,
K.
,
Anderson
,
K.
,
Warming
,
S.
et al (
2015
)
Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling
.
Nature
526
,
666
671
98
Ding
,
J.
,
Wang
,
K.
,
Liu
,
W.
,
She
,
Y.
,
Sun
,
Q.
,
Shi
,
J.
et al (
2016
)
Pore-forming activity and structural autoinhibition of the gasdermin family
.
Nature
535
,
111
116
99
Shi
,
J.
,
Zhao
,
Y.
,
Wang
,
K.
,
Shi
,
X.
,
Wang
,
Y.
,
Huang
,
H.
et al (
2015
)
Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
.
Nature
526
,
660
665
100
Phulphagar
,
K.
,
Kühn
,
L.I.
,
Ebner
,
S.
,
Frauenstein
,
A.
,
Swietlik
,
J.J.
,
Rieckmann
,
J.
et al (
2021
)
Proteomics reveals distinct mechanisms regulating the release of cytokines and alarmins during pyroptosis
.
Cell Rep.
34
,
108826
101
Russo
,
A.J.
,
Vasudevan
,
S.O.
,
Méndez-Huergo
,
S.P.
,
Kumari
,
P.
,
Menoret
,
A.
,
Duduskar
,
S.
et al (
2021
)
Intracellular immune sensing promotes inflammation via gasdermin D-driven release of a lectin alarmin
.
Nat. Immunol.
22
,
154
165
102
Rühl
,
S.
and
Broz
,
P.
(
2015
)
Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux
.
Eur. J. Immunol.
45
,
2927
2936
103
Baker
,
P.J.
,
Boucher
,
D.
,
Bierschenk
,
D.
,
Tebartz
,
C.
,
Whitney
,
P.G.
,
D'Silva
,
D.B.
et al (
2015
)
NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5
.
Eur. J. Immunol.
45
,
2918
2926
104
Kayagaki
,
N.
,
Kornfeld
,
O.S.
,
Lee
,
B.L.
,
Stowe
,
I.B.
,
O'Rourke
,
K.
,
Li
,
Q.
et al (
2021
)
NINJ1 mediates plasma membrane rupture during lytic cell death
.
Nature
591
,
131
136
105
Chen
,
K.W.
,
Monteleone
,
M.
,
Boucher
,
D.
,
Sollberger
,
G.
,
Ramnath
,
D.
,
Condon
,
N.D.
et al (
2018
)
Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps
.
Sci. Immunol.
3
,
eaar6676
106
Taabazuing
,
C.Y.
,
Okondo
,
M.C.
and
Bachovchin
,
D.A.
(
2017
)
Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages
.
Cell Chem. Biol.
24
,
507
514.e4
107
Heilig
,
R.
,
Dilucca
,
M.
,
Boucher
,
D.
,
Chen
,
K.W.
,
Hancz
,
D.
,
Demarco
,
B.
et al (
2020
)
Caspase-1 cleaves Bid to release mitochondrial SMAC and drive secondary necrosis in the absence of GSDMD
.
Life Sci. Alliance
3
,
e202000735
108
Tsuchiya
,
K.
,
Nakajima
,
S.
,
Hosojima
,
S.
,
Thi Nguyen
,
D.
,
Hattori
,
T.
,
Manh Le
,
T.
et al (
2019
)
Caspase-1 initiates apoptosis in the absence of gasdermin D
.
Nat. Commun.
10
,
2091
109
Wang
,
Y.
,
Ning
,
X.
,
Gao
,
P.
,
Wu
,
S.
,
Sha
,
M.
,
Lv
,
M.
et al (
2017
)
Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection
.
Immunity
46
,
393
404
110
Krippner-Heidenreich
,
A.
,
Talanian
,
R.V.
,
Sekul
,
R.
,
Kraft
,
R.
,
Thole
,
H.
,
Ottleben
,
H.
et al (
2001
)
Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1
.
Biochem. J.
358
,
705
715
111
Akita
,
K.
,
Ohtsuki
,
T.
,
Nukada
,
Y.
,
Tanimoto
,
T.
,
Namba
,
M.
,
Okura
,
T.
et al (
1997
)
Involvement of caspase-1 and caspase-3 in the production and processing of mature human interleukin 18 in monocytic THP.1 cells
.
J. Biol. Chem.
272
,
26595
26603
112
Kang
,
S.J.
,
Wang
,
S.
,
Hara
,
H.
,
Peterson
,
E.P.
,
Namura
,
S.
,
Amin-Hanjani
,
S.
et al (
2000
)
Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions
.
J. Cell Biol.
149
,
613
622
113
Sagulenko
,
V.
,
Vitak
,
N.
,
Vajjhala
,
P.R.
,
Vince
,
J.E.
and
Stacey
,
K.J.
(
2018
)
Caspase-1 is an apical caspase leading to caspase-3 cleavage in the AIM2 inflammasome response, independent of caspase-8
.
J. Mol. Biol.
430
,
238
247
114
Luo
,
X.
,
Budihardjo
,
I.
,
Zou
,
H.
,
Slaughter
,
C.
and
Wang
,
X.
(
1998
)
Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors
.
Cell
94
,
481
490
115
Ng
,
F.W.
,
Nguyen
,
M.
,
Kwan
,
T.
,
Branton
,
P.E.
,
Nicholson
,
D.W.
,
Cromlish
,
J.A.
et al (
1997
)
P28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum
.
J. Cell Biol.
139
,
327
338
116
Malireddi
,
R.K.S.
,
Ippagunta
,
S.
,
Lamkanfi
,
M.
and
Kanneganti
,
T.-D.
(
2010
)
Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes
.
J. Immunol.
185
,
3127
3130
117
Nath
,
R.
,
Raser
,
K.J.
,
Stafford
,
D.
,
Hajimohammadreza
,
I.
,
Posner
,
A.
,
Allen
,
H.
et al (
1996
)
Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis
.
Biochem. J.
319
,
683
690
118
Douglas
,
T.
and
Saleh
,
M.
(
2020
)
Cross-regulation between LUBAC and caspase-1 modulates cell death and inflammation
.
J. Biol. Chem.
295
,
5216
5228
119
Nyormoi
,
O.
,
Wang
,
Z.
,
Doan
,
D.
,
Ruiz
,
M.
,
McConkey
,
D.
and
Bar-Eli
,
M.
(
2001
)
Transcription factor AP-2alpha is preferentially cleaved by caspase 6 and degraded by proteasome during tumor necrosis factor alpha-induced apoptosis in breast cancer cells
.
Mol. Cell. Biol.
21
,
4856
4867
120
Yang
,
D.
,
Zheng
,
X.
,
Chen
,
S.
,
Wang
,
Z.
,
Xu
,
W.
,
Tan
,
J.
et al (
2018
)
Sensing of cytosolic LPS through caspy2 pyrin domain mediates noncanonical inflammasome activation in zebrafish
.
Nat. Commun.
9
,
3052
121
Li
,
J.-Y.
,
Wang
,
Y.-Y.
,
Shao
,
T.
,
Fan
,
D.-D.
,
Lin
,
A.-F.
,
Xiang
,
L.-X.
et al (
2020
)
The zebrafish NLRP3 inflammasome has functional roles in ASC-dependent interleukin-1β maturation and gasdermin E-mediated pyroptosis
.
J. Biol. Chem.
295
,
1120
1141
122
Grinshpon
,
R.D.
,
Shrestha
,
S.
,
Titus-McQuillan
,
J.
,
Hamilton
,
P.T.
,
Swartz
,
P.D.
and
Clark
,
A.C.
(
2019
)
Resurrection of ancestral effector caspases identifies novel networks for evolution of substrate specificity
.
Biochem. J.
476
,
3475
3492
123
Lalaoui
,
N.
and
Vaux
,
D.L.
(
2018
)
Recent advances in understanding inhibitor of apoptosis proteins
.
F1000Res.
7
,
F1000 Faculty Rev-1889
124
Choi
,
Y.J.
,
Kim
,
S.
,
Choi
,
Y.
,
Nielsen
,
T.B.
,
Yan
,
J.
,
Lu
,
A.
et al (
2019
)
SERPINB1-mediated checkpoint of inflammatory caspase activation
.
Nat. Immunol.
20
,
276
287
125
Dorfleutner
,
A.
,
Chu
,
L.
and
Stehlik
,
C.
(
2015
)
Inhibiting the inflammasome: one domain at a time
.
Immunol. Rev.
265
,
205
216
126
Cornelis
,
S.
,
Kersse
,
K.
,
Festjens
,
N.
,
Lamkanfi
,
M.
and
Vandenabeele
,
P.
(
2007
)
Inflammatory caspases: targets for novel therapies
.
Curr. Pharm. Des.
13
,
367
385
127
Man
,
S.M.
,
Karki
,
R.
and
Kanneganti
,
T.-D.
(
2017
)
Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases
.
Immunol. Rev.
277
,
61
75
128
Wannamaker
,
W.
,
Davies
,
R.
,
Namchuk
,
M.
,
Pollard
,
J.
,
Ford
,
P.
,
Ku
,
G.
et al (
2007
)
(S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18
.
J. Pharmacol. Exp. Ther.
321
,
509
516
129
MacKenzie
,
S.H.
,
Schipper
,
J.L.
and
Clark
,
A.C.
(
2010
)
The potential for caspases in drug discovery
.
Curr. Opin Drug Discov. Devel.
13
,
568
576
PMID:
[PubMed]

Author notes

*

These authors contributed equally to this work.

This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). Open access for this article was enabled by the participation of University of York in an all-inclusive Read & Publish pilot with Portland Press and the Biochemical Society under a transformative agreement with JISC.