Group I metabotropic glutamate receptors (I-mGluRs) modulate numerous cellular functions such as specific membrane currents and neurotransmitter release linked to their ability to mobilize calcium from intracellular calcium stores. As such, most I-mGluR research to date has focused on the coupling of these receptors to phospholipase C (PLC)-dependent and inositol (1,4,5) trisphosphate (IP3)-mediated calcium release via activation of IP3 receptors located upon the sarco/endoplasmic reticulum. However, there are now numerous examples of PLC- and IP3-independent I-mGluR-evoked signals, which may instead be mediated by activation of ryanodine receptors (RyRs). A prime candidate for mediating this coupling between I-mGluR activation and RyR opening is cyclic ADP ribose (cADPR) and, indeed, several of these PLC-/IP3-independent I-mGluR-evoked calcium signals have now been shown to be mediated wholly or partly by cADPR-evoked activation of RyRs. The contribution of cADPR signalling to I-mGluR-mediated responses is relatively complex, dependent as it is on factors such as cell type, excitation state of the cell and location of I-mGluRs on the cell. However, these factors notwithstanding, I-mGluR-mediated cADPR signalling remains poorly characterized, with several key aspects yet to be fully elucidated such as (1) the range of stimuli which evoke cADPR production, (2) the specific molecular mechanism(s) coupling cADPR to RyR activation and (3) the contribution of cADPR-mediated responses to downstream outputs such as synaptic plasticity. Furthermore, it is possible that the cADPR pathway may play a role in diseases underpinned by dysregulated calcium homoeostasis such as Alzheimer's disease (AD).

You do not currently have access to this content.