Mutation of the ACN1 (acetate non-utilizing 1) locus of Arabidopsis results in altered acetate assimilation into gluconeogenic sugars and anapleurotic amino acids and leads to an overall depression in primary metabolite levels by approx. 50% during seedling development. Levels of acetyl-CoA were higher in acn1 compared with wild-type, which is counterintuitive to the activity of ACN1 as a peroxisomal acetyl-CoA synthetase. We hypothesize that ACN1 recycles free acetate to acetyl-CoA within peroxisomes in order that carbon remains fed into the glyoxylate cycle. When ACN1 is not present, carbon in the form of acetate can leak out of peroxisomes and is reactivated to acetyl-CoA within the cytosol. Kinetic models incorporating estimates of carbon input and pathway dynamics from a variety of literature sources have proven useful in explaining how ACN1 may prevent the carbon leak and even contribute to the control of peroxisomal carbon metabolism.

You do not currently have access to this content.