One strategy for inhibiting tumour cell growth is the use of polyamine mimetics to depress endogenous polyamine levels and, ideally, obstruct critical polyamine-requiring reactions. Such polyamine analogues make very unusual drugs, in that extremely high intracellular concentrations are required for growth inhibition or cytotoxicity. Cells exposed to even sub-micromolar concentrations of such analogues can achieve effective intracellular levels because these compounds are incorporated by the very aggressive polyamine uptake system. Once incorporated to these levels, many of these analogues induce the synthesis of a regulatory protein, antizyme, which inhibits both polyamine synthesis and the transporter they used to enter the cell. Thus this feedback system allows steady-state maintenance of effective cellular doses of such analogues. Accordingly, effective cellular levels of polyamine analogues are generally inversely related to their capacity to induce antizyme. Antizyme activity is down-regulated by interaction with several binding partners, most notably antizyme inhibitor, and at least a few tumour tissues exhibit deficiencies in antizyme expression. Our studies explore the role of antizyme induction by several polyamine analogues in their physiological response and the possibility that cell-to-cell differences in antizyme expression may contribute to variable sensitivities to these agents.

You do not currently have access to this content.