Human lipodystrophies represent a group of diseases characterized by altered body fat amount and/or repartition and major metabolic alterations with insulin resistance leading to diabetic complications and increased cardiovascular and hepatic risk. Genetic forms of lipodystrophies are rare. Congenital generalized lipodystrophy or Berardinelli–Seip syndrome, autosomal recessive, is characterized by a complete early lipoatrophy and severe insulin resistance and results, in most cases, from mutations either in the seipin gene of unknown function or AGPAT2 encoding an enzyme involved in triacylglycerol synthesis. The Dunnigan syndrome [FPLD2 (familial partial lipodystrophy of the Dunnigan type)] is due to mutations in LMNA encoding the lamin A/C, belonging to the complex group of laminopathies that could comprise muscular and cardiac dystrophies, neuropathies and syndromes of premature aging. Some FPLDs are linked to loss-of-function mutations in the PPAR-γ gene (peroxisome-proliferator-activated receptor γ; FPLD3) with severe metabolic alterations but a less severe lipodystrophy compared with FPLD2. The metabolic syndrome, acquired, represents the most common form of lipodystrophy. HIV-infected patients often present lipodystrophies, mainly related to side effects of antiretroviral drugs together with insulin resistance and metabolic alterations. Such syndromes help to understand the mechanisms involved in insulin resistance resulting from altered fat repartition and could benefit from insulin-sensitizing effects of lifestyle modifications or of specific medications.

You do not currently have access to this content.