In the amyloidogenic pathway, the APP (amyloid precursor protein) is proteolytically processed by the β- and γ-secretases to release the Aβ (amyloid-β) peptide that is neurotoxic and aggregates in the brains of patients suffering from Alzheimer's disease. In the non-amyloidogenic pathway, APP is cleaved by α-secretase within the Aβ domain, precluding deposition of intact Aβ peptide. The cellular form of the PrPC (prion protein) undergoes reactive oxygen species-mediated β-cleavage within the copper-binding octapeptide repeats or, alternatively, α-cleavage within the central hydrophobic neurotoxic domain. In addition, PrPC is shed from the membrane by the action of a zinc metalloprotease. Members of the ADAM (a disintegrin and metalloproteinase) family of zinc metalloproteases, notably ADAM10 and TACE (ADAM17) display α-secretase activity towards APP and appear to be responsible for the α-cleavage of PrPC. The amyloidogenic cleavage of APP by the β- and γ-secretases appears to occur preferentially in cholesterol-rich lipid rafts, while the conversion of PrPC into the infectious form PrPSc also appears to occur in these membrane domains.

You do not currently have access to this content.