Postsynaptic clustering of GABAA (type A γ-aminobutyric acid) receptors is essential to ensure proper function of GABAergic synapses. This process is initiated during synapse formation and is maintained throughout life. The tubulin-associated protein gephyrin is required for clustering of GABAA receptors, but its specific role in this process is not understood. A second protein associated selectively with GABAA receptors at postsynaptic sites is dystrophin. It is present in a subset of GABAergic synapses along with several partners, forming the dystrophin-associated protein complex. In this review, we discuss recent advances in the role of neuronal activity and trans-synaptic signaling for the clustering of gephyrin and dystrophin during synaptogenesis and on the role of these proteins for plasticity and maintenance of mature synapses.

This content is only available as a PDF.
You do not currently have access to this content.