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Intermediate filaments (IFs) are cytoskeletal elements involved in mechanotransduction and
in the integration of cellular responses. They are versatile structures and their assembly and
organization are finely tuned by posttranslational modifications. Among them, type III IFs,
mainly vimentin, have been identified as targets of multiple oxidative and electrophilic mod-
ifications. A characteristic of most type III IF proteins is the presence in their sequence of a
single, conserved cysteine residue (C328 in vimentin), that is a hot spot for these modifica-
tions and appears to play a key role in the ability of the filament network to respond to oxi-
dative stress. Current structural models and experimental evidence indicate that this
cysteine residue may occupy a strategic position in the filaments in such a way that pertur-
bations at this site, due to chemical modification or mutation, impact filament assembly or
organization in a structure-dependent manner. Cysteine-dependent regulation of vimentin
can be modulated by interaction with divalent cations, such as zinc, and by pH.
Importantly, vimentin remodeling induced by C328 modification may affect its interaction
with cellular organelles, as well as the cross-talk between cytoskeletal networks, as seems
to be the case for the reorganization of actin filaments in response to oxidants and electro-
philes. In summary, the evidence herein reviewed delineates a complex interplay in which
type III IFs emerge both as targets and modulators of redox signaling.

Introduction
The cytoskeleton is a complex and dynamic network of filamentous structures that altogether support
cell integrity and are tightly regulated. These filamentous structures are classified according to their
diameter into microfilaments, intermediate filaments (IFs) and microtubules, but differences also
concern their composition, assembly and elongation. Microfilaments and microtubules are composed
by the globular proteins actin and tubulin, respectively, which form regular chains with a defined
orientation and elongation directions. The interaction surfaces of the monomers are known, as well as
their crystal structures. In contrast, the human IF family comprises proteins encoded by more than 70
genes, which based on their expression pattern, sequence homology and predicted structure, are subdi-
vided into six classes as will be described below (reviewed in [1,2]). Distinctively, IF form non-polar
filaments, the precise structure and assembly of which are not fully understood. Importantly, the
introduction of posttranslational modifications (PTMs) on the basic building blocks controls the
assembly and function of the cytoskeletal elements and their interplay [3]. These are also modulated
by a huge variety of associated proteins. This makes cytoskeletal networks highly responsive to envir-
onmental factors and cell needs. In particular, cytoskeletal structures are finely modulated under oxi-
dative stress.

Intermediate filaments
The IF network expands throughout the cytoplasm from the nucleus to the cell membrane, but some
proteins show specific subcellular locations [1,2], as is the case of the type V IFs class, comprising
lamins, that are ubiquitous and locate to the cell nucleus. Other classes show cell-type specific
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expression. Type I and II IFs (keratins) show a preferential expression in epithelial cells, whereas class VI (filen-
sin and phakinin) proteins are detected in the lens. Type III and IV IF proteins display a larger diversity of
expression patterns. Type III IFs include vimentin, expressed in mesenchymal cells, glial fibrillary acidic protein
(GFAP), specific of glial cells, desmin, found in muscle cells, and peripherin, expressed in neurons. Type IV IFs
include three types of neurofilaments expressed in neurons, and two longer proteins, nestin (240 kDa) and
synemin (150–180 kDa), that are identified in stem cells and muscle cells, respectively.
Mutations on IF proteins have been associated with a plethora of diseases, examples of which include epi-

dermolysis bullosa (keratins) [4], dominant cataract (vimentin, filensin, phakinin) [5,6], myopathies and cardio-
myopathies (desmin) [7], different types of neurodegenerative diseases (GFAP, peripherin, neurofilaments) [8–
10] and progeria syndromes (lamins, vimentin) [11,12]. For reviews on this subject, please see [4,7,13–15].
Mutated proteoforms often exhibit altered assembly and/or associate into diverse aggregates that are deposited
in the damaged cells in association with disease. Additionally, anomalously high expression levels of wild type
proteins can also become pathogenic or serve as markers of pathology, as occurs with GFAP in the rare neuro-
degenerative Alexander disease or in reactive astrogliosis [16], or with vimentin in cancer and fibrosis [17].
Such a variety of clinical manifestations reflect the wide array of functions exerted by IFs and that comprise
structural support, mechanotransduction, response to stress, regulation of gene expression, organelle position-
ing and function, cytoskeletal interplay, intercellular communication and tissue homeostasis [13,18]. A fine
regulation of IF functions in these diverse roles is achieved through a wealth of PTMs that can be enzymatically
catalyzed or incorporated non-enzymatically. Among the former we can highlight phosphorylations regulating
filament assembly/disassembly and certain oxidative PTMs such as glutathionylation, whereas non-enzymatic
incorporations can be induced by certain oxidants and electrophiles (reviewed in [14,19,20]).
In this review, we will focus on type III IF proteins, and more specifically in the prototypic type III IF

protein vimentin, which is probably the most studied member of this class. In early studies, Vim knockout
(Vim−/−) mice showed no apparent phenotype affecting development or reproduction, thus initially suggesting
that vimentin was a non-essential protein (reviewed in [21]). However, as research progressed it became
evident that vimentin played a crucial role under stress conditions, to cope, among others, with wound healing
or mechanical stress in the central nervous system. Analysis of these effects proved vimentin involvement in
cell adhesion and migration, cell structural support and resistance to mechanical stress, as well as its interac-
tions with many proteins through which vimentin regulates signaling and metabolism, the position and func-
tion of several organelles and pathogen infection [21–23]. In cells, vimentin can form both filamentous and
non-filamentous structures, the specific structure and function of which are not completely understood [23,24].
Moreover, the interconversion between the diverse forms appears to be controlled by multiple PTMs that, as
we should see below impact its assembly, filament morphology, distribution and function.

IF assembly
IFs are non-polar, and hence, able to elongate at either end and shed and incorporate subunits at any point
along their length (reviewed in [1]). There is no complete crystal structure of any of the IF proteins and the
information available has been obtained from the crystallization of fragments and structural models [1]. IF
monomers share a basic organization with a central α-helical rod domain flanked by disordered head
(N-terminal) and tail (C-terminal) domains of different sizes (Figure 1A). A highly simplified view of IF
assembly, exemplified for vimentin, implies the association of IF monomers into parallel coiled-coil dimers in a
process favored by the presence of hydrophobic residues on the rod surface [25–28]. These parallel dimers then
align into staggered antiparallel tetramers linked by electrostatic interactions between residues of opposite
charge that appear periodically at the surface [1,29] (Figure 1A). Subsequently, tetramers, apparently 8–10
[1,30], bind laterally to generate the unit length filaments (ULFs). Filament formation then proceeds with an
elongation step that occurs by head-to-tail association of ULFs at either end (Figure 1A), followed by filament
compaction to attain the final diameter [1]. Within vimentin filaments, tetramers can be found in different
conformations, as revealed by cross-linking studies [27,31]. This type of studies has also provided information
on the proximity of certain residues in the filaments and predicted some overlap of head and tail domains
upon filament assembly.
Conformational changes of the disordered head and tail domains likely occur in response to PTM incorpor-

ation or protein-protein interactions. Indeed, insight into the disposition of these domains, obtained through
deuterium exchange and electron paramagnetic resonance, indicates reorganization of the head and tail seg-
ments during filament assembly [25,32]. Interestingly, the combination of tail mutants and immunological
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Figure 1. Assembly and features of vimentin Intermediate filaments.

(A) Schematic cartoon displaying the features of the vimentin monomer with the head, rod and tail domains. The approximate

position of C328 is denoted by a black circle. The assembly process of the filament with the formation of parallel dimers,

association into antiparallel tetramers and their organization into unit length filaments (ULFs) is schematically shown. Connection

of several ULFs will lead to filament formation. In this process, cysteine residues from different subunits could putatively coincide

near the region of overlap (encircled by the yellow oval). Please note that this representation does not intend to be structurally

accurate. Elements of this panel were adapted from Monico et al. [75], published under CC BY license. (B) Model obtained from

the cryoelectron tomography structure of vimentin filaments in mouse embryonic fibroblasts [30], highlighting the position of the

cysteine residues (yellow). Courtesy of Prof. O. Medalia. See text for details.
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approaches allowed observation of a differential accessibility of tail segments in cells, depending on the subcel-
lular location and the exposure to electrophiles. These observations suggest the existence of at least two confor-
mations of the tail domain, putatively ‘extended’ or ‘packed’, according to the exposure of the vimentin
segment comprising residues 419–438 [33]. Combination of different tetramer dispositions in the filaments,
together with the disordered nature of head and tail domains and the putative diversity of their conformations
seems responsible for the variety of structures and shapes that IFs can adopt and that make them highly mold-
able. Importantly, a recent work has shed light on filament structure by analyzing straight filament vimentin
segments in murine embryonic fibroblasts using cryoelectron tomography [30] (Figure 1B). The model
obtained confirms the intricate interactions between the α-helical segments and the head and tail domains in
the organization of the mature filament.

IFs are finely tuned by posttranslational modifications
As already mentioned, IF proteins are the subject of a large variety of modifications (reviewed in [3,14]). For
instance, vimentin is a target for glutathionylation [34], ubiquitination [35,36], sumoylation [37,38] and acetyl-
ation [39], as well as for citrullination which creates a neoepitope involved in autoimmune recognition (e.g. in
rheumatoid arthritis) [40]. However, phosphorylation has been probably the most studied PTM on vimentin.
Mapping of its phosphorylated residues has shown the existence of many such sites along the whole vimentin
sequence [14,41–43], although those involved in the control of filament assembly appear mainly concentrated
on the head domain (reviewed in [44]). A detailed summary of phosphorylation sites, together with some of
the kinases responsible of the modification can be obtained at PhosphoSitePlus (https://www.phosphosite.org).
Vimentin is phosphorylated in a cell-cycle dependent manner and this regulates its assembly state, which is
critical for its dynamics in mitosis, particularly in cytokinesis [45]. Introduction or removal of phosphoryla-
tions can depend on conditions such as oxidative stress, known to regulate several kinases and phosphatases
[46,47]. Thus, a cross-talk between different PTMs can take place on IFs to further regulate their assembly, sub-
cellular localization and interactions.
A wide number of oxidative and electrophilic PTMs have been detected on vimentin both under control con-

ditions and during oxidative stress [20,48], In fact, reactive oxygen species (ROS) are continuously generated
during the production of ATP, mainly by complexes I and III of the mitochondrial electron transport chain,
but also by other oxygen-consuming reactions. Importantly, low levels of ROS serve as signaling molecules
[49], and certain oxidative modifications of vimentin have been clearly detected under standard cell culture
conditions [48]. Nevertheless, in many pathologies (e.g. cancer and neurodegeneration), but also in the natural
aging process, ROS are produced in excess that may surpass the enzymatic and small molecule antioxidant
systems of cells, leading to oxidative stress. Cytoskeletal proteins such as actin, tubulin and vimentin have been
identified as frequent targets for oxidative PTMs during oxidative stress and related pathologies, as well as in
senescence and aging.
Oxidative PTMs can be highly varied structurally, and affect many residues throughout the sequence of the

proteins (reviewed in [50,51]). As ROS are able to interconvert into a diversity of species and lead to additional
free radicals, their effects can be multiplied and the damage extended not only to proteins, but also to the
DNA and lipids. Secondary processes induced by ROS include protein and lipid peroxidation (reviewed in
[50,52]). Protein peroxides can in turn oxidize other targets, including other proteins, and are slowly removed,
which contributes to their accumulation in cells [50]. In lipid peroxidation, polyunsaturated fatty acids such as
arachidonic acid or γ-linolenic acid are the targets for lipid radical formation. This is the initial step of a
cascade of reactions in which they evolve into peroxyl radicals that, in turn, lead to lipid peroxides.
Electrophilic lipids exhibit a large structural variety, including reactive aldehydes, nitrated lipids, or species
bearing α,β-unsaturated carbonyl moieties, and can be detected at concentrations that range from picomolar (e.
g. 15-oxo-eicosatetraenoic acid) to micromolar levels (e.g. acrolein or 4-hydroxynonenal). The modification of
proteins by electrophilic lipids is known as lipoxidation, and usually occurs through the formation of Schiff
bases or the more stable Michael adducts (reviewed in [53]). The structural variety of the resulting modifica-
tions also influences the diversity of their functional outcome. Although many lipoxidation targets have been
identified, proteomic studies have shown that this PTM affects a preferred set of cellular proteins, to extents
not correlating with their abundance, and among which cytoskeletal proteins such as vimentin, actin and
tubulin can be highlighted [54,55]. Moreover, within a single protein, nucleophilic residues, such as cysteines,
histidines or lysines, are the preferred targets.
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In this context, actin, tubulin and vimentin are important targets for lipoxidation [48]. From a functional
point of view, oxidants and electrophiles have been shown to elicit multiple morphologically distinct vimentin
arrangements that apparently depend on the structure of the modifying moiety. In cells, vimentin rearrange-
ments can range from fragmentation of filaments into dots or squiggles (e.g. diamide) [56], to filament bund-
ling (e.g. elicited by the electrophilic prostaglandin 15-deoxy-Δ12,14PGJ2) [57], accumulation at certain
particular locations (e.g. aggresomes induced by 4-hydroxynonenal), solubilization yielding diffuse patterns (e.
g. combination of oxidants and phosphatase inhibitors) and parallel linear arrays (e.g. certain electrophiles). In
vitro assays also showed production of various forms of aggregates, bundles, shorter or thicker filaments in
response to those compounds. Moreover, certain studies found correlations between the structure of the chem-
ical modification and the nature of filament remodeling, as well as between the modification extent and the
severity of the assembly defect observed [56,58,59]. Nevertheless, establishing the structure-function relation-
ships of these complex modifications requires further work. On the one side, both endogenous and exogenous
reactive species and agents can have multiple target residues (e.g. cysteine, methionine, tyrosine, etc.) in the
same subunit or filament, with overlapping or opposite morphological effects on the filaments. On the other,
indirect modifications can also occur as the result of the generation of additional reactive species or of their
direct or indirect modulation of signaling pathways or the coexistence of different PTMs.

Type III IFs contain a redox-sensitive cysteine residue,
which is critical for the remodeling elicited by oxidants and
electrophiles
Redox modifications can occur by enzymatic and non-enzymatic mechanisms, may be reversible or irreversible
and may coexist with additional PTMs, establishing a cross-talk to control protein function, as already men-
tioned. Type III IF proteins contain a conserved cysteine residue, which is also the only cysteine in vimentin
(C328), desmin (C333) and GFAP (C294) (numbered according to the human sequences; reviewed in [60]).
Available structural data and models indicate that this conserved cysteine is exposed at the outer surface of the
dimer, and hence is susceptible to modification (see for instance [29,61]) (Figure 1). Among oxidative modifi-
cations, a certain proportion of disulfide bonded homo-dimers of vimentin, GFAP and desmin [56,59,61–64],
as well as heterodimers of vimentin and the other two proteins [65–67], have been identified in several settings,
indicating the exposed location of some cysteines in the filaments and their proximity in certain conformations.
The proportion of these disulfide-bonded dimers may rise under oxidative conditions or in the presence of
mutant proteoforms that carry additional cysteines, putatively decreasing the flexibility of the filament struc-
tures and/or favoring more compact conformations, and/or bundling.
Besides disulfide bond formation, more than a dozen oxidative or lipoxidative modifications of C328 have

been identified in numerous biochemical and proteomic studies, employing different experimental models,
both in cells and in vitro (Figure 2). In fact, in a recent study, up to seven different PTMs were identified by
mass spectrometry during nitroxidative stress in primary rat cardiac cells at this precise position (e.g. sulfena-
tion, S-glutathionylation or S-nitrosation), some of which accumulated during cell treatment, while others were
transient [48]. Of note, several of these modifications can be interrelated (e.g. nitrosation or sulfenic acids are
often intermediates in disulfide formation). Therefore, transient detection of certain PTMs may result from
their interconversion into more stable modifications or the consequence of their removal. These results sug-
gested cross-talk between PTMs on C328 allowing redox sensing, and indicate the importance of this conserved
cysteine at the rod domain and its role as a hub for modification.
Agents or treatments eliciting these modifications produce diverse rearrangements of vimentin filaments,

some of which have been described above. These reorganizations occur not only in cells but also in vitro, and
depend, at least in part, on the structure of the modifying moieties. Thus, it is possible that, even in the case of
potentially interrelated PTMs, each of the individual modifications has unique functional consequences, as it
seems to be the case with nitrosation, glutathionylation and disulfide formation [56,58]. Although vimentin
rearrangements can be the result of multiple factors, the observation that all morphological alterations of fila-
ments are drastically attenuated in vimentin conservative cysteine mutants, e.g. C328S or C328A [56,57], both
in vitro and in cells, pose C328 as a master regulator of vimentin remodeling. Likewise, this single cysteine is
also a hot spot for modification by a variety of drugs, chemicals and natural products [34,57,59,68,69]. All
these modifications have roles in physiological processes such as aging or during hypoxia, but also in the
pathological context of neurodegeneration, cataracts, etc.
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The importance of C328 in filament organization is also evidenced by the observation that local perturba-
tions at this position introduced through mutation determine the morphological impact on vimentin filaments
depending on the type of lateral chain of the residue used to substitute cysteine [59]. The rearrangements
obtained include a variety of filamentous patterns (short filaments, curls or bundles) or aggregates. These
experiments also showed that a C328H mutation can be accepted at this position, while being resistant to elec-
trophilic modification and filament disruption [59]. Altogether, experimental and structural evidence suggests
that C328 is strategically located in such a manner that its modifications influence filament assembly, especially,
considering the apparent proximity of cysteine residues from several monomers (Figure 1B).
Importantly, the single cysteine residues on GFAP (C294) and desmin (C333) seem to have the same key role

than vimentin C328 by regulating their rearrangement upon oxidative modifications [63,70–72]. Studies combin-
ing cell models and in vitro assays have shown that their modification leads to several types of filament rearrange-
ments including bundles and network retraction towards the nuclear periphery, as well as the impairment of
these effects in proteoforms lacking their conserved cysteine. Moreover, the use of mutants including additional
cysteine residues, as those involved in Alexander disease, allowed demonstration of the increased susceptibility of
those filaments to lipoxidation that, in turn, may contribute to the severity of the pathological outcome [73].

Modification of vimentin C328 is modulated by context
factors
Modification of proteins by oxidants and electrophiles, as well as their functional consequences depend on
context factors, such as the local concentration of antioxidants, divalent cations or pH. The polyanionic charac-
ter of IFs allows them to bind a range of cations, such as calcium and magnesium. These divalent cations have
been shown to modulate vimentin filament assembly [74]. In particular, the interaction of IF with zinc may
entail special interest. A combination of oxidation and cross-linking assays together with molecular dynamic
simulations support zinc binding to the thiolate form of vimentin C328, aided by the stabilization effects of the
nearby residues E329 and D331 in the coordination of this ion [57,75]. In contrast, simulations using

Figure 2. Modifications of the single cysteine residues of desmin, GFAP and vimentin.

The type III intermediate filament proteins that possess a single cysteine residue fully conserved between species are shown at

the left. These cysteine residues are hot spots for PTMs. Various types of lipoxidative and oxidative modifications, as well as

modifications by chemicals, natural products and drug metabolites, shown in boxes at right, have been identified, mainly in the

case of vimentin C328. These various modifications may elicit structure-dependent functional consequences.
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magnesium placed a lower number of these cations in the region surrounding C328 [75]. Such differences in
cation binding may lay at the basis of the protection provided by low zinc concentrations against vimentin
C328 alkylation, lipoxidation and disulfide formation, as well as the selective prevention provided by zinc
against in vitro cross-linking by cysteine-reactive compounds, but not by amino-reactive agents [75].
Nevertheless, zinc has multiple cellular actions, including the modulation of antioxidant systems, and hence
indirect effects on the control of oxidative PTMs can be also exerted. Notably, the region surrounding vimentin
C328 is conserved in other members of the type III IF family, such as GFAP and desmin. Therefore, zinc inter-
action through this same region can be expected for these other members of the IF type III class.
As noted above, molecular dynamic studies indicate that C328 would be involved in zinc binding when in its

thiolate form. Interestingly, in vitro data suggest the existence of two cysteine subpopulations in vimentin, exhi-
biting different degrees of ionization at physiological pH [75]. Therefore, intracellular pH variations could
affect the proportion of the thiolate, more reactive form of C328, and its susceptibility to modification. In fact,
it has been recently reported that in several cell lines acidification of the intracellular pH provides selective pro-
tection against vimentin modification by oxidants, while its alkalinization favors oxidative disruption of this
particular type of IFs in a manner dependent on the presence of C328 [76].
Finally, the susceptibility to modification could depend on additional factors, including the subcellular local-

ization of the filament, the occurrence of PTMs at nearby residues, the degree of filament ‘packing’ or cytoplas-
mic crowding, the establishment of protein-protein interactions or the formation of biomolecular condensates.
All these factors may affect the accessibility of the cysteine residue, and/or the rate or extent of modification
[20,60,77–80], although their precise effects need further investigation.

Redox interplay of type III IF with cytoskeletal structures
and organelles
The main cytoskeletal networks, actin, tubulin and IFs, are highly sensitive to redox regulation. This has been
extensively studied in the case of actin, for which multiple mechanisms, affecting both actin filaments and regu-
latory proteins have been identified [81–85]. Vimentin interacts with actin in various ways, for instance at the
actin arcs [86], and at the cell cortex, both in interphase and mitotic cells, where both protein filaments appear
intimately interwoven and vimentin influences the properties of the actin cortex [87,88]. Lack of vimentin has
been shown to increase actin stress fibers in various models [59,89]. Hence, the interest to analyze whether
vimentin has a role in the response of those structures to electrophiles. In this line, treatment of cells with
certain electrophiles led to the production of actin stress fibers aligned with vimentin [59]. Both patterns were
prevented in cells expressing vimentin C328H or C328A mutants [59]. In several vimentin-depleted cellular
models, an increase in actomyosin contractility and RhoA activity has been detected, and therefore the possibility
that vimentin controls RhoA and its downstream targets was hypothesized [89]. Results of assays combining
electrophile modification with inhibitors or activators of the Rho pathway further supported that vimentin may
exert a break on this pathway regulating actin stress fiber formation [59]. As some functions of vimentin on
cytoskeletal interplay appear to depend on its presence in filamentous or non-filamentous structures, modulation
of its assembly state through modifications of C328 may impact this role [59,89]. Redox mechanisms could also
contribute to the interplay between vimentin and microtubules, although this aspect has been less explored.
Type III IF play a key role in organelle homeostasis. Vimentin C328 could also be important for this function,

as suggested by the observation that cells expressing a vimentin C328S mutant display altered organelle position
[57]. Of particular interest is the case of mitochondria, which are both source and targets of ROS, and the pos-
ition and function of which is affected by contacts established with IFs ([90] and reviewed in [60]).
Mitochondrial damage arising from oxidative stress can lead to an increase in their ROS production, thus poten-
tially generating a deleterious feedback loop. Certain pathogenic mutations of desmin and GFAP have been
shown not only to cause alterations of the filament and network morphologies, but also on mitochondria [73,91].
Precisely, certain desmin mutants led to misfolding and/or filament disruption and, subsequently, impact calcium
signaling [91,92]. In the case of GFAP, expression in astrocytoma cells of the Alexander disease GFAP R239C
mutant (carrying two cysteines), responsible of a severe form of the disease, disrupted the IF network leading to
altered mitochondrial morphology (i.e. elongated and interconnected mitochondria) and increasing mitochondrial
ROS production [73]. Several observations indicate that functional disruptions due to this mutation may be
related to additional redox PTMs involving this extra cysteine. In control cells, cysteine availability of the GFAP
R239C mutant is proportionally lower than that of the wild type, suggesting a higher degree of modification.
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Moreover, this mutant shows a higher proportion of disulfide-bonded oligomers, and a two-fold higher incorpor-
ation of a biotinylated analog of 15-deoxy-Δ12,14-PGJ2 in cells. In addition, GFAP R239C filaments suffer a stron-
ger retraction and/or aggregation in response to 15-deoxy-Δ12,14-PGJ2, 4-hydroxynonenal or H2O2 than the wild
type. Moreover, the GFAP R239C mutant increased the cell susceptibility to H2O2 damage, leading to cell death,
whereas cells expressing wild type GFAP were able to recover [73]. Therefore, there seems to be a correlation
between the increased susceptibility of the GFAP R239C mutant to oxidative or lipoxidative modifications, and
the functional alterations. Nevertheless, intrinsic alterations in GFAP R239C assembly likely also play a role.
Thus, it would be interesting to assess whether other Alexander disease GFAP mutants, containing or not add-
itional cysteines, also show an increased susceptibility to oxidative and electrophilic stress.

Concluding remarks and future perspectives
From recent research on type III IFs the concept emerges that the position occupied by the conserved cysteine
residue is important for the regulation of their assembly and functions. Interestingly, different effects on the
filaments are obtained by mutations changing the amino acid lateral chain or by modifications of the thiol
group introducing moieties of diverse charge or size. The single cysteine residue of type III IF proteins has
already been identified as the target of numerous PTMs. Nevertheless, the diversity of PTMs potentially target-
ing cysteine residues (e.g. glutathionylation, persulfidation, phosphorylation) is ever growing. Coexistence of dif-
ferent PTMs on the cysteines along the filaments may allow a variety of assemblies, and facilitate subunit
exchange or accessibility for additional modifications at other positions in the filament. Understanding the
structure-function relationships of oxidative PTMs of type III IFs will require complementary high resolution
techniques potentially combining spatial proteomics, microscopy, chemical tools, and reconstitution
approaches. Future research will shed light into new potential PTMs, as well as on the interplay between
diverse PTMs occurring not only on cysteines, but also in other residues, their spatiotemporal regulation, and
the impact of environmental factors under physiological and pathological situations.

Perspectives
• IFs are arising as key elements in the integration of cellular functions, above all in response to

stress. The conserved cysteine residue of type III IFs is a critical target for modifications that
impact the structure and function of the filaments and the organization of the network.

• There is a need to map redox-dependent PTMs of IFs and to study their cross-talk with add-
itional modifications both in the physiological and pathological contexts.

• Understanding the structural implications of cysteine modification in type III IFs will contribute
to unveil their full role in cytoskeletal cross-talk and essential cellular processes. Moreover,
this knowledge will be critical to assess its potential as a drug target.
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