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Despite the well-established functions of protein palmitoylation in fundamental cellular
processes, the roles of this reversible post-translational lipid modification in cardiomyo-
cyte biology remain poorly studied. Palmitoylation is catalyzed by a family of 23 zinc
finger and Asp-His-His-Cys domain-containing S-acyltransferases (zDHHC enzymes) and
removed by select thioesterases of the lysophospholipase and α/β-hydroxylase domain
(ABHD)-containing families of serine hydrolases. Recently, studies utilizing genetic
manipulation of zDHHC enzymes in cardiomyocytes have begun to unveil essential func-
tions for these enzymes in regulating cardiac development, homeostasis, and pathogen-
esis. Palmitoylation co-ordinates cardiac electrophysiology through direct modulation of
ion channels and transporters to impact their trafficking or gating properties as well as
indirectly through modification of regulators of channels, transporters, and calcium hand-
ling machinery. Not surprisingly, palmitoylation has roles in orchestrating the intracellular
trafficking of proteins in cardiomyocytes, but also dynamically fine-tunes cardiomyocyte
exocytosis and natriuretic peptide secretion. Palmitoylation has emerged as a potent
regulator of intracellular signaling in cardiomyocytes, with recent studies uncovering pal-
mitoylation-dependent regulation of small GTPases through direct modification and
sarcolemmal targeting of the small GTPases themselves or by modification of regulators
of the GTPase cycle. In addition to dynamic control of G protein signaling, cytosolic DNA
is sensed and transduced into an inflammatory transcriptional output through palmitoyla-
tion-dependent activation of the cGAS-STING pathway, which has been targeted
pharmacologically in preclinical models of heart disease. Further research is needed to
fully understand the complex regulatory mechanisms governed by protein palmitoylation
in cardiomyocytes and potential emerging therapeutic targets.

Introduction
Cysteine palmitoylation or S-acylation is the reversible attachment of saturated fatty acids onto protein
cysteine thiols that functions as a critical regulatory mechanism to modulate protein function by facili-
tating targeting to cellular membrane microdomains [1–3]. Palmitoylation consequently can impact
intracellular trafficking, protein stability, and protein–protein interactions to exert dynamic control of
intracellular signal transduction, secretory pathway activity, and/or cellular physiology [1,2,4–6].
Despite the increasing recognition of a central role for palmitoylation in regulating fundamental
homeostatic and pathophysiological cellular processes, its functions in cardiomyocytes, the major
cardiac cell type responsible for the contractile activity of the heart and predominant culprit in most
idiopathic and inherited forms of cardiomyopathy and heart failure [7–9], remain poorly studied.
Palmitoylation is also nearly certain to play fundamental roles in cardiac fibroblasts that deposit
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extracellular matrix, immune cells (e.g. macrophages) that mediate inflammation in the injured heart, and
other cardiac cell types, although this review will focus on established functions of palmitoylation in cardio-
myocytes and future areas of investigation.
Palmitoylation is catalyzed by a family of 23 zinc finger and Asp-His-His-Cys domain-containing

S-acyltransferases or zDHHC enzymes and reversed by acyl protein thioesterases of the lysophospholipase
(LYPLA1, LYPLA2, and LYPLAL1 encoding Acyl Protein Thioesterase 1, 2, and -like-1, respectively) and
α/β-hydroxylase domain-containing families (ABHD17A/B/C and ABHD10) [2,3,10–13]. A majority of
zDHHCs localize to intracellular membranes, predominantly the Golgi apparatus but also endoplasmic reticu-
lum (ER) and intracellular vesicles, with a couple also found at the sarcolemma [1–3,14]. zDHHCs are 4- or
6-pass transmembrane proteins with divergent N- and C-termini and their highly conserved enzymatic DHHC
domains in the cytosolic loop [14–17]. As such, substrates are modified by zDHHCs on cytosolic or juxtamem-
brane cysteines to facilitate membrane association that alters trafficking, localization, structure, and/or function
[1,17]. In contrast, the depalmitoylases, with the exception of ABHD10 that is found in mitochondria [18], are
soluble cytoplasmic proteins [3,13], although APT1 and APT2 can themselves be targeted to cellular mem-
branes by cysteine palmitoylation [19–21].

Palmitoylating and depalmitoylating enzymes in the heart
Although a majority of studies investigating zDHHC enzymes have focused on their functions in the context of
neurology and several zDHHCs do indeed have central nervous system (CNS)-enriched expression, many
zDHHCs are expressed and even enriched in cardiomyocytes [22–25]. In contrast, depalmitoylating thioes-
terases are rather ubiquitously expressed, including in the heart [23,26]. Transcript levels of genes encoding
nodal Golgi enzymes (e.g. zDHHC3 and zDHHC7) are reported to be particularly abundant in the postnatal
human and rodent heart [22,27]. However, difficulties in extraction and antibody-based detection of native
zDHHC proteins have made reliable determination of zDHHC protein expression levels in the healthy and dis-
eased heart challenging [25]. Notably, transcript levels of many palmitoylating and depalmitoylating enzymes
were found to be dysregulated (mostly down-regulated) in the myocardium of human heart failure patients
[23]. Cardiac protein levels of the sarcolemmal S-acyltransferase, zDHHC5, and the Golgi enzymes zDHHC3
and zDHHC7 are significantly increased in the murine heart after 8 weeks of pressure overload-induced hyper-
trophy [23,24], suggesting a role for these enzymes and palmitoylation of their substrates in adaptation to
cardiac stress. However, zDHHC5 levels are reduced in a porcine model of ischemia-reperfusion injury and in
human ischemic heart failure [23], highlighting the potential for distinct and dynamic regulation of the expres-
sion of palmitoylation machinery in response to different pathological stimuli. Moreover, the potential for
stimulus-dependent modulation of zDHHC enzyme activity, such as through post-translational modifications,
and the lack of methodologies to quantify the activity of specific S-acyltransferases in vivo, makes it challenging
to ascertain enzyme-substrate regulation in the context of cardiac pathophysiology. Additional gain- and
loss-of-function animal models are needed to fully elucidate the functions of palmitoylation, zDHHCs, and
depalmitoylating enzymes in cardiac physiology and stress adaptation.
Despite the limited number of studies investigating palmitoylation in cardiomyocytes in vivo, gene-targeted

and transgenic mouse models have already uncovered indispensable functions of zDHHC enzymes in the heart.
Genetic ablation of the ER-localized enzyme zDHHC16 results in perinatal lethality caused by cardiac develop-
mental defects, including severe bradycardia and cardiomyocyte nuclear dysmorphology, in addition to abnor-
mal eye development [28]. In contrast, myocardium from Zdhhc5 gene-deleted mice exhibits more effective
recovery of contractile force following anoxia [29]. An in vivo gain-of-function screen with adeno-associated
virus 9 (AAV9)-mediated overexpression of select zDHHC enzymes in the heart found no overt cardiac pheno-
type from overexpression of the sarcolemmal enzyme zDHHC5, Golgi-localized zDHHC13, or the ER enzyme
zDHHC6, whereas overexpression of the closely related Golgi enzymes zDHHC3 or zDHHC7 caused severe
lethal dilated cardiomyopathy [24]. Cardiomyocyte-specific transgenic mice overexpressing zDHHC3 recapitulate
this phenotype, exhibiting severe dilated cardiomyopathy and bradycardia followed by lethality around 6 weeks
of age when zDHHC3 is overexpressed from around birth in ventricular cardiomyocytes (α-myosin heavy chain
(MHC) promoter-driven expression) [24]. However, when initiation of zDHHC3 transgene expression is delayed
until young adulthood, it does not impact heart rate but results in congestive heart failure including peripheral
edema, dyspnea, and cardiac hypertrophy [24]. Notably, transgenic mice with cardiomyocyte-specific overexpres-
sion of an enzymatically dead mutant of zDHHC3 do not exhibit any discernable cardiac phenotype [24], indi-
cating that cardiac dysfunction and maladaptive remodeling evoked by zDHHC3 overexpression is dependent on
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its S-acyltransferase activity. Transgenic mice with cardiomyocyte-specific overexpression of the Golgi enzyme,
zDHHC9, exhibit normal cardiac function in young adulthood but develop dilated cardiomyopathy with
advanced age [5], albeit relatively mild compared with overexpression of zDHHC3.
The relatively few studies interrogating zDHHC enzymes in cardiac myocytes in animal models have revealed

essential functions in cardiac development, homeostasis, and disease pathogenesis. Future studies in mouse
models with conditional deletion of zDHHC enzymes and depalmitoylating thioesterases in cardiomyocytes are
needed to elucidate palmitoylation-regulated signaling and intracellular trafficking mechanisms that participate
in cardiac disease pathogenesis. Palmitoylation has well-established roles in regulating cardiac electrophysiology
through modulation of ion channel trafficking and activity (Table 1), which has been extensively reviewed else-
where [1,4,14]. Here, we review what is currently known about the roles of protein palmitoylation in cardio-
myocytes, focusing on its roles in the regulation of intracellular signaling, protein trafficking, and regulation of
exocytosis and cardiac endocrinology (Table 1).

Electrophysiology and calcium cycling
Palmitoylation has been most extensively studied in cardiomyocytes in the context of regulation of ion chan-
nels, transporters, and exchangers that modulate the cardiomyocyte action potential and calcium handling
[1,4,36]. Indeed, palmitoylation of the pore-forming subunits of cardiac voltage-gated sodium (Nav1.5) and
calcium (Cav1.2) channels modulates channel current and voltage sensitivity, respectively [34,35]. Notably, the
sarcolemmal S-acyltransferase, zDHHC5, is particularly instrumental in modulating cardiomyocyte membrane
potential and ion transport across the plasma membrane. The cardiac sodium pump (Na+/K+-ATPase) is

Table 1. Protein substrates for which critical roles of cysteine palmitoylation have been established in cardiomyocytes

Target zDHHC(s) Site(s) Effect(s) Refs.

Electrophysiology and calcium cycling

PLM zDHHC5 Cys-40* Inhibits Na+/K+-ATPase sodium pump activity [30]

NCX1 zDHHC5 Cys-739 Promotes XIP-induced inactivation of NCX1 [31,32]

Jph2 – Cys-15, 29, 328,
678

Stabilizes endoplasmic/sarcoplasmic reticulum–plasma
membrane junctions

[33]

PLN zDHHC16 Cys-36* Inactivation of PLN and augmented SERCA2a pump activity [28]

Cav1.2 – Cys-136, 519,
543*

Regulates voltage sensitivity of channel [34]

Nav1.5 – Cys-981* Regulates channel gating [35]

KChIP2 – Cys-45, 46* Plasma membrane/sarcolemmal localization [36]

Cardiomyocyte signal transduction

Gαs, Gαi zDHHC5 – Regulates cAMP levels [52]

β2-adrenergic
receptor

– Cys-341* Regulates receptor internalization, cAMP-PKA signaling [37,51]

sAC – Cys-342* Increased cAMP production and Rap1 activation [53]

Rac1 zDHHC3 Cys-178 Plasma membrane localization and GTP loading [24,49]

STING – Cys-91 Activates downstream IRF3 signaling [74]

Cardiomyocyte exocytosis and endocytosis

Rab3gap1 zDHHC9 – Impaired Rab3 GTPase cycling and ANP release [5]

Membrane proteins

(PLM, flotillin-2) zDHHC5 – Massive endocytosis (MEND) [29]

Palmitoylated proteins in cardiomyocytes as well the zDHHC S-acyltransferases modifying them, modified cysteine(s), and cellular effect are indicated.
zDHHC, zinc finger and Asp-His-His-Cys domain containing; PLM, phospholemman, NCX1, sodium–calcium exchanger 1; XIP, exchange inhibitory peptide; Jph2,
junctophilin-2; PLN, phospholamban; SERCA2a, sarcoendoplasmic reticulum ATPase 2a; KChIP2, potassium voltage-gated channel interacting protein 2; PKA, protein
kinase A; sAC, soluble adenylyl cyclase; Rap1, Ras-related protein 1; STING, stimulator of interferon genes; IRF3, interferon regulatory factor 3; Rac1, Ras-related C3
botulinum toxin substrate 1; Rab3gap1, Rab3 GTPase activating protein 1; ANP, atrial natriuretic peptide; MEND: massive endocytosis. *Asterisks indicate that site-directed
mutagenesis or functional effects of mutants of the listed cysteine residues have been assessed in either primary or iPSC-derived cardiomyocytes.
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palmitoylated on its enzymatic α and β subunits but, more significantly, undergoes dynamic regulation of its
activity by zDHHC5-catalyzed palmitoylation of its accessory regulatory subunit, phospholemman (PLM)
[22,30]. The activity of the sodium–calcium exchanger 1 (NCX1) in cardiomyocytes is also intimately regulated
by zDHHC5-mediated palmitoylation [31,32,43] and has been extensively reviewed elsewhere [1,14], highlight-
ing the complex and diverse mechanisms by which palmitoylation can alter cardiomyocyte excitability.
Excitation–contraction coupling and sarcoplasmic reticulum (SR) calcium cycling, in addition to being

impacted by palmitoylation-dependent modulation of the cardiomyocyte action potential, are also directly regu-
lated by palmitoylation. Trafficking and membrane association of junctophilin-2 ( Jph2), which is critical for
the maintenance of the structure of the dyad and effective excitation–contraction coupling [44–47], are regu-
lated by palmitoylation [33], which could indirectly impact intracellular calcium cycling in cardiomyocytes. In
addition, SR calcium cycling can be more directly modulated by post-translational cysteine palmitoylation.
Phospholamban (PLN), which inhibits the activity of sarcoendoplasmic reticulum ATPase 2a (SERCA2a) to
modulate SR calcium reuptake, is palmitoylated by zDHHC16 at cysteine-36 [28]. Hearts lacking zDHHC16
exhibited reduced palmitoylation of PLN that was associated with increased interaction of PLN with protein
phosphatase 1α (PP1α) and reduced inhibitory phosphorylation of PLN at serine-16 [28]. This suggests that
palmitoylation of PLN promotes its dephosphorylation/inactivation and may serve to enhance SERCA2a pump
activity, although SR calcium cycling was not directly examined in Zdhhc16-deleted cardiomyocytes.
It was recently discovered that the pore-forming α1C subunit of the L-type calcium channel (Cav1.2) is pal-

mitoylated in ventricular cardiomyocytes [34]. Comprehensive biochemical and biophysical characterization in
HEK cells identified cysteine-136 within the N-terminus and cysteines-519 and -543 in the domain I–II linker
region of the α1C subunit as the functionally modified residues impacting the voltage dependence of Cav1.2
current [34]. Calcium transient amplitudes were reduced in human induced pluripotent stem cell-derived car-
diomyocytes expressing the palmitoylation-deficient α1CC136/519/543A mutant [34], supporting a role for α1C
palmitoylation in regulating Cav1.2 activity in cardiomyocytes. Thus, the duration and magnitude of elevation
of cytosolic calcium levels during systole are controlled by palmitoylation of multiple calcium handling and
regulatory proteins, providing multiple mechanisms by which palmitoylation can impact myofilament contrac-
tion downstream of alterations of cardiomyocyte electrophysiology.

Cardiomyocyte signal transduction
Intracellular signal transduction occurs predominantly through a series of transient protein–protein interactions
and enzymatic activities (e.g. catalysis of post-translational modifications) at cellular membranes that initiate
changes in protein structure and function and a cascade of activation of downstream effectors that ultimately
elicits a cellular physiologic response. Consequently, the membrane microdomain localization, topography,
and/or activity of a myriad of signaling molecules, including membrane-localized receptors and soluble cyto-
solic signal transducing proteins that transiently associate with cellular membranes, are controlled by dynamic
cysteine palmitoylation. For instance, many G protein-coupled receptors (GPCRs) are palmitoylated on their
C-terminal cytosolic tail, a majority of heterotrimeric Gα subunits are palmitoylated on their N-terminus, and
some small GTPases have cysteines adjacent to the hypervariable region that undergo palmitoylation cycling (e.
g. H-Ras, N-Ras) to dynamically control signaling output [1,41,48–50]. Palmitoylation is an optimal mechan-
ism to rapidly activate or impart spatiotemporal control to intracellular signal transduction in cardiomyocytes
and profoundly influence cardiac function and pathophysiology. Nonetheless, there has been limited explor-
ation of palmitoylation-dependent regulation of intracellular signaling in cardiac myocytes in vivo or in a
pathophysiologic context.

G protein signaling
Palmitoylation is an important determinant of β-adrenergic signaling in cardiomyocytes. Many GPCRs includ-
ing β-adrenergic receptors are themselves regulated by palmitoylation [38,51] but notably, it has been demon-
strated that Gαs and Gαi are palmitoylated in cardiomyocytes in response to isoproterenol (Figure 1).
Knockdown of zDHHC5 mitigated induction of Gαs and Gαi palmitoylation, cAMP levels, and calcium transi-
ent frequency in neonatal cardiac myocytes in response to β-adrenergic stimulation [52]. The β2-adrenergic
receptor (β2-AR) is palmitoylated in cardiomyocytes on cysteine-341 in its C-terminal cytosolic tail, where
many GPCRs are canonically regulated by palmitoylation [1,37–39,51]. Palmitoylation of the β2-AR in cardio-
myocytes appears to be essential for the termination of cAMP signaling by internalized β2-ARs [51].
Expression of a palmitoylation-deficient β2-AR

C341A mutant in neonatal mouse cardiomyocytes lacking both
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β1-AR and β2-AR resulted in normal expression at the sarcolemma but defective interaction with β-arrestin 2
and phosphodiesterase 4D (PDE4D) and elevated cytosolic cAMP levels and PKA activity in response to iso-
proterenol [51], suggesting that palmitoylation is required for recruitment of PDE4D to β2-AR at endosomes
following β-arrestin-dependent internalization (Figure 2). The β2-AR has also been shown to be palmitoylated
at cysteine-265 within its third intracellular loop by the Golgi enzymes zDHHC9/14/18 in response to agonist
stimulation that impacts its intracellular trafficking and cell surface expression [38], but whether this regulatory
mechanism occurs in cardiomyocytes has not been tested. Moreover, soluble adenylyl cyclase (sAC) is palmi-
toylated in cardiomyocytes at cysteine-342 in response to high palmitate concentrations to evoke cAMP pro-
duction and activation of the small GTPase Rap1 [53], highlighting palmitoylation-dependent control of not
just GPCRs and Gα subunits, but also cross-talk and compartmentalization of second messenger signaling.
Further research is needed to understand the complex regulation of adrenergic receptor signaling by palmitoy-
lation, including the distinct mechanisms by which palmitoylation modulates β1-AR and β2-AR signaling from
the sarcolemma and intracellular compartments, impacts on compartmentalized cAMP production and effector
signaling, and ultimately how this modulates cardiomyocyte calcium handling and contractility.
Perhaps the best-characterized example of regulation of intracellular signal transduction by protein palmitoy-

lation involves palmitoylation cycling on H-Ras and N-Ras that are necessary for membrane translocation and
sustained signaling outputs [10,50]. Indeed, genetic or pharmacological inhibition of H/N-Ras palmitoylation

Figure 1. Regulation of cardiomyocyte signal transduction by protein palmitoylation.

zDHHC3-mediated palmitoylation of Rac1 promotes sarcolemmal targeting and activation of Rac1. STING palmitoylation at the

Golgi is triggered by binding of cGAS to cytosolic DNA and necessary for downstream nuclear translocation and transcriptional

activities of IRF3 and NFκB. zDHHC5 promotes palmitoylation of Gαs and downstream induction of cAMP and cytosolic

calcium in response to stimulation of the β2-adrenergic receptor. Rac1, Ras-related C3 botulinum toxin substrate 1; cGAS,

cyclic GMP–AMP synthase; STING, stimulator of interferon genes; TBK1, TANK-binding kinase 1; NFκB, nuclear factor kappa

B; IRF3, Interferon regulatory factor 3; β2-AR, β2-adrenergic receptor; NE, norepinephrine; Epi, epinephrine; dsDNA,

double-stranded deoxyribonucleic acid; Gαs, Gs alpha subunit; cAMP, cyclic adenosine monophosphate.
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or depalmitoylation impairs palmitoylation cycling and disrupts cancer cell growth and proliferation [10,40,50].
In addition to H-Ras and N-Ras, other small GTPases of the Ras superfamily undergo palmitoylation on their
C-terminus, along with the canonical irreversible prenylation on the cysteine on the CAAX motif of the ultim-
ate C-terminus [10,41,50]. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a small GTPase within the Rho
family with instrumental roles in regulating the actin cytoskeleton as well as inducing the catalytic activity of
NADPH oxidase-2 (Nox2) to evoke superoxide production and oxidative stress [54–57]. Rac1 is palmitoylated
at cysteine-178 on its C-terminus to promote its activation, localization to lipid rafts, and cell migration in
immortalized cell lines [24,49]. Proteomic studies identified Rac1 as a novel substrate of the Golgi-localized
enzyme, zDHHC3, and subsequent studies found that cardiomyocyte-specific overexpression of zDHHC3
increased Rac1 palmitoylation in the heart [24]. zDHHC3 overexpression also elicited robust enhancement of
Rac1 activity and translocation to the sarcolemma (Figure 1), along with induction of the protein levels of all
Rho family small GTPases, all of which preceded heart failure in zDHHC3 transgenic mice [24]. These studies
demonstrate a critical role for palmitoylation of soluble signaling proteins at the surface of the cardiomyocyte
Golgi in the regulation of intracellular signaling, including the promotion of pathogenic signaling by small
GTPases associated with cardiac maladaptation and heart failure [24,58,59]. Further investigation is needed to
determine the role of palmitoylated Rac1 in cardiomyocytes, including if there are differential effectors and
functions of palmitoylated Rac1 versus depalmitoylated Rac1 (which can still associate with membranes via its
C-terminal polybasic domain and geranylgeranyl lipidation) and if Rac1-dependent Nox2 activity, cardiac
hypertrophy and oxidative stress [60] require its palmitoylation.

Figure 2. Regulation of cardiomyocyte exocytosis and endocytosis by protein palmitoylation.

zDHHC9 promotes palmitoylation and increased Golgi retention of Rab3gap1 in cardiomyocytes resulting in impaired Rab3a

nucleotide cycling and a deficit in ANP secretion. Palmitoylation of the C-terminal tail of the β2-AR is required for internalization

via canonical β-arrestin-mediated endocytosis and for its association with PDE4D to terminate compartmentalized endosomal

cAMP signaling by internalized β2-ARs following agonist stimulation. Rab3gap1, Rab3 GTPase activating protein 1; ANP, atrial

natriuretic peptide; Rab3, Ras-related protein 3; β2-AR, β2-adrenergic receptor; PDE4D, phosphodiesterase 4D.
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cGAS-STING signaling
Owed to the current lack of S-acyltransferase inhibitors with specificity for particular zDHHC enzymes,
perhaps the most tractable pharmacological strategy to target protein palmitoylation to date has been the devel-
opment of small molecules that alkylate substrate cysteine residues to prevent their modification by palmitoyla-
tion [1,61–63]. Indeed, modulation of the innate immune response and type I interferon signaling by
palmitoylation of stimulator of interferon genes (STING) has been harnessed clinically through the develop-
ment of small molecules that covalently bind to cysteine residues on STING that need to be palmitoylated for
its proper activation. STING palmitoylation at the Golgi is required for its oligomerization, formation of
protein signaling complexes, and activation of downstream effectors to ultimately induce a host defense gene
program through the transcriptional activities of interferon regulatory factor 3 (IRF3) and nuclear factor kappa
B (NFκB) [61–68] (Figure 1). Cyclic GMP–AMP synthase (cGAS) senses cytosolic DNA that originates from
bacterial or viral infection or self-DNA released from mitochondria or dying cells and in turn generates
20,30-cyclic GMP–AMP (cGAMP) that binds to STING and evokes its palmitoylation, activation, and down-
stream production of type I interferons as an integral cellular mechanism driving the innate immune response
[64,65,69]. High-throughput screening of inhibitors of interferon signaling identified multiple nitrofuran deri-
vatives that alkylate the essential palmitoylated cysteine-91 residue of STING [61]. Notably, nitro fatty acids,
which are protective in cardiovascular disease [70,71], also alkylate STING to prevent its activation [64]. Small
molecule inhibitors of STING palmitoylation are being pursued for the treatment of autoinflammatory diseases
including lupus erythematosus and psoriasis [62,63,68] and phase II clinical trials have been conducted for the
treatment of focal segmental glomerulosclerosis with nitro fatty acids [62].
With regards to cardiac pathophysiology, the cGAS-STING pathway plays an essential role in cardiac inflam-

mation after myocardial infarction by activating an IRF3-dependent interferon-stimulated gene program in
response to sensing of DNA from dying or damaged cardiomyocytes/mitochondria [72,73]. This promotes
monocyte recruitment and macrophage activation in the heart, inflammatory cytokine expression, deterioration
of cardiac function, and mortality, all of which can be ameliorated by genetic ablation of cGAS or IRF3
[72,73]. Notably, pharmacological inhibition of STING activation with a small molecule inhibitor of STING
palmitoylation reduces adverse cardiac remodeling and dysfunction in a mouse model of chronic kidney
disease [74] and nitro fatty acid treatment improves cardiac function and reduces myocardial fibrosis in a
genetic mouse model of dilated cardiomyopathy [42]. In addition to impairing cGAS-STING signaling and
interferon production in macrophages to dampen maladaptive myocardial inflammation [72], the protective
effects of inhibiting STING palmitoylation and activation in the heart also arise at least in part from its effects
in cardiomyocytes and repressing STING-dependent cardiomyocyte pyroptosis [75,76] as cardiomyocyte-
specific deletion of STING ameliorates cardiac hypertrophy and systolic dysfunction in response to chronic
kidney injury [74] and knockdown of STING expression in cardiomyocytes restores cardiac function and
dampens myocardial inflammation in diabetic cardiomyopathy [75]. Thus, targeting palmitoylation-dependent
activation of the cGAS-STING signaling pathway in cardiomyocytes has the potential to mitigate cardiac
remodeling in ischemic and non-ischemic heart diseases associated with adverse myocardial inflammation.

Cardiomyocyte exocytosis and endocytosis
The abundance of zDHHC enzymes localized at the ER, Golgi, and endomembranes and the inherent lipophili-
city imparted by conjugation of a fatty acid onto a protein makes palmitoylation ideally suited to regulate the
flux and anterograde trafficking of peripheral membrane proteins through the secretory pathway to their ultim-
ate plasmalemmal or organellar cellular membrane destination [77–79]. Indeed, regulated palmitoylation is an
essential mechanism that can modulate intracellular protein trafficking through multiple mechanisms and con-
sequently has profound impacts on cardiomyocyte signal transduction and electrophysiology (see above).
Palmitoylation can regulate the trafficking and recycling of not just membrane proteins themselves, but also the
molecular machinery and regulatory proteins controlling vectorial transport through the endomembrane
system.
Palmitoylation has essential functions in the regulation of exocytic release of hormones, peptides, and neuro-

transmitters from secretory vesicles in specialized cell types [80–85]. A palmitoylation-dependent pathway gov-
erning sarcolemmal delivery of secretory vesicles and natriuretic peptide secretion by cardiomyocytes was
recently uncovered [5]. Proteomic studies identified Rab3 GTPase activating protein 1 (Rab3gap1) as a substrate
of zDHHC9-mediated palmitoylation in cardiomyocytes. Rab3gap1 is the dedicated GTPase activating protein
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(GAP) that inactivates Rab3, a small GTPase primarily involved in exocytosis, to its GDP-bound state necessary
for its dissociation from secretory vesicles to reinitiate the GTPase cycle (Figure 2) [86–88]. Palmitoylation of
Rab3gap1 by zDHHC9 at the cardiomyocyte Golgi membrane resulted in Golgi retention of Rab3gap1 and
repression of cellular GAP activity on Rab3 and consequently higher levels of active Rab3-GTP [5].
zDHHC9-mediated palmitoylation promoted the movement of Rab3 from the Golgi to peripheral secretory
vesicles in cardiomyocytes, but this was accompanied by a deficit in the release of atrial natriuretic peptide
(ANP) due to impairment of the Rab3 GTPase cycle [5]. ANP secretion is induced in cardiomyocytes in
response to cardiac stress such as neurohumoral stimulation (increased circulating angiotensin-II, catechola-
mines) and increased blood volume (atrial distension) as an endocrine mechanism of cardiovascular protection
that increases vasodilation, natriuresis, and diuresis to reduce blood pressure and cardiac workload [89–92].
Pathophysiologic stimulation of ANP secretion in cardiomyocytes with phenylephrine elicited robust release of
ANP as expected, which was associated with enhanced Rab3 activity and localization of ANP to Rab3-positive
peripheral secretory vesicles [5]. Importantly, phenylephrine treatment enhanced Rab3gap1 palmitoylation in
cardiomyocytes and knockdown of zDHHC9 expression prevented Rab3gap1 palmitoylation and Rab3-GTP
loading in response to phenylephrine but promoted even greater release of ANP [5]. A majority of ANP
secreted by the diseased heart originates from atrial myocytes that contain specialized atrial granules loaded
with processed ANP poised for exocytic release through a regulated secretory pathway [92–99] compared with
the constitutive secretory pathway in neonatal ventricular cardiomyocytes in which a majority of the mechanis-
tic studies of zDHHC9 and Rab3gap1 palmitoylation on ANP release were performed. Thus, this
palmitoylation-dependent mechanism regulating cardiomyocyte exocytosis warrants further investigation in
atrial cardiomyocytes that are by far the predominant source of the vast majority of natriuretic peptides
released into the circulation. It is however noteworthy that pharmacological elevation of circulating natriuretic
peptides by neprilysin inhibitor treatment, in combination with an angiotensin receptor antagonist, is effica-
cious and becoming widely used for the treatment of heart failure with reduced ejection fraction (HFrEF)
[100,101]. Thus, inhibition of zDHHC9 activity or palmitoylation of Rab3gap1 could potentially stimulate
greater release and consequently greater circulating levels of natriuretic peptides in response to increased neuro-
humoral stimulation that occurs in cardiovascular disease, which may have therapeutic implications for the
treatment of heart failure and/or hypertension.
Palmitoylation also plays an important role in controlling endocytosis to facilitate the internalization of

receptors, turnover of plasma membrane domains, and/or phagocytosis of extracellular contents [102–104].
Cardiomyocytes, like other cell types, possess heterogenous endocytic pathways to enable internalization and
vesicular delivery of proteins, plasma membranes, and/or extracellular components to distinct intracellular com-
partments. As described above, palmitoylation of the β2-AR in cardiomyocytes is essential for the cessation of
compartmentalized cAMP production evoked by internalized receptors presumably at endosomes (Figure 2).
Mutation of the β2-AR palmitoylation site causes aberrant internalization through a caveolin-dependent
pathway rather than canonical β-arrestin-dependent endocytosis and elevation of cytosolic cAMP levels in
response to isoproterenol [51], although the dynamics of β2-AR palmitoylation/depalmitoylation in its endocy-
tic recycling and compartmentalized signaling are not fully understood. In cardiomyocytes exposed to anoxia
and reoxygenation, mitochondrial damage and mitochondrial permeability transition pore opening result in
massive endocytosis (MEND) in which a large portion of the plasma membrane is internalized in a process
that requires the S-acyltransferase activity of the sarcolemmal enzyme zDHHC5 [29]. Genetic ablation of
zDHHC5 blunts the anoxia-reoxygenation MEND response in cardiomyocytes and improves contractility of
reoxygenated myocardium [29], suggesting zDHHC5-regulated MEND and sarcolemmal turnover play funda-
mental roles in cardiac homeostasis and stress adaptation. Palmitoylation undoubtedly has additional functions
in controlling endocytic pathways in cardiac myocytes, but more studies are needed to uncover mechanisms,
targets, and physiologic consequences.

Future directions
Many of the mechanistic and biochemical studies assessing functions of palmitoylation and enzymatic regula-
tion by zDHHC enzymes have been performed in immortalized cell lines (e.g. HEK cells) and not in primary
cardiomyocytes or in vivo. Although many of these findings do recapitulate the in vivo enzyme regulation and
impacts on substrate functions, there are many examples of cell type-specific regulation of substrate palmitoyla-
tion, particularly in highly specialized cells with unique membrane domains (e.g. cardiomyocytes, neurons)
[33,80,105–107]. Moreover, many proteins regulated by palmitoylation are uniquely expressed or have distinct
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functions in cardiac myocytes that necessitate cell type-specific regulatory mechanisms to direct dynamic asso-
ciation with intracellular membrane microdomains. Furthermore, the morphogenetically distinct cytoarchitec-
ture of cardiomyocytes and even the heterogeneity in subcellular organelle morphology and distribution of
membrane domains amongst atrial versus ventricular cardiomyocytes present a distinct intracellular membrane
environment and likely unique zDHHC-dependent mechanisms of regulation of protein substrate trafficking,
membrane targeting, and function. The sarcolemmal enzyme, zDHHC5, has received a lot of attention with
regards to enzymatic regulation of palmitoylation in cardiomyocytes, but other zDHHCs including
Golgi-localized enzymes play fundamental roles in coordinating intracellular trafficking and secretory pathway
activity as well as dynamic targeting and modulation of compartmentalized signaling in cardiomyocytes.
Indeed, the palmitoylation machinery (zDHHCs and depalmitoylases) is optimally positioned to fine-tune
protein trafficking in the context of the distinct intracellular membrane topography of cardiac myocytes, includ-
ing targeting proteins to specific sarcolemmal microdomains such as the T-tubule, intercalated disc, and costa-
mere. However, to date, there have been limited investigations of zDHHC enzymes and the functions of
palmitoylation in the context of cardiac physiology and disease. Future in vivo studies with cardiomyocyte-
specific genetic manipulation of palmitoylating and depalmitoylating enzymes and substrate palmitoylation
sites will facilitate translating biochemical and molecular discoveries of protein palmitoylation in cardiomyocyte
biology to the physiology and pathophysiology of cardiac homeostasis and disease.

Perspectives
• Palmitoylation has essential functions in cardiac physiology through the regulation of intracel-

lular trafficking, secretory pathway function, and signal transduction in cardiomyocytes.

• The unique plasma membrane and organellar membrane landscape of cardiac myocytes
make dynamic protein palmitoylation an ideal post-translational mechanism to impart regula-
tory control over protein trafficking and compartmentalization of intracellular signal transduc-
tion in this highly specialized cell type.

• Future studies in animal models and primary cardiomyocytes with genetic and pharmacologic
manipulation of zDHHC enzymes, depalmitoylases, and substrate palmitoylation sites will help
uncover mechanisms by which palmitoylation controls cardiomyocyte signaling, protein traf-
ficking, and electrophysiology in the context of cardiac homeostasis and in cardiac patholo-
gies such as myocardial ischemia, cardiac hypertrophy, and heart failure.
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