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During embryonic development many organs and structures require the formation of
series of repeating elements known as periodic patterns. Ranging from the digits of the
limb to the feathers of the avian skin, the correct formation of these embryonic patterns
is essential for the future form and function of these tissues. However, the mechanisms
that produce these patterns are not fully understood due to the existence of several
modes of pattern generation which often differ between organs and species. Here, we
review the current state of the field and provide a perspective on future approaches to
studying this fundamental process of embryonic development.

Introduction
The generation of structure from an initially homogeneous state, such as how an entire organism is
developed from a single fertilised egg, is an enduring and fascinating scientific question [1]. During
embryonic development, the formation of spatially distinct repeating elements is essential for the
correct function of many tissues and organs. These arrangements are called periodic patterns and are
usually observed as spots or stripes. Forming autonomously from an initially homogenous state,
embryonic periodic patterns include the digits of the limb [2,3], the appendages of the skin (including
hair follicles [4–6], feathers [7,8] and fingerprints[9]), and the villi of the intestine [10,11] (Figure 1).
Although the final structure and function of these patterns differ vastly between organs and species,
the tissues in which they form are similar, consisting of two layers, a tightly packed epithelium which
sits above a more loosely arranged mesenchyme. It is the interaction and interplay between these two
tissue layers that defines the periodic pattern and ultimately, the final morphology of an organ [12].
Here, we provide an overview of the mechanisms involved in the generation of these periodic patterns
during embryogenesis and discuss the latest research approaches which may provide insight into the
study of these events moving forward.

Modes of pattern formation
Perhaps the most well-known mechanism to produce periodic patterns is from the mathematician,
wartime code breaker, and father of modern computing, Alan Turing. In his seminal 1952 work [13],
Turing proposed that chemical substances, through their diffusion and reaction with each other, are
sufficient to amplify intrinsic heterogeneities in a tissue to produce a periodic pattern from an initially
near homogenous state, thus ‘breaking symmetry’. Turing coined the term ‘morphogens’ for these
chemicals to convey the idea that these are ‘form inducers’ [13]. In these Turing reaction–diffusion
(RD) systems, two or more morphogens reach an equilibrium in alternating concentrations based on
their interactions with each other and their differential rates of diffusion. However, Turing’s ideas
were largely forgotten until decades later, partly due to the popularity of Lewis Wolpert’s positional
information [14,15], or French flag, model where cells acquire a positional value based on the mor-
phogen concentration they experience (Figure 2). Gierer and Meinhardt [16], initially unaware of
Turing’s work, expanded the RD model and proposed that periodic patterns could form through a
pair of interacting morphogens, termed an ‘activator’ and ‘inhibitor’. In these systems, a slowly
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diffusing activator stimulates the production of both itself and its own fast-diffusing inhibitor, the overall result
of which is short-range activation coupled with long-range inhibition (Figure 2). The interaction and diffusion
of these morphogens lay out a chemical ‘pre-pattern’ which is used as a template by cells to undergo morpho-
genesis (Figure 2). It is only over the last couple of decades that it has been possible to experimentally test
whether Turing RD systems can produce embryonic periodic patterns. Turing RD systems have now been
implicated in the formation of a diverse array of embryonic periodic patterns including the digits of the limb
[3,17], hair follicles [4–6], intestinal villi [11], and palatal rugae [18], as well as playing a role in tooth morpho-
genesis [19], the left–right patterning of the embryo [20,21], and lung branching [22].

Figure 1. Periodic pattern formation during embryonic development.

(A) Examples of embryonic periodic patterns. Top panel from left to right: Mouse primary hair follicle pattern at E13.5 visualised

by Dkk4 in situ hybridisation; in situ hybridisation detecting SHH in the developing feathers of an E13 chicken embryo; Feline

colouration pattern forming during embryonic development visualised by Dkk4 in situ hybridisation; Fingerprint ridge pattern in

a human embryonic digit at week 15 estimated gestational age. Bottom panel from left to right: Regularly patterned villi in E19

chicken embryo intestine; Periodic branching events visualised through E-cadherin staining of embryonic chicken lungs

between E6 and E7.5. (B) The digits of the limb form through a periodic patterning process. Altering the levels of Hox genes

leads to increased digit number and reduced interdigital spacing (wavelength). Feather image used with permission of William

Ho. Cat image from Kaelin et al. [63]. Fingerprint image from Glover et al. [9]. Villi image from Grey [106]; reprinted with

permission from John Wiley and Sons. Chicken lung images from Tzou et al. [107]. Mouse limb images from Sheth et al. [2];

reprinted with permission from the American Association for the Advancement of Science.
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Figure 2. Modes of embryonic pattern formation. Part 1 of 2

(A) Schematic representation of Wolpert’s positional information (French flag) model. Populations of cells have the

developmental potential to become several different fates (depicted as blue, white or red). Exposure of a morphogen gradient

across the populations results in cells gaining a unique positional value based on the concentration of morphogen they

experience. This positional information is then interpreted by the cell and it differentiates into a blue, white or red fate in

accordance with a predetermined genetic programme. (B) Features of RD models. (i) Schematic representation of the

interactions between the two components of a basic RD system — an activator (A) and inhibitor (I). The activator promotes the

production of both its own inhibitor and itself (self-activation). (ii) Even within an apparently homogenous system molecular

fluctuations exist across the patterning space. As cells experience a slightly higher concentration of activator this will be

enhanced further through self-activation. Because the activator also stimulates inhibitor production, the concentration of the

inhibitor also increases. Because the inhibitor diffuses faster than the activator this leads to lateral inhibition in the surrounding

cells as activator levels fail to grow. The faster diffusion of the inhibitor also means that at the activator peak, inhibitor levels

never accumulate high enough to supress the activator. However, new peaks of activator can form past the regions of lateral

inhibition and the whole process of self-activation and lateral inhibition is repeated until a regular array of activator peaks and

valleys forms across the patterning field. (iii) From an initially homogenous state a molecular periodic pre-pattern is produced
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However, in addition to RD systems, it has been demonstrated both in silico and in vivo that periodic pat-
terns can be produced through cell-based or mechanical models [10,23–32], which we now collectively refer to
as mechanocellular (MC) models. The principles of MC models are similar to those of RD systems, and incorp-
orate short-range activation and long-range inhibition to generate a periodic pattern. Rather than chemical
morphogens, MC models utilise differences in chemotaxis, cell mobility, or through the generation and
response to mechanical strain resulting from the interactions between cells and the extracellular matrix (ECM)
[12,27] (Figure 2). Although similar patterns are produced by either patterning mode, in MC systems, unlike
RD models where a chemical pre-pattern is set up first for cells to interpret, pattern formation and morphogen-
esis are indistinguishable [24] (Figure 2).
Despite producing similar patterns, the broad category of patterning mechanism operating in a system can

be identified by designing specific experiments [27]. For example, mechanical-based patterning mechanisms are
likely not involved if perturbing tissue stiffness does not affect the pattern outcome. However, additional math-
ematical modelling and more rigorous experimental design are then required to further differentiate between
the specific mechanisms within each class [27].
In this mini review, we will mainly focus on periodic patterns generated by RD or MC mechanisms. Our

aim is not to be all encompassing, rather we hope to provide an overview of the types of models which can
produce these patterns and explore examples of their formation in specific organs and across taxa. It will
become increasingly apparent that this is not a one-shoe-fits-all type of problem, with different mechanisms
being able to produce the same outcome, and often the same organ may form differently across species.
Furthermore, growing evidence suggests it is increasingly likely that a combination of RD and MC patterning
modes may co-ordinate to produce the intricate periodic patterns of the embryo.

Patterns of the skin: from feathers to fingerprints
The skin is the largest organ of the body and depending on the species, its appendages include secretory
glands, hairs, feathers, and scales, which serve a multitude of functions, including protection, thermoregulation,
communication, and sensory perception [33].
Primary hair follicle formation in mice begins at E13.5, with each individual hair follicle consisting of an epi-

thelial placode directly associated with a dermal condensate, a structure essential for further hair morphogenesis
[34]. Over the next few days, the hair follicles cover the surface of the skin in a regularly spaced periodic pattern
of spots (Figure 1) which has been proposed to be driven by Turing-type RD models [4–6]. Initially, models
based on two components (acting as an activator and inhibitor) including the WNT and DKK [4], and EDAR
and BMP [5] signalling pathways were proposed to generate the primary hair follicle pattern. More recently, we
showed that a more complex network of interacting molecules from WNT, FGF, and BMP pathways was capable
of producing the periodic pattern [6]. As per the previous studies, we found WNTs are activators whereas BMPs
are inhibitors of hair follicle formation. We also demonstrated that a molecular pre-pattern (hallmark of RD
systems) is present in the mouse epidermis and provides the template for the local aggregation of mesenchymal
cells which form the dermal condensate [6,35,36] (Figure 3). Strikingly, we also discovered that under certain
conditions the mesenchyme is capable of patterning without an epidermal pre-pattern template [6]. This ‘mesen-
chymal self-organisation’ is driven by MC patterning involving TGFβ mediated chemotaxis and demonstrated
that both RD and MC patterning modes can be present within a single system. During hair follicle formation,
these systems operate in a hierarchical manner where one is subordinated to the other to ensure the fidelity of

Figure 2. Modes of embryonic pattern formation. Part 2 of 2

by a RD system. This then provides a template for cells to follow and undergo morphogenesis. (C) Examples of MC models. (i)

In a cell traction model migrating cells within a layer of ECM generate traction. A random fluctuation leading to an increased

number of cells in a specific area leads to an increase in local cell contraction which draws in more cells (self-activation). This

contraction is resisted by the elasticity of the ECM limiting the number of cells that can be drawn in through contraction (lateral

inhibition). The balance between these events produces evenly spaced aggregates. (ii) In a chemotaxis model, all cells within a

system produce their own chemoattractant. As cells migrate towards each other they aggregate which creates a larger source

of chemoattractant to recruit additional cells (self-activation). As more cells are recruited this depletes the number of cells in the

surrounding area (lateral inhibition) which both limits the expansion of the aggregate (size) and also the position where another

aggregate (spacing) can form. Images created with BioRender.com.
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the pattern. This showcases multiple periodic patterning systems coexisting in a single entity and is something
we will encounter, albeit in different guises, in other systems.
In flighted birds, the feathers form during embryogenesis in a neat hexagonal periodic pattern which evolved

to aid flight [7,37] (Figure 3). Chickens (Figure 1) and quail retain this layout, but unlike in mouse where the
majority of the primary hair follicles form simultaneously, feathers form in a wave beginning as a single row at
the midline at E6.5 with new rows being sequentially added over the next 2 days [38].
Like hair, feathers consist of an epithelial placode and associated dermal condensate, requiring both compo-

nents to produce a mature structure. Over the past couple of decades, some of the molecular events governing
feather formation have been elucidated; FGF signalling, including epidermally expressed FGF20, has been
shown to be activatory in feather formation [7,39–42], whereas BMP signalling is inhibitory [8,43–45].
However, it was only more recently that the global processes defining the periodic pattern have been explored
in greater depth.
A lack of an identifiable pre-pattern led to the proposal that feather formation is initiated by mechanical pro-

cesses based on the inherent tension generated by the mesenchyme leading to epidermal compression which
triggers a β-catenin signalling cascade [29]. Here, feather follicles emerge through mechanical instability, with
cellular contractility serving as a short-range activator and tissue stiffness as a long-range inhibitor. Additional

Figure 3. Models of hair follicle and feather patterning.

Top: In hair follicle patterning a Turing RD system generates a molecular pre-pattern, consisting of high regions of WNT

signalling, which defines sites of future placode formation in the epidermis. FGF20 generated by the placode attracts

underlying dermal fibroblasts which then aggregate to form the dermal condensate. The placode and dermal condensate then

undergo several subsequent stages of morphogenesis to produce mature hair follicles. Bottom: Feather patterning begins at

the midline with the generation of a single row of feathers. As development continues new rows are added sequentially in a

wave spreading from the midline to generate a hexagonal pattern in flighted birds. Both MC models, involving mechanical

instability, and Turing-like systems incorporating FGF20-mediated chemotaxis, have been proposed to describe the process.

Refer to the main text for more details. Images created with BioRender.com.
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evidence to support this came from an ex vivo model which suggested that the initiating event in feather forma-
tion occurs through contractile mesenchymal cells at the midline aligning the ECM. This further increases its
contractility through calcium signalling eventually leading to contractile instability and symmetry breaking into
feather primordia [46]. However, neither of these works fully explain how the hexagonal feather arrangement is
generated and how patterning spreads as a wave.
Ho and colleagues expanded upon this and proposed that a hybrid patterning system, consisting of an RD

system combined with chemotaxis, is capable of producing the hexagonal feather layout. They found that a
travelling wave of EDA, the ligand for EDAR, defines the precise location, based on a minimum cell density, in
which a periodic pattern can operate to produce a feather row. In permissible regions, FGF20-mediated che-
moattraction (activator) facilitates mesenchymal aggregation which leads to the expression of BMP4 (inhibitor)
and the compression of the epidermis to enhance further FGF20 expression (self-activation). These authors
also did not detect a molecular pre-pattern, demonstrating that although feather and hair follicle formation
utilise similar signalling components (WNT, FGF, EDA, BMP) the patterning processes are distinct.
Furthermore, a study of feather formation across diverse avian species revealed a universal patterning system
also combining elements of RD systems and chemotaxis, whilst additionally incorporating proliferation, med-
iates the propagation of the patterning wave in different birds [37].
This research on feather formation highlights the complexities of studying periodic pattern formation espe-

cially when there is likely an intricate interplay between the mechanical and cell signalling environments
driving feather pattern formation, rather than a sole mechanism, which agrees with another recent study
exploring the contribution of cell shape anisotropy to feather pattern fidelity [47].
Although the patterning modes between mouse hair and avian feathers are distinct, there is conservation of

the core signalling components. Indeed, this is actually widespread across taxa. For example, disruption of
EDA/EDAR signalling in humans [48], zebrafish [49], mice [50,51], lizards [52], and snakes [53] leads to aber-
rant ectodermal appendages, affecting the formation of teeth, hair, sweat glands, and scales in these species.
Furthermore, two recent studies [53,54] revealed that spreading EDA/EDAR signalling waves, akin to that
described for chicken feathers [7], are required for the formation and sequential patterning of periodically
arranged scales in zebrafish and snakes (Figure 4) suggesting core patterning mechanisms have evolved to
produce these highly specialised patterns. Further demonstration of core patterning components being utilised
throughout evolution is the pattern of ectodermal appendages in sharks and turtles. Shark denticles are believed
to pattern by a Turing RD system with FGFs and SHH serving as activators and BMP4 acting as an inhibitor
[55]. Alternatively, turtle scutes are thought to employ a multi-step patterning process, utilising two sequential
RD systems incorporating SHH and FGF4, which follow an initial pre-pattern layout based on somite position
[56], with EDAR also playing a role in the patterning process [57].
In the volar skin of humans and other species, rather than hair follicles, a series of evenly spaced epithelial

ridges known as dermatoglyphs form which create complex patterns at the digit tips called fingerprints. These
fingerprint ridges are molecularly similar to early hair follicles but lack a mesenchymal component, and are
hypothesised to form through a Turing-like RD mechanism [9]. In this system, an epidermal pre-pattern based
on activatory WNT/EDAR signalling and inhibitory BMP signalling defines local sites of proliferation to drive
downgrowth [9]. This patterning system operates as a series of spreading waves initiating from distinct anatom-
ical sites which are influenced by the architecture and signalling environment of the developing digit [9,58].
The timing and interactions of these spreading waves is what determines the final fingerprint pattern type.

The skin ii: colouration patterns
The colouration patterns of animals such as the stripes of a zebra and spots of a leopard have long been
described as being a Turing pattern [59–62], as similar patterns are easily produced by simple RD models,
including those described in Turing’s original work [13]. However, here we only describe colouration patterns
which arise during embryogenesis.
A recent study into feline coat markings [63] provided a molecular context as to how a leopard’s spots might

indeed form. In this elegant study, the authors demonstrated that the distinctive patterns of domestic cats are
produced during embryonic development with a pre-pattern of gene expression preconfiguring sites of epithe-
lial thickness. The WNT inhibitor, Dkk4 was identified as a key component in this process, with mutations in
the gene underpinning the Ticked pattern type. This led to a RD system being proposed to explain the pattern-
ing process, in which WNT ligands serve as short-range activators and WNT antagonists act as long-range
inhibitors.
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Another excellent example exploring the mechanisms defining colour patterns focused on the feather pig-
mentation patterns across different avian species [64]. Intriguingly, the authors report that the generation of
characteristic black and yellow stripes seen in juvenile Galliformes occurs in a two-step process. Firstly, pos-
itional cues from the somitic mesoderm define the precise location in the dermis where bands of agouti expres-
sion, and subsequently yellow stripes, form. Secondly, this pre-pattern is further refined based on the levels of
agouti expression which temporally determine the pigment type production and thus the width of the stripes
(Figure 4). Utilising positional instructions from the somites, prior to the employment of a self-organising
mechanism to produce periodicity, ensures directionality and reproducibility of the final pattern by defining
the initial elements (longitudinal stripes) [65].

Figure 4. Examples of positional information interacting with patterning mechanisms.

Top: Feather colouration patterns in Galliformes originate in the embryo. Instructional signals from the somites define the

position at which agouti expression, and subsequent yellow feather colouration in the adult, occurs. A second patterning

system, regulated by agouti, then defines the size and spacing of the stripes. Bottom: Snake scale formation occurs through a

Turing-like system interacting with three spreading EDA waves that define competence to the pattern. Positional cues from the

somites are necessary to define the initial placode location, without which the correct pattern fidelity cannot be generated.

Images created with BioRender.com.

© 2024 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 81

Biochemical Society Transactions (2024) 52 75–88
https://doi.org/10.1042/BST20230197

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/52/1/75/954702/bst-2023-0197c.pdf by guest on 20 M

arch 2024

https://creativecommons.org/licenses/by/4.0/


Teeth and rugae
Both RD-like systems [19,66–68] and MC models [69,70] have been reported to explain various aspects of
tooth morphogenesis during embryogenesis. For instance, a RD system with WNT, SHH, and the WNT/BMP
inhibitor Sostdc1 serving as the activator, mediator, and inhibitor, respectively, is capable of generating the
spacing of mammalian teeth [67]. Turing-like RD systems involving EDAR signalling can also explain how dif-
ferences in tooth morphology between animals [68,71], particularly molar cusp shape and number, have
evolved. More recently, it was also suggested that the differential jaw growth between closely related species of
bats directly perturbs the underlying Turing mechanism leading to modulation of the size and spacing of teeth,
which likely has enabled these animals to adapt to different dietary requirements [19].
In the developing palate, a series of periodically arranged ridges called rugae form, with a Turing-like system

originally consisting of two components, SHH (activator) and FGF (inhibitor) [18] proposed to explain their
patterning. Further experimental and computational work, has revealed that additional Turing RD systems uti-
lising up to five components including members of WNT, BMP, SHH, and FGF families across the epithelium
and mesenchyme, may drive the final rugae patterning [72,73]. Interestingly, palatal rugae morphology has also
been associated with differences in tooth number [74], suggesting that the signalling components driving peri-
odic pattern formation in each system are conserved.

Intestine
The intestine forms thousands of evenly spaced structures called villi, which increase the surface area and aid
nutrient absorption [75] (Figure 1). In the chick gut, a series of folding events occur, including transitioning
through a zig-zag state to create the final functional units. The generation of these patterns occurs through con-
fined mechanical strain which leads to directional folding based on the development of the surrounding muscu-
lature [10]. In mouse, muscle-induced folding does not occur. Rather, epithelial Hedgehog signalling, interacting
with other key developmental signalling pathways including BMP and PDGF, promotes local mesenchymal cell
aggregations which undergo further patterning and arrangement in a Turing-like manner leading to villi forma-
tion [11,76,77]. A recent preprint has proposed an interesting alternative mechanism for the formation of mouse
villi, based on mesenchymal dewetting [78]. Here, a thin layer of PDGFRAHigh tissue actively acquires fluid-like
properties that enable separation from the surrounding PDGFRALow tissue, leading to the formation of a series
of patterned mesenchymal cell aggregates; the size and spacing of which can be modified by modulating the
initial number of PDGFRAHigh cells [78]. Through enhanced cohesion these aggregates round-up and initiate
folding in the epithelium above, thereby marking the position of future villus outgrowth [78].

Limbs
The developing limb forms many patterned structures including the individual digits and joints of the hand.
However, these structures have not always been thought of as periodic patterns. Indeed, it was the increased
digit number coupled with reduced interdigital spacing and bifurcations, hallmarks of a periodic patterning
process, that are present in Hoxa13/Gli3 mutant mice [2] which provided experimental evidence for this in
vivo (Figure 1). Prior to this, the specification of digit identities was largely attributed to the concepts of pos-
itional information [15], which we briefly discussed earlier (Figure 2), although it should be pointed out that
an RD system producing the periodic array of digits was suggested [79,80]. It was only until recently that a
Turing-like system consisting of a network of BMP, SOX9, and WNT signalling was shown to be capable of
producing the periodic patterning of the digits in mice [3] with a similar model proposed for the patterning of
condensations in the catshark pectoral fin [17]. Alternative non-typical Turing RD systems have also been used
to model digit formation [27] including Murray and Oster’s original mechanical model [81], and further
re-evaluation [82] of the Hoxa14/Gli3 mutant limbs suggested that digits initiate as spots (digit organising
centres), likely specified by a Turing system, which then form stripes (digits) through elongation of the limb
bud. To add a further layer of complexity, Parada et al. [31] suggest that although a Turing system may drive
the periodic patterning of the metacarpals, the digits themselves arise from organising centres of high Activin/
pSMAD signalling defined by local mechanical feedback.
During later limb development, Turing-like systems have been used to model the formation of interphalan-

geal joints [83]. Firstly, models using two separate Turing patterning systems, one which defines dots, and one
stripes, were shown in silico to be capable of explaining joint number, position, and orientation across various
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vertebrate species. Secondly, a recent paper [84] combining experimental data and in silico modelling suggested
that a BMP-based Turing system may be behind these patterning events.

Other examples of periodic patterning
In the mammalian inner ear, the hair cells and supporting cells in the organ of Corti become periodically
arranged through a mechanical patterning system based on global shear and local repulsion forces [85].
During early embryogenesis RD systems have been proposed as an alternative to the clock and wavefront

models of somitogenesis [86], and in governing left–right asymmetry through Nodal and Lefty interactions
[20,21]. Indeed, the demonstration that during zebrafish embryogenesis the activator Nodal has a lower diffu-
sion rate than the inhibitor Lefty provided biophysical support for the fundamental underpinnings of the clas-
sical RD system [13,16].

Discussion
Many different patterning systems utilise the same suite of signalling pathways including WNT, BMP, FGF,
SHH, and EDAR, but are employed in different contexts. This explains why in developmental disorders, such
as hypohydrotic ectodermal dysplasia [87] and Robinow syndrome [88], multiple patterning defects are
observed together. WNT/β-Catenin signalling is on the whole activatory, as is the case for feathers [7], hair fol-
licles [4,6], fingerprints [9], rugae [72], and feline pigmentation [63]. FGF signalling also appears to be activa-
tory, promoting chemotaxis in several systems [6,7,41,42]. Interestingly, BMP signalling largely serves as an
inhibitory influence [5–7,9,11,45,55], often regulating the spacing of patterned elements especially in systems
with a high epithelial input such as the skin.
Different mechanisms for embryonic pattern formation have in the past been considered mutually exclusive,

and often one type may be dismissed as incapable of producing patterns because the technology required to
test these theories was not available; a problem which led to the dormancy of Turing’s original ideas for many
years. However, continuing advances in methodologies and technologies now allow future researchers to unbia-
sedly examine periodic pattern formation and be open to incorporating elements from other patterning modal-
ities. This process has already begun [89], as there are now clear experimental examples of RD systems
incorporating positional information such as the colouration and patterning of avian feathers [47,64] and the
arrangement of reptilian ectodermal appendages [53,56] (Figure 4), all of which rely on defined signals from
the somites. Indeed, in the developing limb, fingerprint patterns are also influenced by the shape of the devel-
oping digit and localised mesenchymal signalling centres [9,58], whereas the patterning of the bones and joints
of the hand likely involves a complex interplay between multiple Turing systems and local mechanical forces.
Evaluating the roles of signal-based and MC patterning mechanisms in an unknown system can be challen-

ging. A hallmark of RD systems is the presence of a pre-pattern that precedes any changes in cellular rearrange-
ment, as seen for hair follicles and fingerprints [6,9]. However, the detection of a pre-pattern, especially in new
systems is challenging. The continuing advancement of single cell and spatial RNA sequencing technology will
aid identification of pre-pattern candidate markers through developmental trajectory analysis, and localisation
of gene expression if enough temporal resolution is available. In hybrid or MC systems, whilst molecular pre-
patterns are absent, local differences in cell density, proliferation rate, ECM alignment or increased mechanical
strain can serve as symmetry-breaking events, and therefore should also be comprehensively examined when
exploring new patterning systems.
Experimentally validating patterning mechanisms is challenging due to difficulties assessing parameters like

molecular kinetics in biological tissues. Recent technical advancements such as fluorescence correlation spec-
troscopy for in vivo measurement of diffusion coefficients and ligand interactions/degradation of morphogens
[90–92], as well as atomic force microscopy for assessing mechanical properties of tissues undergoing pattern-
ing [9,93], have enabled quantification of these parameters, and thus a more accurate dissection of the under-
lying patterning processes. Furthermore, mathematical models incorporating factors such as tissue growth [94],
mechano-chemical feedback loops [95], and diffusiophoresis [96] into classical Turing RD systems, continue to
be developed in an effort to more accurately reflect biological patterns.
Investigating pattern formation in non-mouse vertebrate models, such as zebrafish and chick embryos, offers

numerous advantages including the ability to conduct live cell imaging and perform tissue manipulations
during embryonic development. Ongoing advancements in transgenic technologies and reporter systems [97–
99] make these organisms excellent models to study embryonic patterning events moving forward.
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Additionally, exploring pattern formation in more diverse species, such as reptiles [53,57] and wild rodents
[100,101], will enable the study of how periodic patterning processes have evolved across taxa, potentially
revealing novel patterning mechanisms.
The coexistence of RD and MC patterning modes in one tissue is likely more extensive than in hair follicles

[6]. Indeed, Turing himself described the state of the system as having two parts, mechanical and chemical
[13], making it highly likely that most periodic patterns utilise aspects of both RD and MC processes. The
ability to dissect, decouple, and unbiasedly assess the influence and interaction of these distinct patterning
modes on periodic pattern formation will, therefore, be essential for future studies.
Going forward, in vitro organoid and embryoid systems will be invaluable resources to complement in vivo

experiments as the mechanical and signalling conditions can be rigorously controlled and manipulated, and
they provide a system to study patterning events in developing human tissues. Potential systems include lung
bud tip progenitor organoids generated from human pluripotent stem cells [102] which undergo bifurcation
events that recapitulate the patterned branching structure of human lungs [103], and mammalian skin orga-
noids [104,105] which develop periodically spaced hair follicles in vitro.
The exploration of other inputs into periodic pattern systems such as propagation of long-range signalling

by calcium waves, differences in the metabolic properties of cells, and protein stability will also become access-
ible with the ever-advancing imaging, experimental, and modelling techniques. Ultimately, it will be up to our-
selves as researchers to be rigorous in our assessment of patterning modality and be open to all avenues. It is
only by understanding the complexities and interplay between RD and MC systems that we will be able to fully
decipher how these beautiful arrangements form and leverage this knowledge to gain a greater insight into
associated developmental disorders and inform future tissue regeneration strategies.

Perspectives
• Determining how embryonic periodic patterns form is essential to fully understand how func-

tional organs and tissues are generated, and why these processes are disrupted in certain
congenital disorders. It is only by investigating how these patterns naturally form that we will
to able to generate tissues in vitro that faithfully recapitulate the situation in vivo.

• Embryonic periodic pattern formation is more intricate than originally hypothesised and often
involves a complex interplay between the MC and molecular signalling environment, coupled
with further influences from neighbouring embryonic structures and tissue architecture.

• Going forward it will be essential to interrogate, and decouple, the roles of the MC and
molecular environment in order for us to unbiasedly assess the patterning modalities of a
system. Continuing theoretical and technological advances will enable this, particularly the
development of new transgenic tools, organoid systems, and super-resolution microscopy
approaches that allow us to experimentally validate more complex mathematical hypotheses
and move us closer to delineating how different biological patterns form. Finally, the study of
periodic patterns across diverse species has the power to not only provide insight into how
these processes have evolved, but because it may reveal novel patterning modalities that
have not yet been discovered.
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