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Bivalent chromatin is defined by the co-occurrence of otherwise opposing H3K4me3 and
H3K27me3 modifications and is typically located at unmethylated promoters of lowly
transcribed genes. In embryonic stem cells, bivalent chromatin has been proposed to
poise developmental genes for future activation, silencing or stable repression upon
lineage commitment. Normally, bivalent chromatin is kept in tight balance in cells, in part
through the activity of the MLL/COMPASS-like and Polycomb repressive complexes that
deposit the H3K4me3 and H3K27me3 modifications, respectively, but also emerging
novel regulators including DPPA2/4, QSER1, BEND3, TET1 and METTL14. In cancers,
both the deregulation of existing domains and the creation of de novo bivalent states is
associated with either the activation or silencing of transcriptional programmes. This may
facilitate diverse aspects of cancer pathology including epithelial-to-mesenchymal plasti-
city, chemoresistance and immune evasion. Here, we review current methods for detect-
ing bivalent chromatin and discuss the factors involved in the formation and fine-tuning
of bivalent domains. Finally, we examine how the deregulation of chromatin bivalency in
the context of cancer could facilitate and/or reflect cancer cell adaptation. We propose a
model in which bivalent chromatin represents a dynamic balance between otherwise
opposing states, where the underlying DNA sequence is primed for the future activation
or repression. Shifting this balance in any direction disrupts the tight equilibrium and tips
cells into an altered epigenetic and phenotypic space, facilitating both developmental
and cancer processes.

Introduction
Cancer can be described as a disease of cellular identity and is often associated with a dedifferentiated
state recapitulating epigenetic, transcriptomic and phenotypic properties associated with embryonic
cells [1–3]. Emerging models propose that cancer cells can hijack developmental programmes to
increase their plasticity and facilitate their evolution and adaptation [4–7]. In both cancer and devel-
opment, cellular identity is controlled in part by epigenetic mechanisms, involving DNA- and
chromatin-modifying complexes. These epigenetic mechanisms collaborate in a co-ordinated manner
to orchestrate gene expression changes associated with differentiation and are often compromised
during cancer initiation and progression [8].
Nucleosomes, the fundamental unit of chromatin, are comprised of histone proteins and associated

DNA. Changes in histone tail modifications influence chromatin structure controlling the availability
of DNA for networks of sequence-specific transcription factors [9–11]. In this review, we focus on the
bivalent chromatin structure which is defined by the co-occurrence of trimethylation of lysine 27 on
histone-H3 (H3K27me3) and trimethylation of lysine 4 on histone-H3 (H3K4me3) on opposing tails
within the same nucleosome [12,13] (Figure 1). Generally, these two marks are associated with gene
repression and activation respectively. However, their co-occurrence at lowly transcribed promoters
occupied by paused RNA Polymerase II has been documented across a wide variety of species and
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cellular contexts ranging from fungi, plants and zebrafish to mouse and human embryonic and pluripotent
cells [14–26]. The existence of bivalent chromatin across different species suggests the functional importance of
bivalent domains may be conserved.
Bivalent chromatin is typically found at CpG island containing promoters. Throughout mammalian

genomes, ∼70–80% of CG dinucleotides are methylated; however, CpG islands are typically devoid of DNA
methylation [27]. The first genome-wide maps of bivalent chromatin in mouse embryonic stem cells (ESCs)
revealed that almost all CpG-rich promoters were marked by H3K4me3 and a subset (∼20%) of these were
also marked by H3K27me3 [28,29]. Current models propose that bivalent chromatin plays a role in pluripo-
tency by poising differentiation and lineage commitment genes for future activation or repression [28–30],
although it should be noted that causality has not been demonstrated. During in vitro differentiation of mouse
ESCs, bivalent domains were shown to resolve to either a H3K4me3 highly expressed, or H3K27me3 silenced
state [28,29] (Figure 1). Alternatively, loss of both H3K4me3 and H3K27me3 at bivalent regions could result in
a stably repressed state marked by DNA methylation (Figure 1).
While traditionally studied in the context of pluripotency, emerging studies point to a role for bivalent chro-

matin in facilitating cellular adaptation in a range of other contexts [16,17,23]. Changes in bivalent chromatin
at key cancer-related genes have been associated with cancer initiation and adaptation to therapy [31,32].
Several recent reviews have detailed the regulation of bivalent chromatin in stem cells and during development
[33,34], here we shed light on recent advances in our understanding of how this chromatin signature is rede-
ployed in cancers. First, we will discuss approaches used to measure bivalent chromatin, followed by a discus-
sion on the enzymatic complexes required to form H3K4me3 and H3K27me3, and how they may be targeted
specifically to form bivalent chromatin. Lastly, we will discuss how bivalency could reflect distinct regulatory
mechanisms for cancer cells to maintain the epigenetic plasticity necessary for adaptation.

Techniques to accurately detect and measure bivalent
chromatin
Most observations of bivalent chromatin have come from chromatin immunoprecipitation (ChIP)-based
approaches [35] to profile H3K4me3 and H3K27me3 at loci of interest (by qPCR) or genome-wide (by high
throughput sequencing). Alternatively, CUT&RUN and CUT&Tag methods [36] can be similarly used to
profile H3K4me3 and H3K27me3. These approaches typically profile a single modification at a time and so
bivalent chromatin is inferred bioinformatically as regions independently enriched for both H3K4me3 and
H3K27me3. However, this approach does not control for allelic or cellular heterogeneity in the sample where
the two modifications exist on different alleles or in different cells. Consequently, high false-positive rates

Figure 1. Developmental resolution paths for bivalent chromatin.

Bivalent promoters are defined by the co-occurrence of active-associated H3K4me3 (green triangles) and inactive-associated

H3K27me3 modifications (red pentagons) on opposing tails of the same nucleosome (grey pucks). These marks are deposited

by the MLL/COMPASS-like and PRC2 complexes, respectively. The poised lowly expressed state of bivalent promoters can be

resolved to an active H3K4me3-only (top), inactive H3K27me3-only (middle) or stably repressed DNA methylated (bottom) state.
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ranging from 14% in human T cells [37] to ∼25% in mouse ESCs [38,39] have been reported using this in
silico overlap approach. Thus, while this approach may provide preliminary insights, further confirmation of
true bivalency is required. To conclusively demonstrate true bivalent chromatin where both modifications occur
on the same nucleosome, sequential ChIP or ChIP–reChIP methods can be used [37–39]. This involves two
successive ChIP reactions, whereby the first purification of either H3K4me3- or H3K27me3-containing nucleo-
somes is then subjected to a second immunoprecipitation for the alternative modification. In more heterogen-
ous populations such as cancer samples, sequential ChIP can rule out sample or allelic heterogeneity and
consequently has increased accuracy. Moreover, the higher sensitivity can enable detection of bivalent chroma-
tin in a subset of cells [38]. Sequential ChIP is recommended to confirm bivalent loci and/or profile cell types
and conditions where the bivalent landscape is unknown. One limitation is that sequential ChIP typically
requires high amounts of starting material, although recently a protocol for profiling 2 million cells has been
reported [38]. To profile smaller populations, or even single cells, CUT&Tag-based methods may be more
appropriate. Recently, CUT&Tag was adapted to use barcoded-labelled antibodies to simultaneously map mul-
tiple histone modifications in single cells [40]. While it has not yet been shown for H3K4me3–H3K27me3
bivalent regions, this approach could be useful, especially in complex or rare populations.
Quantitative genomic approaches are becoming increasingly necessary for accurate dissection of chromatin

dynamics and regulation. An important consideration and drawback of sequential ChIP is that it does not
provide absolute levels of bivalent chromatin. While spike-in controls are used in single ChIP-seq to help nor-
malisation between samples and conditions [41–43] they have not yet been adopted for sequential ChIP.
Alternatively, mass spectrometry can provide the absolute abundance of histone modifications at a population
level, albeit at the expense of locus-specific information [13].
Complementing genomic approaches, imaging-based methods can visualise bivalent chromatin in cells,

trading locus information for single-cell and sub-cellular resolution. In ESCs, iChmo, an in situ proximity liga-
tion assay-based approach, was used to profile bivalent chromatin dynamics in heterogeneous ESCs and upon
differentiation [44]. Another approach involving engineered probes containing H3K27me3 and H3K4me3
reader domains fused to fluorescent reporters allows visualisation of bivalent chromatin in living cells
[30,45,46], and coupling these reporters with biotin can facilitate genomic mapping via streptavidin pull down
[46]. These approaches come with the caveat that reader domains bound to just one or neither histone modifi-
cation will also fluoresce and so relies on signal enrichment within the nucleus.
In summary, multiple approaches are available to study bivalent chromatin, each with their advantages and

disadvantages. A major challenge facing the field is that most studies define bivalent chromatin in silico from
independently generated ChIP-seq or similar datasets. Thus, care must be taken when extrapolating findings
from these studies as they may be confounded by high false-positive and false-negative rates. Here, we review
studies defining bivalent chromatin using all approaches mentioned here, noting when true bivalency has been
comprehensively shown.

Formation of bivalent chromatin domains
A lot is now known about the histone lysine methyltransferases that catalyse trimethylation of H3K4 and
H3K27. In mammals, Polycomb repressive complex 2 (PRC2) deposits H3K27me3 while SET1/COMPASS or
MLL/COMPASS-like group protein complexes deposit H3K4me3. The molecular details of these complexes
and their roles in development and transcription have been comprehensively reviewed [9,47,48]. Here, we
provide insights into how these complexes interact with and shape bivalent domains.

Formation of bivalent chromatin domains — H3K4me3
Methylation of lysine 4 on histone H3 (H3K4) is one of the most extensively studied histone modifications due
to its links with transcription and mis-regulation in cancer [47]. In mammals H3K4 methylation is deposited
by SET1/COMPASS and MLL/COMPASS-like complexes that contain shared core subunits and one of six
lysine methyltransferases: SET1A (KMT2F), SET1B (KMT2G), MLL1 (KMT2A), MLL2 (KMT2B), MLL3
(KMT2C) and MLL4 (KMT2D). H3K4me1 is catalysed by MLL3/4 and is associated with enhancer elements,
while promoter-enriched H3K4me2/3 is deposited by SET1A/B and MLL1/2 [49,50]. Targeting of SET1/
COMPASS and MLL/COMPASS-like complexes to non-methylated CpG islands is at least partly mediated
through DNA binding zinc finger CxxC domains contained within the histone-methyltransferases (HMT)
themselves or associated subunits [51–53]. SET1A/B complexes are enriched at actively transcribed genes, while
MLL1/2-containing complexes are broadly distributed across the genome [54,55].

© 2024 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 219

Biochemical Society Transactions (2024) 52 217–229
https://doi.org/10.1042/BST20230426

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/52/1/217/954686/bst-2023-0426c.pdf by guest on 20 M

arch 2024

https://creativecommons.org/licenses/by/4.0/


Of the six lysine methyltransferases, MLL2 has been implicated to be most important at bivalent sites, at
least in ESCs [54,55]. Consistent with their low levels of transcription, bivalent promoters are enriched for
MLL2-containing complexes and devoid of SET1A/B complexes (Figure 2) [56]. Depletion of Mll2 but not
Mll1 causes a reduction in H3K4me3 at bivalent promoters [39,54,56], supporting a primary role for MLL2 at
bivalent promoters in pluripotent cells [54,55]. This lack of redundancy between MLL1 and MLL2-containing
complexes at bivalent promoters in pluripotent cells is surprising given the highly similar subcomplex assem-
blies [54,55]. In contrast with ESCs, both MLL1 and MLL2 have been implicated in the deposition of
H3K4me3 at bivalent genes in a cell culture model of chronic myeloid leukaemia (CML) [57]. This highlights
the need to independently consider the roles of MLL1 and MLL2 at bivalent domains in different cellular
contexts.
MLL1/2 containing complexes specifically contain the scaffold protein Menin [58], which binds to the

N-terminus of MLL1/2 in normal cells as well as oncogenic MLL1-fusion protein complexes [58,59]. While the
exact role of Menin in these complexes remains unclear, Menin may act by facilitating transcriptional activation
by mediating the recruitment of MLL1/2 to chromatin [60]. In the context of bivalent chromatin, the role of
Menin is even more ambiguous. In the same model of CML as above, loss of Menin caused a redistribution of
MLL1 away from highly transcribed genes to bivalent genes and was associated with an increase in H3K4me3
and transcription of the bivalent genes [57]. This suggests, in the context of this CML model, Menin restricts
the expression of bivalent genes. Menin also binds oncogenic MLL1-fusion protein complexes [58,59], and so it
will be interesting to explore its role in these cancer contexts. Taken together these data suggest that the role of
MLL1/2 and Menin at bivalent domains is likely cell-type and context dependent.

Formation of bivalent chromatin domains — H3K27me3
The repressive component of bivalent chromatin, H3K27me3, is deposited by PRC2 [9]. PRC2 is essential for
regulating cellular identity during differentiation and development in a wide range of species [48], and muta-
tions in PRC2 are associated with developmental disorders and malignancies including lymphomas and
gliomas [61–63]. H3K27me3 is deposited at low levels throughout the genome, and is highly enriched at pro-
moters of developmental genes [64,65], which typically display a bivalent signature [25,28,66–68]. The core
subunits of PRC2 are comprised of EED, SUZ12 and the HMT EZH1 or EZH2, in association with RBBP4/7
(Figure 2). These core PRC2 subunits associate with several accessory proteins which define two main sub-
assemblies, PRC2.1 and PRC2.2 [69,70], which fine-tune the recruitment of PRC2 to target genes [65,71,72].
The mechanisms of PRC2 recruitment to target genes have been reviewed in detail elsewhere [73–78]. Further

Figure 2. Molecular players at bivalent domains.

Schematic of a bivalent domain containing H3K4me3 (green triangles), H3K27me3 (red pentagons) and H2AK119Ub (purple

circles) at a lowly transcribed gene promoter containing paused RNA Polymerase II. Bivalent domains are typically devoid of

DNA methylation (white circles). Molecular complexes involved are highlighted in the same colour as the mark they catalyse.

Other molecular players implicated in regulating bivalent chromatin are shown along with arrows linking them with their

proposed modes of action when known.
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studies are needed to investigate the role of different assemblies of Polycomb complexes in the formation and
regulation of bivalent chromatin domains in different cellular contexts. PRC2.1 is the dominant subcomplex in
terms of H3K27me3 deposition [65,71,72,79] which has led some studies to specifically implicate it in relation
to bivalency [57,80]. However, since PRC2.1 and PRC2.2 co-localise at the vast majority of target genes in
mouse pluripotent cells [65,71,72], it will be important to also consider the role of PRC2.2 at bivalent domains.
In addition to PRC2, the Polycomb system also includes Polycomb repressive complex-1 (PRC1). PRC1

comes in both canonical (cPRC1) and variant (vPRC1) forms and catalyses mono-ubiquitination at lysine 119
of histone H2A (H2AK119ub) [9] (Figure 2). The plethora of mechanistic studies in pluripotent cells in recent
years has highlighted the intricate cross-talk between Polycomb subassemblies required to maintain genes in a
repressive state. Loss of H2AK119ub leads to a reduction in PRC2 binding and a rapid induction of Polycomb
target gene expression, including bivalent genes. This underscores H2AK119ub as a key gatekeeper of
Polycomb-mediated gene repression both broadly but also at bivalent chromatin [81–83]. Together, these
studies highlight the likely role for PRC1 and H2AK119ub in establishing bivalent domains and maintaining
them in a low expression state [34]. Therefore, as we move past studies of bivalency in pluripotent cells and
think about this chromatin structure in the context of cancer initiation and progression we must consider other
marks, such as H2AK119ub, and the variety of complex assemblies that intersect at these domains.

Formation of bivalent chromatin domains — other players
Recent studies in mouse ESCs have uncovered additional players in maintaining bivalent domains that act
through antagonising DNA methylation or regulating H3K27me3 levels [84–88]. DNA at bivalent regions is
generally unmethylated, and so bivalent chromatin has been proposed as a mechanism to protect CpG islands
from aberrant DNA methylation [89]. The ten–eleven translocation (TET) enzymes are involved in the active
turnover of DNA methylation in a variety of biological processes [90]. Loss of all three TET enzymes (TET1–3)
in either mouse or human ESCs induces focal DNA hypermethylation most notably at bivalent promoters, in
addition to other gene regulatory regions [91,92]. Taken together, these data support a role for TET enzymes in
safeguarding bivalent promoters from aberrant DNA methylation. Similarly, glutamine serine rich protein 1
(QSER1) has emerged as a novel protein protecting developmental-associated bivalent domains from de novo
DNA methylation in human ESCs [84]. Mechanistically, QSER1 localises to regions flanking bivalent domains,
associates with TET1 and antagonises DNMT3A. Consequently, loss of QSER1 induces DNMT3A-mediated
DNA hypermethylation at bivalent genes. Taken together, these data support a role for TETs and
TET-associated proteins in protecting bivalent promoters from aberrant DNA methylation.
Developmental pluripotency associated 2 and 4 (DPPA2/4) proteins have recently been discovered as new

regulators of bivalent chromatin in mouse ESCs [85,86]. Single ChIP [85,86] and reChIP [38] analyses have
revealed loss of DPPA2/4 causes focal reduction in both H3K4me3 and H3K27me3 at some, but not all,
bivalent promoters. Loss of bivalency is associated with an accumulation of DNA methylation. DPPA2/4 are
non-enzymatic proteins that interact strongly with chromatin, even under high salt concentrations [93], and
interact with Polycomb and MLL/COMPASS-like complexes amongst other chromatin factors [85,93]. This
suggests that at bivalent regions they may act as molecular anchors to stabilise or fine-tune the interactions for
other regulatory complexes, such as Polycomb or MLL/COMPASS-like complexes at bivalent chromatin.
BEN domain containing 3 (BEND3) and methyltransferase 14 (METTL14) have also recently been impli-

cated in regulating levels of H3K27me3 at bivalent promoters [87,88,94,95]. Loss of either protein causes a
marked decrease in PRC2 binding and H3K27me3 levels at bivalent promoters [87,88]. While the mechanistic
details of how this occurs remain to be seen, we know that the loss of BEND3 also leads to a global increase in
DNA methylation [95] suggesting it has wide-reaching influences beyond bivalent domains. The role of
METTL14 at bivalent domains is independent of its more studied function with METTL3 in modifying RNA
[96,97]. It is tempting to speculate that METTL14 somehow regulates the equilibrium between H3K4 and
H3K27 modifying complexes since the reduced H3K27me3 simultaneously leads to an increase in H3K4me3
and gene transcription [87]. More functional studies uncoupling the METTL3-dependent and -independent
roles of METTL14 could provide more mechanistic insights.
These studies illustrate that the regulation and fine-tuning of the bivalent chromatin environment extends

beyond the catalytic complexes to include a range of additional molecular factors, including, but not necessarily
limited to, those described above. It is now critical we expand on these studies to identify other regulators,
understand their functional and mechanistic modes of action, while also considering their roles in regulating
bivalent domains in other contexts, including cancer.
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Bivalent chromatin and cancer
It is now clear that, in addition to genetic changes, disruption of the chromatin and transcriptional environ-
ments is a major driving mechanism in cancer [98]. There is growing evidence that cancers can reawaken
embryonic programmes to facilitate many aspects of tumorigenesis including drug resistance, metastasis and
immune evasion [5,7,99]. Like embryonic cells, cancers can also have heightened plasticity [99] and it is tempt-
ing to speculate that aspects of epigenetic plasticity found in embryonic cells, such as bivalent chromatin, may
similarly play a role in facilitating cancer cell adaptation.
Changes to the bivalent chromatin landscape have been specifically implicated in different aspects of multiple

cancers, including glioma [100], neuroblastoma [101], breast [102], colon [31] and melanoma [103]. It is
important to note that most of these studies have inferred bivalency from single ChIP datasets, and there are
limited comprehensive sequential ChIP maps of the dynamics of bivalent chromatin in the context of cancer.
In this section, we review how disrupting the epigenetic balance at bivalent domains may promote cancer pro-
cesses including epithelial-to-mesenchymal transition (EMT), chemotherapy resistance and immune evasion
(Figure 3).

Bivalent chromatin and epithelial to mesenchymal transition
EMT is a cellular process whereby immobile epithelial cells shift to a migratory mesenchymal phenotype.
While the EMT programme is a normal part of embryogenesis, it also contributes to tissue regeneration and
promotes cancer metastasis [104,105]. A network of core EMT-inducing transcription factors including Slug,
Snail, Twist and Zeb1 are required to implement EMT [106]. Importantly, this is not a simple binary switch
but a reversible progression through intermediate states, wherein cells can co-express both epithelial and mes-
enchymal characteristics [107,108], implicating epigenetic regulation as a key component of these transitions.

Figure 3. Disrupting the balance of bivalent chromatin in cancer.

Bivalent chromatin exists in fine equilibrium (top panel) and tipping the balance in any direction alters the chromatin state and

ultimately influences transcriptional programmes in the cell. This may affect many aspects of cancer evolution including

epithelial-to-mesenchymal plasticity (bottom left), drug resistance (bottom centre) and immunotherapy resistance (bottom

right). H3K4me3 is depicted by green triangle, H3K27me3 by red pentagon and DNA methylation by brown circle.
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Bivalent domains have been shown to regulate EMT transcription factor genes in breast cancer [102].
Chaffer and colleagues revealed that the chromatin configuration within breast cancer cells lines has an import-
ant role in the cell’s ability to activate the EMT programme in response to transforming growth factor beta
(TGF-β). In the more aggressive basal subtype of breast cancer, cells maintain the Zeb1 promoter in a bivalent
configuration, facilitating EMT induction. In contrast, in luminal-type breast cancer cells, which are unrespon-
sive to EMT-inducing signals, the Zeb1 promoter is marked only by H3K27me3, locking the promoter in a
repressed state [102].
Similarly, profiling of 46 melanoma samples including melanoma samples, patient-derived cultures and cell

lines revealed that a differential putative bivalent chromatin state separated the NRAS and BRAF mutant melan-
oma subtypes [103]. Using Roadmap data from primary melanocytes, and BRAF and NRAS mutant melano-
cytes, the authors noted that as melanocytes progressed towards melanoma, BRAF mutants exhibited a global
decrease in the number of bivalent domains, while NRAS mutants had an increase. This increase is likely a con-
sequence of increased expression of PRC2 subunit SUZ12 [103]. It is interesting to note that despite the global
increase in bivalent domains, site-specific gains and losses at functionally relevant genes drive phenotypic
changes. For example, at EMT-associated genes, the resolution of bivalency in melanocytes to a broad
H3K4me3-only state in cancer cells could enable transcription at these sites and help drive metastasis. In con-
trast, the gain of tumour-specific bivalent domains at genes involved in apical junctions may contribute to a
more mesenchymal phenotype [103].
These two studies highlight how the balance of bivalent chromatin can dictate how cancer cells respond to

external signals and undergo EMT. Supporting this, a recent screen for EMT regulators highlighted PRC2 and
MLL4 (KMT2D) as machinery governing epithelial-to-mesenchymal plasticity [109]. Interestingly, the loss of
either complex directed cells toward distinct EMT states along the EMT spectrum [109], highlighting the need
for continuous balance among chromatin-modifying complexes.

Bivalent chromatin and resistance to immunotherapy
Immunotherapy has revolutionised cancer treatment by promoting cytotoxic T cells to recognise and kill
cancer cells displaying antigens bound to major histocompatibility complex class I (MHC-I) molecules.
Unfortunately, many cancers are either unable to be targeted with immunotherapy or develop resistance by
silencing MHC-I expression. In embryonic and pluripotent cells, the MHC-I genes are bivalently marked, and
this is normally resolved to an active H3K4me3 state in adult somatic tissues [57,110]. In contrast, cancer cells
can silence MHC-I expression, either through genetic mutations [111] or by regaining the
pluripotency-associated bivalent signature [110]. The presence of PRC2 at these loci restricts transcriptional
induction of MHC-I in response to cytokine stimulation, thus driving resistance to T cell-mediated killing
[110]. While the exact mechanism remains unclear, recent work has suggested the MLL/COMPASS-like
complex member Menin can also facilitate repression at this locus [57]. Importantly, immunotherapy resistance
can be disrupted by treatment with either PRC2 and/or Menin inhibitors [57,110]. In an analogous situation,
recent sequential ChIP analyses in Fusarium graminearum suggest the fungal pathogen uses bivalent chromatin
to dampen the expression of virulence genes following infection to avoid host recognition [16]. While more
work is required to elucidate the precise mechanisms involved, these studies suggest that tipping the balance of
bivalent chromatin may render cancer cells more susceptible to treatments such as immunotherapy and poten-
tially represent novel therapeutic avenues.

Bivalent chromatin and resistance to chemotherapy
Resistance to chemotherapy is another major challenge in successfully treating cancer patients. Drug-induced
cellular reprogramming of the transcriptional and chromatin landscape has emerged as a non-genetic mechan-
ism of chemotherapy resistance in multiple cancer types [112–114]. In some models, following chemotherapy
treatment, a population of transcriptionally distinct drug-tolerant persister cells remains, and it is thought these
cells may contribute to recurrence. A recent study [32] modelling chemoresistance in triple-negative breast
cancer detected bivalent domains at a subset of genes within the persister cell transcriptional programme, con-
firming these regions as truly bivalent by sequential ChIP [32]. Treating these cell lines and patient samples
with chemotherapy led to a loss of H3K27me3 at a subset of the bivalent regions, inducing the persister cell
transcriptional programme. If H3K27me3 levels were sustained by simultaneous co-treatment with an H3K27
demethylase inhibitor (KDM6i), the number of persister cells decreased [32]. However, it is important note
that treatment with the KDM6i is not specific to bivalent domains and would sustain H3K27me3 globally.
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These data suggest that bivalent chromatin may poise a persister cell transcriptional programme in untreated
cancer cells, facilitating therapy resistance, and highlights how the timing of epigenetic therapies is essential in
achieving the desired outcomes.
Taken together these studies highlight the ability of cancer cells to manipulate the plasticity associated

with bivalent promoters. Tweaking the chromatin landscape through either loss or gain of H3K4me3 or
H3K27me3, around key genes involved in metastases, immune evasion and drug resistance, can be sufficient
to promote cancer phenotypes (Figure 3). Therefore, more detailed insights into the temporal changes in
bivalent signatures during cancer progression and following drug treatment could help inform better treatment
options.

Bivalent chromatin: striking a balance
We propose that bivalent chromatin is not static but dynamic and must be actively maintained or faithfully
re-established at its target loci [115] (Figure 3). Supporting this, mathematical modelling predicts bivalent chro-
matin is bistable and switching rapidly between active and silent states [116]. It has been proposed that this
bistable state is upheld by the underlying CpG islands at gene promoters which can be continuously sampled
by H3K4 and H3K27 methyltransferases [9]. Like a seesaw, the otherwise opposing H3K4me3 and H3K27me3
are kept in tight equilibrium at DNA hypomethylated loci [117,118]. Failure to actively maintain one modifica-
tion could tip the balance and lead to a complete dominance of another state. Thus, bivalent chromatin reflects
this bistability as fine dynamic balance between competing marks, marking domains poised for any number of
end-states.
Bivalent chromatin and DNA methylation are generally mutually exclusive. Several lines of evidence suggest

that promoters marked by bivalent chromatin in ESCs become deregulated in cancers [119,120]. Indeed, ana-
lysis of DNA methylation data from patient samples in The Cancer Genome Atlas revealed that 75% of genes
hypermethylated in cancer were bivalently marked in human ESCs [121]. The quest for continuous equilibrium
between DNA methylation, H3K4me3 and H3K27me3 at these sites is evident by the restoration of bivalency
following chemically induced genome-wide DNA demethylation [120,122].
In both cancer cells and ESCs, tipping the bivalent chromatin balance in any direction would lead to altered

transcriptional programmes and altered cellular identity and/or functions. In development, the resolution of
bivalent chromatin to an H3K4me3-only state enables lineage-specific transcription factor expression and
lineage commitment. Similarly, in cancer cells, resolution to an H3K4me3-only state may activate transcrip-
tional programmes such as EMT or chemoresistance if the necessary transcription factors are available.
Conversely, re-establishing bivalent chromatin at active loci in cancer cells may dampen transcription, such as
MHC-I genes, and diminish gene expression programmes that are otherwise detrimental to the cancer cell.
Comprehensive genome-wide maps of bone-fide bivalent chromatin during cancer cell adaptation and evolution
are needed to tease apart both the resolution and de novo formation of bivalent chromatin, and the dynamic
interplay and balance between bivalent chromatin, and the variety of trans-acting mechanisms involved in
establishing gene expression programmes associated with cancer cell behaviours.
This balancing act does not occur in isolation and is impacted by other regulators and layers of epigenetic

information. Factors involved in the regulation of developmental bivalent chromatin are often deregulated
cancer. For example, Dppa2/4 and Qser1 are up-regulated in multiple cancer types, and this is often asso-
ciated with poor prognosis [4,123–126], and mutations or deregulation of TET proteins drive a wide range
of malignancies [127,128]. Moreover, subunits of the Polycomb and MLL/COMPASS-like complexes are
deregulated in a range of cancers [63,129]; however, how this alters bivalent chromatin has not been investi-
gated. While bivalent chromatin associates with poised regulatory elements, causality has not been shown
and this structure may simply represent competing chromatin-regulatory processes at these sites. We are not
aware of any ‘readers’ of bivalent chromatin in mammalian systems, although these have been discovered in
plants [130]. Moreover, while bivalent chromatin is generally devoid of DNA methylation, how this seem-
ingly incompatible layer of chromatin-based information shapes and is shaped by the bivalent chromatin
landscape remains to be disentangled mechanistically. Going forward it will be important to explore not only
the dynamics and implications of bivalent chromatin in cancer but also understand how the mis-regulation
of regulatory complexes at bivalent domains contributes to cancer development and may represent novel
therapeutic vulnerabilities.
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Perspectives
• Bivalent chromatin is an exemplar of epigenetic plasticity in developmental and cancer con-

texts. Co-occurrence of H3K4me3 and H3K27me3 at poised gene promoters is thought to
facilitate future changes in transcriptional programmes and activation into an H3K4me3-only
state, repression by H3K27me3 or stable silencing by DNA methylation.

• Bivalent chromatin represents a fine balance between active H3K4me3 and repressive
H3K27me3 modifications underpinned by DNA hypomethylation. Tipping the balance in any
direction disrupts this epigenetic equilibrium, shifting cells into an altered epigenetic and
phenotypic space.

• Future genome-wide maps of bone-fide bivalent chromatin dynamics along with the discovery
of novel regulators will enable an understanding of how this structure is established and
resolved during development and cancer evolution. Together these insights will strengthen or
even revise our understanding of bivalency in the great scheme of cellular decisions that
underlie diverse cellular trajectories.
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