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Aminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that serve a foundational role
in the efficient and accurate translation of genetic information from messenger RNA to
proteins. These proteins play critical, non-canonical functions in a multitude of cellular
processes. Multiple viruses are known to hijack the functions of aaRSs for proviral out-
comes, while cells modify antiviral responses through non-canonical functions of certain
synthetases. Recent findings have revealed that severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2), the etiological agent of coronaviral disease 19 (COVID-19), uti-
lizes canonical and non-canonical functions of aaRSs, establishing a complex interplay of
viral proteins, cellular factors and host aaRSs. In a striking example, an unconventional
multi-aaRS complex consisting of glutamyl-prolyl-, lysyl-, arginyl- and methionyl-tRNA
synthetases interact with a previously unknown RNA-element in the 30-end of SARS-
CoV-2 genomic and subgenomic RNAs. This review aims to highlight the aaRS-SARS-
CoV-2 interactions identified to date, with possible implications for the biology of host
aaRSs in SARS-CoV-2 infection.

An introduction to aminoacyl-tRNA synthetases
Aminoacyl-tRNA synthetases (aaRSs) are essential cellular enzymes that provide aminoacylated
tRNAs as substrates to ribosomes as genetic information is decoded from messenger RNA to proteins.
AaRSs catalyze the aminoacylation reaction in two steps: first, activation of an amino acid (aa) by a
condensation reaction with ATP accompanied by release of pyrophosphate followed by esterification
of the amino acid with a tRNA, and release of AMP [1–3]. AaRS-catalyzed tRNA-charging serves two
purposes — (i) the amino acid remains energetically activated, i.e. its subsequent condensation with
another amino acid in a peptide chain does not require additional energy input, and (ii) more import-
antly, provides the information required to recognize the mRNA template that determines sequence
specificity. Each aaRS specifically recognizes its corresponding amino acid and cognate tRNA. Specific
structural features and nucleotide sequences in tRNA isoacceptor molecules (tRNAaa), the operational
RNA code [4,5], as well as identity of the amino acids (aa) guide precise aminoacylation to generate
the aa-tRNAaa. In addition to anticodon binding and catalysis, several aaRSs have cis-editing domains
that recognize and correct mischarging on non-cognate tRNAs [6]. Proteins that lack a
tRNA-charging function but otherwise resemble aaRS editing domains can proofread mischarged ami-
noacylated tRNAs by trans-editing [7]. There are 20 aaRSs for the 20 amino acids enshrined in the
genetic code. With some degree of evolutionary mosaicism selenocysteine (Sec), the 21st proteinogenic
amino acid, is present in the three domains of life (eubacteria, archaea, and eukarya), and is generated
from serine on seryl-tRNASec, after tRNASec is charged with seryl-tRNA synthetase [8,9]. Certain
methanogenic archaea possess an expanded genetic code that includes the 22nd proteinogenic amino
acid pyrrolysine (Pyl) [10,11], that is charged to tRNAPyl by pyrrolysyl-tRNA synthetase [12].
The endosymbiotic origin of mitochondria in eukaryogenesis [13,14] resulted in two sets of oper-

ational RNA codes in the same cellular system: one from the host and another from the endosym-
bionts. Today, mitochondrial DNA encodes 22 tRNAs, while the cognate mitochondrial aaRSs

Version of Record published:
18 December 2023

Received: 1 October 2023
Revised: 6 December 2023
Accepted: 11 December 2023

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 2127

Biochemical Society Transactions (2023) 51 2127–2141
https://doi.org/10.1042/BST20230527

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/51/6/2127/952801/bst-2023-0527c.pdf by guest on 13 M

arch 2024

http://orcid.org/0000-0001-5568-3361
http://orcid.org/0000-0002-6033-1528
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1042/BST20230527&domain=pdf&date_stamp=2023-12-18


(mt-aaRS) are nuclear DNA-encoded. To distinguish between human cytosolic and mt-aaRS, the standard
nomenclature uses 1 or 2 as a suffix for any aaRS protein, e.g. seryl-tRNA synthetase 1 or SARS1 is cytosolic
while SARS2 is mt-SARS. As exceptions: (i) human GARS1 gene encodes glycyl-tRNA synthetase that functions
in both cytosol and mitochondria [15], (ii) human KARS2 protein is an isoform of KARS1 protein produced
from the KARS1 gene [16], (iii) mt-QARS is absent from mammalian genomes; EARS2 misacylates
mt-tRNAGln and glutamine is synthesized on Glu-mt-tRNAGln post-aminoacylation by the hGatCAB amido-
transferase [17], and (iv) EPRS1 in complex eukaryotes is a unique, bifunctional aaRS that resides in the
cytosol and consists of an N-terminus GluRS domain covalently joined by a linker domain to a C-terminus
ProRS domain [18].

Aminoacyl-tRNA synthetases in virus infection
Viruses are obligate, intracellular parasites that carry minimal genetic information compared with its hosts, and
thus depend on usurping host cellular resources. Most viruses do not encumber their genomes with aaRSs,
instead they rely on host aaRSs and other host proteins and complexes that enable mRNA translation, e.g. ribo-
somes. Exceptions include several giant DNA viruses with protozoan hosts that encode a single aaRS or a small
complement of aaRSs, e.g. Cafeteria roenbergensis virus (isoleucyl-tRNA synthetase) [19], Pandoraviruses
(tyrosyl and tryptophanyl-tRNA synthetases) [20], Mimiviruses (tyrosyl, methionyl, arginyl and cysteinyl-tRNA
synthetases) [21], Moumouviruses (tyrosyl, methionyl, arginyl, cysteinyl and isoleucyl-tRNA synthetases) [22]
and Megavirus chilensis (tyrosyl, methionyl, arginyl, cysteinyl, isoleucyl, tryptophanyl and asparginyl-tRNA
synthetases) [23], while Tupanviruses encode all 20 aaRSs [24]. Host aaRS aminoacylation activity can be
hijacked by 30-localized tRNA-like structures (TLS) that control replication of plant RNA viruses [25,26]. The
30-TLS in ∼30 plant viruses are aminoacylated by YARS1 (e.g. brome mosaic virus, BMV), HARS1 (e.g.
tobacco mosaic virus), or VARS1 (e.g. turnip yellow mosaic virus), and tRNA mimicry is essential for plant
virus replication and gene expression [27]. The BMV tRNA mimic undergoes a conformational rearrangement,
binding YARS1 in a structural form that differs dramatically from tRNA [28], exemplifying the dynamics of
viral RNA structures in binding host machinery. In a second case of tRNA mimicry, domain V of the internal
ribosome entry site (IRES) in poliovirus genome resembles tRNAGly, and binds GARS1 to activate translation–
initiation [29].
Many mammalian aaRSs exhibit non-canonical functions distinct from their ancient, primary function of

tRNA aminoacylation (Figure 1). These moonlighting, or ‘ex-translational’, activities generally depend on
domains appended in evolution [30]. These functions are regulated by post-translational modifications [31–36]
or by targeted cleavage [37–40]. These modified aaRS can act as cytokines, apoptosis and angiogenesis regula-
tors, and non-enzymatic regulators of translation, with the potential to integrate genetic and environmental
responses [41–43]. In mammalian cells, nine of the 20 cytoplasmic aaRS functions (in 8 proteins since EPRS1
is bifunctional) and 3 auxiliary proteins, AIMPs (aminoacyl-tRNA synthetase interacting multifunctional pro-
teins) 1, 2, and 3, reside in a multi-tRNA synthetase complex (MSC), of uncertain function. The observation of
MSC binding to ribosomes has led to the hypothesis that MSC ‘channeling’ of charged tRNAs to ribosomes
improves mRNA translation efficiency [44]. This concept is challenged by reports that global translation is not
reduced when the majority of EPRS1, or all of RARS1 and QARS1, are excluded from the MSC [41,45].
Alternatively, the MSC might sequester aaRSs to reduce injurious cell activities of the free proteins, while per-
mitting cue-dependent release of specific aaRSs for non-canonical functions [41,46].
Importantly, several aaRSs exhibit critical non-canonical, host-viral interactions, and consequent activities, as

follows: infection-dependent release of EPRS1 from the MSC sequesters poly(rC)-binding protein 2 (PCBP2)
and protects MAVS, an antiviral mitochondrial signaling molecule, from PCBP2-mediated ubiquitination in
influenza A virus-infected cells [47]. EPRS1 and RARS1 bind an RNA element in porcine transmissible gastro-
enteritis coronavirus (TGEV), thereby facilitating innate immune evasion of viral RNA genome [48]. Human
immunodeficiency virus type 1 (HIV-1) virions are packaged with tRNALys3 by KARS1, that is incorporated
into the virus following regulated release from the MSC [49,50]. The HIV-1 genome contains a tRNA-like
element (TLE) that acts as molecular mimic of tRNALys and aids tRNALys3 primer annealing by recruitment of
KARS1 [51]. HIV-1 gag protein forms a stable complex with the MSC through a tRNA-dependent interaction
with the EPRS1 linker domain, without specificity of the tRNA utilized [52].
Non-MSC, cytoplasmic aaRSs and mitochondrial KARS2 contribute to viral life cycles [53]. Similarly,

WARS1 is an interferon (IFN)-γ-inducible mediator of enterovirus, e.g. EV-A71, cell entry, and a cell type-
specific restriction factor [54]. In contrast, immune cells infected with vesicular stomatitis virus (VSV) or
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herpes simplex virus (HSV) secrete WARS1 that functions as an antiviral cytokine, promoting the production
of inflammatory cytokines and type-I IFNs to suppress virus replication [55]. Likewise, TARS1 is secreted from
vascular endothelial cells in response to tumor necrosis factor (TNF)-α and sculpts a T-helper-1 response for
clearing H1N1 influenza A virus infection [56].

SARS-CoV-2 and the COVID-19 pandemic
During the last 4 years, coronaviral disease-19 (COVID-19) has upended lives with levels of mortality and mor-
bidity unprecedented in recent history [57–60]. COVID-19 is the first documented coronavirus pandemic in
human history [61], instigating widespread public discourse on pharmaceutical and non-pharmaceutical inter-
ventions [62–64]. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of
COVID-19, and the seventh coronavirus known to cause a human disease [65,66]. SARS-CoV-2 is an envel-
oped betacoronavirus with positive, single-stranded genomic RNA, closely related to SARS-CoV-1 and to bat
sarbecoviruses [67]. Serious cases of COVID-19 exhibit acute respiratory distress syndrome (ARDS) [68] and
can be lethal, particularly if exacerbated by co-morbidities [69]. Extended ramifications of the disease manifest
as ‘long COVID’ that remains incompletely understood or even phenotyped [70–73]. Possibly, waves of
SARS-CoV-2 infection in the COVID-19 pandemic has reduced genetic diversity of other respiratory viruses,
such as respiratory syncytial virus (RSV) and influenza A virus, through bottleneck effects, thereby re-shaping
future disease outbreaks [74]. Based on adaptive functions of other viruses, it is not surprising that
SARS-CoV-2 took advantage of host systems, including piggybacking on cellular aaRSs.

Mitochondrial aaRSs as mediators of SARS-CoV-2 infection
To evaluate the roles of aaRSs on SARS-CoV-2 infection and pathogenesis, a meta-analysis summarized find-
ings from multiple datasets [75]. A graded cell survival analysis was done by genome-wide CRISPR screening
of Vero-E6 cells following infection with SARS-CoV-2 and other coronaviruses (CoVs) [76]. Disruption of 14

Figure 1. Non-canonical functions of aminoacyl-tRNA synthetases.

Aminoacyl-tRNA synthetases are color-coded to highlight multiple functions of same protein. MSC-resident (italics), non-MSC

cytoplasmic (plain font), and mitochondrial (outline font) synthetases are indicated.

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 2129

Biochemical Society Transactions (2023) 51 2127–2141
https://doi.org/10.1042/BST20230527

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/51/6/2127/952801/bst-2023-0527c.pdf by guest on 13 M

arch 2024

https://creativecommons.org/licenses/by/4.0/


mitochondrial aaRSs (AARS2, DARS2, EARS2, FARS2, HARS2, LARS2, MARS2, NARS2, PARS2, RARS2,
SARS2, TARS2, VARS2, and YARS2) sensitized cells to cell death following infection by SARS-CoV-2, suggest-
ing antiviral activity of the aaRSs. PARS2 and EARS2 appear to exert pan-coronavirus antiviral activity as the
screen showed sensitization to cell death upon infections with SARS-CoV-2, HKU5-SARSCoV-1-S, and
MERS-CoV. EARS2 was further implicated in cellular entry of SARS-CoV-2. Mitochondrial aaRSs appeared to
be more effective than cytosolic aaRSs as antiviral effectors/modulators following SARS-CoV-2 infection [75].
SARS-CoV-2 initiates a global shutdown of splicing, mRNA nuclear export, and translation [77]. Consistent

with this repression, down-regulation of mRNAs encoding cytosolic and mitochondrial aaRSs was observed in
transcriptomic studies of bronchoalveolar lavage fluid (BALF) [78] and post-mortem lung tissues [79] from
COVID-19 patients, and from SARS-CoV-2-infected A549-hACE2 (human angiotensin-converting enzyme)
[79] and human bronchial epithelial (NHBE) cells [80]. Likewise, low levels of many cytosolic aaRS proteins
were observed in proteomic analyses of BALF [81], peripheral blood mononuclear cells (PBMCs) [82], and
liver cells [83] from COVID-19 patients, and from SARS-CoV-2-infected human Caco-2 cells [84]. Many
mt-aaRS proteins are expressed at high levels in liver cells from COVID-19 patients, but the levels of mt-aaRS
mRNAs were not reported. The phenomenon seems to be generalizable as multiple mitochondrial ribosomal
proteins are also expressed at high levels in liver cells from COVID-19 patients, likely reflecting increased mito-
chondrial translation. Phosphoproteomic analysis of Vero-E6 cells infected with SARS-CoV-2 revealed phos-
phorylation of CARS1, TARS2, and HARS2 [85].
Meta-analysis of proteomic studies sub-divided coronaviral protein-interacting aaRSs into three classes,

namely, down-regulated mt-aaRSs, down-regulated cyto-aaRSs, and up-regulated mt-aaRSs [75]. Network ana-
lysis of aaRSs implicated EARS2, IARS1, IARS2, and TARS1 as mediators between first responders, i.e.
SARS-CoV-2-interacting proteins and late-stage effectors. SARS-CoV-2 membrane protein (M) interacts with
TARS2 in HEK293T cells [75], but the physiological significance is unknown. While the analysis implicates
mt-aaRSs, particularly HARS2, EARS2, and TARS2 in SARS-COV-2 infection severity, the consequences of dif-
ferential aaRS expression remain unclear. Whether such changes benefit the virus or the host cell is unclear,
but would differentially implicate either proviral or antiviral outcomes. Multiple recent studies [86–108] have
expanded the aaRS-interaction datasets beyond those in this meta-analysis; interactions of cellular aaRSs and
SARS-CoV-2 proteins based on BioGrid repository are enumerated as in Table 1.

A ‘post-canonical’ protective activity of CARS2
Recently, protective functions of cysteine hydropersulfides and cysteine supersulfides were identified in lung
diseases, including viral airway infections such as influenza and COVID-19 [109]. Cysteine hydropersulfides
(CysSSH) have been implicated in cellular redox protection. Mitochondrial cysteinyl-tRNA synthetase (CARS2)
exhibits cysteine persulfide synthase (CPERS) activity in vivo [110]. CARS2 generates CysS–(S)n–H from cyst-
eine post-aminoacylation through CPERS activity, forming CysS–(S)n–tRNA

Cys from Cys-tRNACys, and catalyz-
ing co-translational protein polysulfidation. Importantly, CPERS-mediated polysulfidation occurs on
aminoacylated tRNA, contingent on and following the canonical function of CARS2, thereby revealing a ‘post-
canonical’ aaRS function. CARS2-derived cysteine hydropersulfides and cysteine supersulfides sustain mito-
chondrial biogenesis and activity of the electron transport chain [110]. Also, CysSSH is released from the mito-
chondria into the cytoplasm for production of CysS–(S)n–H and polysulfidation in extra-mitochondrial
compartments. Increased SARS-CoV-2 yield was observed in CARS2 knockdown VeroE6/TMPRSS2 cells.
Cars2AINK mutant mice possess undiminished cysteinyl-tRNA synthetase activity, but exhibit reduced CPERS
activity and low supersulfide production [109]. Homozygous Cars2AINK/AINK mice are embryonic lethal indicat-
ing a developmental role of supersulfides. SARS-CoV-2 infection was assessed in Cars2AINK mice crossed with
ACE2-transgenic mice, and lethality was significantly exacerbated. Thus, CARS2 has a central role in innate
defense functions of supersulfiides, protecting the lung and airways, as well as associated vasculature, against
SARS-CoV-2 [109].

ProRS and proline-rich proteins are potential therapeutic
targets
Febrifugine, isolated from Dichroa febrifuga in the family Hydrangeaceae, is an alkaloid and active ingredient
in a traditional Chinese medicinal herb, chángshān [111,112]. Recognized for its antiprotozoal activity,
chángshān extract historically has been used as an anti-malarial treatment [113]. Halofuginone is a halogenated
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Table 1 Putative interactions between host aminoacyl-tRNA synthetases and SARS-CoV-2 proteins curated from the
BioGrid database [143] Part 1 of 2

AaRS
SARS-CoV-2 non-structural
proteins SARS-CoV-2 structural proteins References

AARS1 NSP10, NSP11, NSP16 S, ORF9B, ORF10 [82, 87–89, 106]

CARS1 - -

DARS1 NSP4, NSP5, NSP6, NSP12,
NSP13, NSP14

S, ORF3A, ORF3B, E, M, ORF6,
ORF7A, ORF7B, ORF8

[90, 104, 106]

EPRS1 NSP5, NSP12 ORF8, ORF14 (ORF9C) [90, 102–104]

FARSA NSP2 ORF10 [88, 92]

FARSB - ORF8, N [103]

GARS - -

HARS1 - -

IARS1 NSP5 - [90]

KARS1/
KARS2

NSP5, NSP7, NSP15 ORF3A, ORF3B, E, M, ORF6, ORF7A,
ORF7B, ORF8, N, ORF9B, ORF10

[87, 90, 91, 105, 106]

LARS1 - -

MARS1 NSP1, NSP5 ORF14 (ORF9C) [90, 94, 102]

NARS1 NSP2, NSP4, NSP6 ORF3A, M, ORF7B, ORF10 [87, 106]

QARS1 NSP4 S, ORF6, ORF7B, ORF8, ORF9B,
ORF10

[87, 106]

RARS1 - N [91]

SARS1 NSP15 N [87, 105]

TARS1 NSP2, NSP4 S, ORF7B, ORF8, N, ORF10 [87, 93]

VARS1 NSP2 S, ORF8, ORF10 [88, 103]

WARS1 NSP9, NSP15 N [93, 103]

YARS1 NSP4, NSP5 S, E, M, ORF6, ORF8, N, ORF9B,
ORF10

[87, 90, 91, 106]

AARS2 NSP5, NSP9 ORF7B, ORF9B [90, 95, 105, 106]

CARS2 - ORF9B [106]

DARS2 NSP4, NSP5 M, ORF9B [90, 106]

EARS2 NSP4 S, ORF7A, ORF7B, ORF9B, ORF14
(ORF9C)

[105, 106]

FARS2 - -

HARS2 - M, ORF9B [86, 106]

IARS2 NSP2, NSP3, NSP5, NSP6,
NSP9, NSP13, NSP14, NSP16

S, ORF3A, ORF14 (ORF9C), ORF10 [87–89, 102]

LARS2 - -

MARS2 NSP1, NSP14 - [93]

NARS2 NSP8 M [86, 96, 97]

PARS2 - -

RARS2 NSP6, NSP8 ORF9B [82, 100, 106, 107]

SARS2 NSP8 - [87]

TARS2 NSP7, NSP10, NSP12, NSP13 M, ORF9B [82, 85, 96, 97, 100,
104, 105, 108]

VARS2 - ORF9B [106]

Continued
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derivative of febrifugine that potently inhibits the differentiation of pro-inflammatory Th17 cells [114]. It binds
the ProRS domain of human glutamyl-prolyl-tRNA synthetase (EPRS1), acting as a competitive inhibitor of
prolyl-tRNA synthetase activity [115]. Halofuginone has been used in preclinical and clinical studies to treat
fibrotic disease and to reduce hyperinflammation [116]. Screening a library of small-molecule antagonists of
SARS-CoV-2 spike receptor-binding domain (RBD) interaction with extracellular heparan sulfate in Hep3B
human hepatoma cells, halofuginone was identified as a potent hit [117]. The drug reduced RBD binding to
Hep3B, Calu-3, and Caco-2 cells, and at low nanomolar amounts inhibited SARS-CoV-2 infection of Hep3B
and air–liquid interface cultures of primary human bronchial epithelial cells. Spike binding to cells is heparan
sulfate (HS)-dependent [118]. Halofuginone decreased cellular HS synthesis without altering HS-specific sulfa-
tion, and reduced expression of core heparan sulfate proteoglycans (HSPGs) [117]. These results established
that pre-infection treatment with halofuginone inhibits SARS-CoV-2 entry in these models. Further, post-infec-
tion treatment inhibited subsequent viral genome replication in Huh7.5 cell line, chosen for high viral replica-
tion due to a RIG-I mutation suppressing innate antiviral signaling [119]), suggesting potential functions
beyond cell entry. Extracellular HSPGs are relatively proline-rich and viral polyproteins ORF1a and ORF1ab, as
well as spike protein, are likewise proline-rich even compared with proline-rich cellular collagen. The inhibition
of ProRS activity by halofuginone suggests that infection-directed synthesis of proline-rich viral and cellular
proteins might be an attractive target for design of novel antiviral therapeutics. Consistent with this rationale,
two other ProRS inhibitors, i.e. ProSA (a non-hydrolyzable prolyl-AMP analog) and halofuginol, also inhibited
infection by SARS-CoV-2 [117].

An unconventional multi-aaRS complex directed by
COVID-19 cues
mRNA termini are critical for agonist-driven, post-transcriptional regulons, in which functionally related
mRNAs are co-regulated by specific RNA-binding proteins targeting similar sequence or structural elements
[120]. The Gamma-interferon-Activated Inhibitor of Translation (GAIT) RNA element in a family of
inflammation-related human mRNAs [48,121–124] is targeted by an inducible, heterotetrameric GAIT complex
comprised of EPRS1, the direct RNA-interacting constituent, as well as ribosomal protein L13a, heterogenous
ribonucleoprotein Q or NSAP1, and GAPDH; the system is a classical archetype of a post-transcriptional
regulon. SARS-CoV-2 transcription generates an ensemble of nested 30-co-terminal subgenomic RNAs
(sgRNAs) that contain 50-leader and 30-end sequences identical with each other, and to the genomic RNA
(gRNA). Upon interrogation of the 30-end of SARS-CoV-2 for GAIT element-like RNA elements, a novel 39 nt
element present in all viral RNAs was described [125]. This cis-element is structurally homologous to the pig
alphacoronaviral TGEV (transmissible gastroenteritis virus) GAIT-like element [48]. The RNA sequence is con-
served in SARS-CoV-1 and other viruses of the subgenus Sarbecovirus suggesting an invariant function.
Insulin and IFN-γ, agents associated with COVID-19 severity and outcome, increase SARS-CoV-2 sgRNA
expression and translation contingent upon an intact cis-element; disruption of the proposed secondary

Table 1 Putative interactions between host aminoacyl-tRNA synthetases and SARS-CoV-2 proteins curated from the
BioGrid database [143] Part 2 of 2

AaRS
SARS-CoV-2 non-structural
proteins SARS-CoV-2 structural proteins References

WARS2 - -

YARS2 NSP1, NSP4 - [87]

Non-AARS, MSC-resident proteins

AIMP1 NSP5 ORF3B, ORF6, N [87, 90, 98, 103]

AIMP2 - ORF8, N [103]

AIMP3 NSP5, NSP13 ORF3A, ORF9B, ORF10 [87, 99]

All references listed in text.
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structure led to loss of agonist-mediated induction. Maximal reporter activation was observed following
co-treatment with spike subunit S1 (the RBD) and IFN-γ in lung and colon cell lines expressing the ACE2
receptor. The newly discovered cis-element was termed Sarbecoviral Pan-End Activating RNA (SPEAR)
element.
Beyond its influence on sgRNA reporter expression, an intact SPEAR element was required for maximal −1

programmed ribosomal frameshifting (−1 PRF) efficiency in frameshift-assay reporters bearing SARS-CoV-2
genomic termini, thereby expanding the role of SPEAR. The SPEAR element is rooted in the structurally ‘fluid’
30-end hypervariable region (HVR) in subgenus Sarbecovirus — a region of weak sequence conservation
among different Betacoronavirus subgenera, and therefore this sequence is absent from the subgenera
Embecovirus, Nobecovirus and Merbecovirus, while in the monotypic subgenus Hibecovirus, only the sequence
corresponding to the SPEAR proximal stem is conserved [125].
GAIT and GAIT-like TGEV RNA elements bind EPRS1, an aaRS that resides in the multi-tRNA synthetase

complex (MSC) [41,42,126]. The SPEAR interacts with EPRS1 and NSAP1, but not with RPL13a or GAPDH,
in IFN-γ-programmed U937 monocytic cell extracts [125]. Disruption of the SPEAR element by mutation pre-
vents binding of EPRS1, but not NSAP1, further distinguishing the SPEAR-binding and GAIT complexes.
More importantly, SPEAR disruption inhibits sgRNA expression and further distinguishes SPEAR function
from GAIT function as the former activates and the latter inhibits expression. EPRS1 requirement for SPEAR
activation was demonstrated by genetic perturbation in adipocytes and knockdown in a lung cell line.
Unexpectedly, a subset of MSC constituents in addition to EPRS1, namely MARS1, KARS1, and RARS1, inter-
acts with SPEAR in extracts from an IFN-γ- or insulin-treated lung cell line. UV cross-linking revealed both
EPRS1 and KARS1 directly interacted with the SPEAR element; EPRS1 binding was mediated by the linker
domain — the region that also binds the GAIT element. Interaction of EPRS1 with SARS-CoV-2 sgRNAs as
well as gRNA was confirmed in IFN-γ stimulated SARS-CoV-2 replicon. Following cell induction with IFN-γ
or spike S1, or both, the four SPEAR-binding aaRSs mobilize to form an extra-MSC, ∼500 kDa
tetra-aminoacyl-tRNA synthetase sarbecoviral RNA-interacting (TASRI) complex — the second largest known
human aaRS complex, after the MSC. The agonists induce relocalization of the TASRI complex to the endo-
plasmic reticulum (ER), a primary source of the double-membrane organelles supporting SARS-CoV-2 genome
replication [127]. Importantly, cell-penetrating peptide-phosphorodiamidate morpholine oligonucleotide
(PPMO) conjugates antisense to the SPEAR element block EPRS1 (and TASRI complex) binding, exhibit
nearly 1.5-log reduction in SARS-CoV-2 titers, reduce viral protein levels in infected cells, attenuated growth
kinetics in a SARS-CoV-2 EGFP reporter virus and effectively reduce viral genomic and subgenomic RNAs,
indicating an important role of the interaction of the TASRI complex with SPEAR-element in SARS-CoV-2,
and its potential as a therapeutic target [125].
Within the MSC, EPRS1 and MARS1 reside in a subcomplex joined by interacting GST-like domains;

according to a current model RARS1 and KARS1 reside in a disconnected MSC region, complexed with
AIMP2 and QARS1 [126]. Agonist-induced release of EPRS1 and KARS1 from the cytoplasmic MSC has been
reported [45,49]. Formation of the TASRI complex is not understood and might not be a one-step dissociation
from the cytoplasmic MSC, but rather an orchestrated, multi-step dissociation-association process. Moreover,
parts of the TASRI complex may be derived from newly generated, free cytoplasmic pools. Translational
control of SARS-CoV-2 sgRNAs that is SPEAR-dependent and regulated by a host aaRS complex is a unique
example of a cellular complex-stimulated regulatory function of an RNA element in the SARS-CoV-2 30-end.
The SPEAR element resides in the structurally ambiguous HVR. Internal initiation at ORF10, a 30-end

co-terminal feature newly acquired in SARS-CoV-2, plays a critical role in SPEAR-mediated induction of
sgRNA expression [125], Mechanistically, this finding suggests a potential role of translating ribosomes in acti-
vating the SPEAR element by TASRI complex-assisted RNA refolding. We propose a framework to decode
structure–function relationships of SARS-CoV-2 30-end regulatory regions, where (i) functional translation of
ORF10 forms a SPEAR-permissive 30 end, (ii) an agonist-inducible TASRI complex directs SPEAR element for-
mation in the structurally fluid HVR, (iii) the SPEAR-adjacent genomic terminus base-pairs with the 50UTR in
gRNA/50TRS-L (transcription regulatory sequence of leader) in sgRNAs [128], and (iv) sgRNA or gRNA circu-
larization places the SPEAR element proximate to the start codon to regulate translation and PRF [125]
(Figure 2). Additionally, the SPEAR element is near the virus 30-end triple-helix junction necessary for recogni-
tion by the replication–transcription complex (RTC), possibly bringing the TASRI complex in proximity to the
viral replication machinery as well.
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SPEAR element activation by IFN-γ, insulin, and spike in multiple cell types suggests pathophysiologic sig-
nificance. EPRS1 binding to the SPEAR element was markedly increased in lysates from epididymal white
adipose tissue from fat-fed obese mice compared with normal mice. Adipose tissues are virus reservoirs, as well
as sources of inflammatory adipokines, contributing to COVID-19 severity in obese patients [129,130]. The
relative risk of death in severely obese COVID-19 patients is ∼4.2-fold higher compared with non-obese
patients [131]. Likewise, visceral fat area is associated with an increased need for treatment in intensive care
units and for mechanical ventilation [132]. Elevated EPRS1 binding to the SPEAR element in adipose tissue
from obese mice suggests a mechanism underlying risk of severe COVID-19 in obese patients [125]. Similarly,
insulin stimulates EPRS1 binding to SPEAR in differentiated adipocytes, possibly illuminating the clinical
observation that insulin treatment, like obesity, is associated with increased mortality in COVID-19 patients
[133]. Importantly, substantial weight loss following bariatric surgery in obese patients is associated with
improved outcomes of COVID-19 infection, suggesting a causal relationship, and that obesity is a modifiable
risk factor for COVID-19 severity [134]. IFN-γ, like other inflammatory cytokines, exhibits potent antiviral
activity. However, uncontrolled levels of circulating cytokines and immune cell hyperactivation are

Figure 2. An integrated model of SARS-CoV-2 ORF10, SPEAR element, and virus RNA cyclization [125].

RNAs are cyclized by base-pairing of the 30-end genomic terminus immediately downstream of the SPEAR element, with 16

complementary nucleotides of the TRS-L (transcription regulatory sequence-L) or 21 nt of the 50UTR [128]. The start codon lies

0–2 nt downstream of this base-paired region in most sgRNAs, except in N (8 nt) and M (44 nt); in gRNA, the ORF1a/b start

codon lies further downstream, with intervening 50UTR stem–loop structures (not shown). Cell activation by SARS-CoV-2 spike,

IFN-γ, or insulin induces ORF10 translation and formation of the SPEAR element-binding TASRI (tetra-aminoacyl-tRNA

synthetase sarbecoviral RNA-interacting) complex.
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characteristic of the ‘cytokine storm’, a life-threatening, systemic inflammatory syndrome, and a principal con-
tributor to COVID-19 pathogenesis [135]. The circulating level of IFN-γ, unique among cytokines measured, is
higher in COVID-19 patients that succumbed, compared with survivors [136]. Treatment of mice with IFN-γ,
in combination with TNF-α, induces a cytokine shock that mirrors the tissue damage of COVID-19, and neu-
tralizing antibodies targeting these cytokines protect mice from mortality following SARS-CoV-2 infection
[137]. IFN-γ induces expression of the ACE2 receptor of SARS-CoV-2 in enterocytes and promotes virus pro-
duction in infected cells [138]. IFN-γ-induced activation of the SPEAR-binding complex might provide an add-
itional pathogenic mechanism [125]. In addition to host agonists, SARS-CoV-2 spike also activates the
SPEAR-binding complex. Spike engages the cellular ACE2 receptor for virus entry and elicits cell signal trans-
duction pathways that promote pulmonary and cardiovascular complications [139,140]. Additionally, spike can
drive viral infection and pathogenesis via non-ACE2 interactions in cells with low ACE2 receptor levels
[141,142]. The S1 subunit of spike, containing N-terminal and receptor-binding domains, induces EPRS1
incorporation into a complex with three other MSC-constituent aaRSs, and binding to the SPEAR element via
the EPRS1 non-catalytic linker domain [125]. Together, the results show that SPEAR is a novel, pan-sgRNA
translation–activation element that, along with a newly elucidated host-derived TASRI complex, defines a
SARS-CoV-2 post-transcriptional regulon.

Future directions
Accelerating disruptive activities of mankind have led to habitat destruction of many organisms, increasing
future likelihood of zoonotic spillover of viruses. Lessons learned from COVID-19 will be important for navi-
gating a future pandemic from known or as-yet unknown viruses, including sarbecoviruses [60,143,144].
Near-term, elucidation of the role of aaRSs in translation, replication, infection, and pathogenesis of
SARS-CoV-2 variants might explain differences in their pathogenesis. The knowledge gathered in aaRS biology
as mediators of virus infection will facilitate design of new antiviral therapeutic strategies.

Perspectives
• Aminoacyl-tRNA synthetases have canonical, post-canonical, and non-canonical functions in

cellular homeostasis and in response to environmental stimuli.

• The repertoire of non-canonical functions of aminoacyl-tRNA synthetases extend to being
host modulators of virus infection.

• Recent elucidation of molecular aspects in SARS-CoV-2 infection have expanded the galaxy
of interactions exhibited by these proteins, as also exemplified by a previously unrecognized
TASRI complex comprised of four aminoacyl-tRNA synthetases.
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