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Advances in immunotherapy in the last decade have revolutionized treatment paradigms
across multiple cancer diagnoses. However, only a minority of patients derive durable
benefit and progress with traditional approaches, such as cancer vaccines, remains
unsatisfactory. A key to overcoming these barriers resides with a deeper understanding
of tumor antigen presentation and the complex and dynamic heterogeneity of tumor-infil-
trating antigen-presenting cells (APCs). Reminiscent of the ‘second touch’ hypothesis
proposed by Klaus Ley for CD4+ T cell differentiation, the acquisition of full effector
potential by lymph node- primed CD8+ T cells requires a second round of co-stimulation
at the site where the antigen originated, i.e. the tumor bed. The tumor stroma holds a
prime role in this process by hosting specialized APC niches, apparently distinct from ter-
tiary lymphoid structures, that support second antigenic touch encounters and CD8+ T
cell effector proliferation and differentiation. We propose that APC within second-touch
niches become licensed for co-stimulation through stromal-derived instructive signals
emulating embryonic or wound-healing provisional matrix remodeling. These immunosti-
mulatory roles of stroma contrast with its widely accepted view as a physical and func-
tional ‘immune barrier’. Stromal control of antigen presentation makes evolutionary sense
as the host stroma-tumor interface constitutes the prime line of homeostatic ‘defense’
against the emerging tumor. In this review, we outline how stroma-derived signals and
cells regulate tumor antigen presentation and T-cell effector differentiation in the tumor
bed. The re-definition of tumor stroma as immune rheostat rather than as inflexible
immune barrier harbors significant untapped therapeutic opportunity.

Tumor antigen presentation in the tumor
microenvironment: main actors and their locations
Antigen processing and presentation by antigen-presenting cells (APCs) comprises the sentinel phase
of the anti-tumor immune response and ushers the afferent arm of the cancer-immunity cycle [1] but
increasingly significant roles for APC are recognized in the efferent arm of the cycle. Our understand-
ing of the mechanisms regulating tumor antigen capture and presentation has evolved along the more
general context of a deeper appreciation of the tumor microenvironment (TME) as a complex and
dynamic entity [2]. Factors such as tumor-infiltrating immune cells, immunosuppressive cells (e.g.
regulatory T cells), stromal cells, soluble factors (e.g. cytokines and chemokines), extracellular matrix,
metabolites, hypoxia, pH in the TME shape the antigen capture and presentation process [3]. In this
ever-changing milieu, the functions, and activities of professional and non-professional APCs play a
pivotal role in anti-tumor immune responses [4].
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Professional antigen-presenting cells
Dendritic cells (DCs), macrophages, and B cells are classically referred to as professional APCs because they
express both Major histocompatibility class (MHC)-I and MHC-II surface molecules and are capable of pre-
senting exogenous antigens, such as tumor antigens. Conventional DCs (cDCs) are the most potent profes-
sional APCs [5]. cDC precursors (pre-cDCs) develop from monocyte-dendritic cell precursors and commit to
one of two distinct cDC lineages, cDC1 and cDC2 [6]. Multiple lines of evidence have demonstrated a pre-
eminent role for cDC1 in tumor antigen presentation and anti-tumor immunity [7]. Mice lacking Batf3, a
crucial transcription factor for cDC1 development, lose the capacity to reject immunogenic tumors [8].
Abundance of cDC1s in the TME is associated with T cell infiltration, overall survival in patients with cancer,
as well as being predictive of response to immune checkpoint inhibitors [9]. Mouse cDC1s are efficient at
taking up cell-associated antigen and dead cells via receptors such as CLEC9A, LY75, AXL, and HAVCR2 for
eventual cross-presentation on MHC-I to CD8+ T cells [8]. The process of clearance of apoptotic cells by DC
and macrophages, termed ‘efferocytosis’, may constitute a potentially underappreciated immune checkpoint
and is comprehensively covered elsewhere [10]. An unexpected role for cDC1s in CD4+ T cell priming was
recently demonstrated [11]. By presenting tumor antigens on MHC-II, cDC1s prime naïve CD4+ T cells and
induce the expression of CD40 ligand on T cells which, in turn, license cDC1s via CD40 signaling. This signal-
ing enhances priming of CD8+ T cells through mechanisms including induction of CD70 and potentially other
co-stimulatory ligands and generate an effective anti-tumor CD8+ T cell response. cDC2s also uptake tumor
antigens, are particularly efficient at presentation on MHC-II and induce superior CD4+ T cell proliferation
[12]. cDC2 expressing interferon (IFN)-stimulated genes (ISG+ DCs) were recently shown to present intact
tumor-derived peptide-MHC-I complexes (cross-dressing), activate CD8+ T cells and promote protective anti-
tumor immunity in the absence of cDC1 [13]. These recent studies reinforce the concept that the functional
dichotomy between cDC1s and cDC2s is not absolute, and cDC2s (and other cDCs) may acquire the ability to
activate CD8+ T cells under certain inflammatory conditions.
Macrophages and B-cells are also professional APCs with established roles in tumor immunity.

Tumor-associated macrophages (TAMs) are among the most abundant immune cells in the TME and perform
diverse functions [14]. According to their functional differences, TAMs can be broadly categorized into M1
subtype (pro-inflammatory and anti-tumor) and M2 subtype (anti-inflammatory and pro-tumor). However,
more recent high-resolution analyses have revealed enormous inter- and intra-tumor fluidity and heterogeneity
of phenotypes and functional programs of intratumoral macrophages [15]. Moreover, the distinct origins of
tissue-resident macrophages versus macrophages derived from infiltrating inflammatory monocytes are now
better appreciated [16]. The functional plasticity of TAMs can influence antigen presentation and immune
regulation within the TME.
B cells also make a critical contribution to adaptive immune responses [17]. In tumor tissues, B cells can be

found in lymphoid aggregates, known as tertiary lymphoid structures (TLSs) [18] (see below). The TLS pro-
vides an area of intense B cell antigen presentation that can lead to optimal T cell activation and effector func-
tions, as well as the generation of effector B cells, which can be further differentiated in either
antibody-secreting plasma cells or memory B cells.
The functional characteristics of these APCs within the TME can be influenced by various factors, including

tumor-derived signals, immunosuppressive factors, and the activities of other immune cells. These factors can
impact the ability of APCs to effectively present antigens and initiate anti-tumor or pro-tumor immune
responses. Understanding the interplay between APCs and the TME is crucial for developing strategies to
enhance immune responses against cancer [19].

Non-professional antigen-presenting cells
Whereas professional APCs constitutively express MHC Class-I and Class-II molecules and often scan tissues for
exogenous material that could be associated with tissue damage and threat, non-professional APCs adopt antigen
presentation functionality under certain conditions and can present antigen in the context of both MHC-I and -II.
Non-professional APCs include stromal cells such as cancer-associated fibroblasts (CAFs), lymph node stromal
cells, and endothelial cells (EC) [20]. Among these diverse cell types, antigen-presenting CAFs have gained signifi-
cant interest, due to their major presence in the TME (detail in subsequent sections). Lymph node stromal cells
are part of the secondary lymphoid tissue and regulate T cell activation against infections and tumor cells but also
have key roles in homeostasis, maintaining peripheral tolerance by the induction of T cell anergy [20].
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Endothelial cells are located along the inner lining of blood vessels and act as a barrier between blood and
tissue. The most researched antigen-presenting endothelial cells are liver sinusoidal ECs (LSECs), which can
cross-present soluble exogenous antigens in an equivalent way to DCs [20]. However, LSECs induce tolerance
rather than stimulating T cell function. LSECs can also present exogenous antigens to CD4+ cells on MHC-II
molecules [21]. In a highly inflammatory microenvironment, antigen presentation by LSECs can generate a
memory-like T cell population that can be reactivated upon antigen re-exposure [22,23].

Antigen presentation in the tumor bed versus the draining lymph node
cDC1s are recruited to the tumor bed through chemokines secreted by diverse cell sources, depending on the
tumor type [24–26]. Inhibition of the recruitment of cDC1s can be an early mechanism to limit the develop-
ment of anti-tumor immunity [27]. Still, cDC1s constitute the sparsest DC type in tumors. cDC1 density in the
tumor is often influenced by its genetic make-up: for example, activation of the β-catenin signaling pathway
prevents the recruitment of cDC1s to the tumor bed through interference with chemokine networks [24,26].
NK cells are essential for cDC1 recruitment into tumors through the secretion of DC-supporting differenti-
ation/survival signals (e.g. FLT3L) or DC-chemoattractants, such as Chemokine (X–C Motif ) Ligand 1 (XCL1)
and Chemokine (C–C motif ) Ligand 5 (CCL5) [4,7,25]. cDC1, uniquely among cDC subsets, express XCR1,
the receptor for XCL1 [28,29]. The TME also actively produces cytokines that interfere with DC maturation,
such as Interleukin (IL)-6, IL-10, and transforming growth factor (TGF)-β, and thus promote the conversion of
DCs into a tolerogenic phenotype [30–32]. A novel DC ‘state’ defined by the expression of immunoregulatory
and maturation gene signature (mregDCs) was recently identified in human and mouse tumors [33]. This
immunoregulatory program is associated with restrained cDC1 immunostimulatory function and limited T cell
activation in the draining lymph nodes. In addition to defects in maturation, intratumoral cDC1s can exhibit
impaired cross-presentation via elevated levels of oxidized lipid in DCs [34,35]. Thus, tumors can modulate
their antigenicity by altering tumor-associated DC function.
Upon taking up dying tumor cells that release danger signals, including damage-associated molecular pat-

terns (DAMPs), immature cDCs undergo a maturation process, defined by the up-regulated expression of
co-stimulatory molecules, and migrate via lymphatic vessels to the tumor-draining lymph node (TDLN). There,
migrating DCs present tumor antigens through the cross-presentation pathway for priming and activation of
naïve CD8+ T cells (immune priming) [36], whereas antigen is handed-over in part, to LN-resident DC.
Activated T cells then leave the lymph nodes, migrate back to the TME, and exert their cytotoxic or helper
functions against the tumor cells. The lymph nodes provide an environment replete with co-stimulatory mole-
cules and cytokines conducive to immune priming, facilitating the expansion and differentiation of tumor-
specific T cells. Additionally, the lymph node structures contain multiple cell types, including those of stromal
origin like lymphatic endothelial cells, blood endothelial cells, and fibroblastic reticular cells [37]. These specia-
lized subsets of cells are non-professional APCs and can fulfill crucial roles in regulating the T cell response
(T-cell zone reticular cells) or B cell response (follicular DCs) [38]. The net outcome on T cell function is
dependent on the type of co-regulatory signals provided by the APCs, including co-stimulatory signals (e.g.
CD80/86) and co-inhibitory signals (e.g. PD-L1). Strong co-stimulatory signals license T cells to become fully
activated, while lack of sufficient co-stimulatory signals leads to the induction of anergy and thus promotes
immunological tolerance.
However, recent observations have led to an evolution of this model: while it is true that tumor-derived cDC1s

migrate to the TDLN to present tumor antigens and prime T cells, the latter do not acquire a full effector
program, as in the context of viral infection; instead they express markers of a stem-like state (e.g. TCF1) [39–41].
Stem-like Tcf1+ PD1+ Tim3− CD8+ T cells egress the TDLN and reach the periphery of the tumor tissue, where
they encounter DCs within specialized stromal niches (Figure 1). The interaction with these professional APCs
further promotes T cell differentiation towards an effector Tcf1− PD1+ Tim3+ CD8+ phenotype, that allows them
to penetrate the tumor nest and initiate tumor cell killing [39]. While cDC1 may not be the exclusive APC type
involved in these interactions, they appear to have a prime role in stimulating incoming primed stem-like CD8+
T cells [42]. These findings are consistent with the ‘second touch’ hypothesis first formulated by Klaus Ley in the
context of CD4+ T cell differentiation [43]. The second touch hypothesis states that after initial antigen encounter
in the draining LN (‘first-touch’), CD4+ polarization towards various Th or Treg phenotypes requires de novo
antigen encounter (second touch) in the tissue where the antigen originates.
The stromal APC niches supporting incoming stem-like T cell differentiation appear distinct from TLS [18].

The latter have been reported in many solid tumors and their presence has been correlated with prognosis and
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response to immunotherapy. They consist of ectopic follicles with distinct B and T cell compartmentalization and
germinal centers. Mature TLS have been shown to foster affinity maturation to support the differentiation and
functional specialization of anti-tumor plasma cells. Foundational events of TLS have been associated with specia-
lized fibroblastic type cells secreting Chemokine (C–X–C motif) Ligand (CXCL) 13 or LIGHT [44,45]. In con-
trast, stromal APC niches resemble extrafollicular regions of lymphoid tissue where T cells reside [46]. In
conclusion, the evolving understanding of the ‘cancer-immunity cycle’ reserves an essential role for antigen pres-
entation not only in TDLN priming (afferent arm) but also in effector differentiation in the TME (efferent arm).

Tumor stroma: immune barrier or immune rheostat?
The tumor stroma comprises a highly diverse and ever-changing composition of cellular and non-cellular com-
ponents: CAFs, mesenchymal stromal cells (MSCs), immune cells, as well as a continuously remodeling extra-
cellular matrix (ECM) and a unique vascular system that is specific to each cancer. This complex environment
allows for the growth, invasion, and spread of tumors [47]. The understanding of stroma as an immunological
interface has lagged behind the classic view of stroma as a mechanical boundary. However, it is increasingly

Figure 1. Specialized stromal APC niches support CD8+ T effector cell differentiation and anti-tumor immunity.

Following LN-priming, stem-like CD8+ T cells receive a ‘second touch’ round of co-stimulation by APCs located within stromal niches along the

tumor periphery. The resultant activation, proliferation and full effector differentiation of CD8+ T cells promotes ‘T-cell inflammation’ of the tumor

nest. We propose that APC within these niches receive instructive signals from peri-tumoral stroma, reminiscent of embryonic or adult

wound-healing provisional matrix remodeling. Stromal signals license APC for co-stimulation and activation of CD8+ T cells. One such stromal

signal is provided by versikine, a proteolytic fragment of the large-matrix proteoglycan versican (VCAN). In contrast with versikine, full-length VCAN

promotes a tolerogenic APC phenotype, thus establishing a regulatory loop between the parent macromolecule (VCAN) and its derivative

‘matrikine’. Robust VCAN proteolysis is associated with T-cell inflammation across most solid and hematopoietic tumor types.
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appreciated that stroma represents an ecosystem of immune activity that is malleable and pleiotropic. In the fol-
lowing section, we will highlight the dichotomous immunological activities of a cellular stromal actor (CAFs)
and a non-cellular element (the large-matrix proteoglycan, VCAN).

Dual roles of a cellular stromal actor: immunoregulatory CAFs versus
immunostimulatory/antigen-presenting CAFs
CAFs have been classically thought of as pro-tumoral and immunosuppressive (for a comprehensive review of
CAFs, see ref. [48]). Their activities in chemoattraction, stimulation and differentiation of regulatory immune
cells are well-described [49–51]. Moreover, CAFs elaborate ECM macromolecules that can further enhance the
stromal immunoregulatory function [52].
Two major classes of CAFs, both considered immunoregulatory, were first described in pancreatic cancer

and subsequently validated in other tumor models [53]: myofibroblastic (myCAFs) and inflammatory (iCAFs).
myCAFs are characterized by enhanced contractility and adhesion and are thought to represent the equivalent
of wound-healing fibroblasts. They express smooth muscle actin (aSMA). They also secrete Th2 type cytokines
IL-4, IL-13 and TGFβ. On the other hand, iCAFs express low levels of aSMA but are highly secretory. Their
chemokine profile overlaps the senescence-associated secretory phenotype and includes multiple chemokine
families including CXCL12, CCL2 and IL-6. iCAFs have been associated with the immunoregulatory polariza-
tion of several myeloid and lymphoid entities such as myeloid-derived suppressor cells (MDSC), type 2 macro-
phages and T-regs. myCAFs and iCAFs are not static entities but can interconvert [50].
The functions of CAFs in inflammation and innate immunity are well-described, in most instances pointing

to a pro-tumoral role. CAFs in colorectal cancer have been found to be able to recruit monocytes and promote
M2-macrophage polarization through an IL-8/CXCR2 axis and IL-6 secretion [54]. Furthermore, single-cell
RNA sequencing has shown that tolerogenic TAM in the tumor are promoted by CAFs in triple negative breast
cancer [55,56]. Conversely, an increase in CAFs was also found to characterize durable responses to checkpoint
inhibition immunotherapy in melanoma, an effect partially mediated through TAMs and DCs [57]. CAFs can
also directly modulate DCs in tumors. Cheng et al. found that CAFs in hepatocarcinoma (hCAFs) co-opted
DC to adopt a STAT3-mediated tolerogenic phenotype via an IL-6 signaling pathway [58]. Both the CAFs and
the STAT3-high DCs up-regulated IDO expression, which inhibited T cell expansion and cytotoxicity by cata-
lyzing tryptophan depletion and kynurenine generation [58]. CAFs produce TGFβ, which promotes
M2-polarized macrophages and a regulatory DC phenotype [59]. While less widely studied, CAFs have also
been found to be able to directly impact B-cells. TGFβ has long been known to inhibit B-cell maturation and
proliferation, and more recently has been shown to induce class switching to IgA-expressing B-cells [60–62].
Consequently, cytotoxic lymphocyte function was reduced both via reduced antigen presentation from fewer
and immature B-cells, but also potentially from a direct effect of IgA-expressing B-cells [63].
Aside from directly acting on APCs, CAFs elaborate immunomodulatory ECM molecules that can influence

APCs. For example, CAFs in breast cancer drastically up-regulate biglycan — an extracellular small leucine-rich
proteoglycan (SLRPG) [64]. Biglycan is known to be able to act both on APCs of both the innate and adaptive
immune system through stimulation of Toll like receptor (TLR) 2/4 receptors on macrophages and DCs
[52,65]. CAFs have also been shown to be a significant source of hyaluronan (HA) in the TME [66]. HA with a
molecular weight of less than or equal to 500 kDa is known to be able to activate macrophages and DCs, while
high molecular-weight HA has diverse activities [66–68].
The paradigm of immunoregulatory CAFs has been disputed by the demonstration that in non-cancerous

chronic inflammatory states, CAFs can be reprogrammed to support adaptive immunity: for example in
patients with rheumatoid arthritis, inflammatory bowel disease or vitiligo, fibroblasts have been shown to
secrete CXCL12 and CCL19 resulting in T cell infiltration of inflamed tissue [69,70]. High resolution single-cell
transcriptomic analyses have revealed heterogeneity of tumor-infiltrating CAFs. myCAF deletion in pancreatic
cancer was surprisingly associated with blunting of adaptive immunity [71]. Metabolically active CAFs have
been associated with increased numbers of cytotoxic T cells and adaptive immune responses in both pancreatic
and lung cancers [72,73]. In the latter, these CAFs secrete high amounts of T-cell chemoattractants CXCL11,
CXCL12, CCL14 and CCL20 [73].
Further support to the concept of immunostimulatory CAFs has been provided by the demonstration of

antigen-presenting CAFs (apCAFs) in pancreatic and other cancers [74]. In lung cancer, they were estimated to
comprise >10% of all CAFs [75]. They often express the invariant chain CD74, cytokine IL-6 and
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chemoattractants CXCL9 and CXCL10 [76–78]. In lung cancer, apCAFs express AT-II-specific surfactant genes
as well as MHC-II, raising the possibility that they originate from AT-II cells [75]. Whether antigen-presenting
abilities are shared by multiple CAF subsets in different contexts or only apCAFs is still debatable. It is clear
however, that apCAFs can present MHC-II-restricted antigens on CD4+ T cells in vivo and CAF-specific dele-
tion of MHC-II restricts antigen-specific CD4+ infiltration in vivo [75]. An immunostimulatory role for
apCAFs was also suggested from studies in breast cancer [77,78] whereas in pancreatic cancer, Treg-inducing
roles were described [79,80]. This pleiotropic role for apCAFs is not surprising as it mirrors hematopoietic
APC functionalities that can be malleable according to the tissue and functional context. Therefore, cellular
components of tumor stroma can fine-tune the immune response through context-specific immunomodulatory
activities.

Dual roles of a non-cellular stromal actor: the contrast between the
immunoregulatory proteoglycan versican versus its immunostimulatory
proteolytic fragment, versikine
Versican (VCAN) is a large-matrix proteoglycan which is produced by a variety of cell types in the stroma and
modified by a similarly diverse number of enzymes/proteases [81]. VCAN has been associated with TLR2/
6-mediated TNF-α and other inflammatory cytokine secretion from TAMs and monocytes in both solid and
hematological tumors [82,83]. These activities have been associated with the establishment of a pre-metastatic
niche in carcinomas [84,85]. VCAN also has a role in adaptive anti-tumor immunity: it binds TLR2 on DCs [82],
and renders them dysfunctional through the instigation of a tolerogenic IL-6 and IL-10 signaling loop [86].
Stromal VCAN is proteolyzed in T-cell inflamed tumors through ADAMTS proteases. The regulated prote-

olysis of VCAN at the Glu441–Ala442 bond of the V1 isoform is associated with T-cell infiltration into the
tumor bed and is predicted to release a bioactive fragment (‘matrikine’) [87], versikine [83,88–90] (Figure 2).
Versikine promotes cDC1 abundance and activation [90]. The former effect appears to depend on an
NK-dependent survival loop. Versikine-exposed cDC1 up-regulate CD40 and are hypersensitive to
DNA-sensing through the STING pathway, the physiological pathway for innate sensing of cancers [91,92].
The fact that VCAN proteolysis is mostly confined to the tumor stroma [90], raises the hypothesis that
versikine-licensed cDC1 interact with lymph-node-primed stem-like CD8+ T cells and versikine may license
the stromal co-stimulation required for full effector CD8+ T cell differentiation (Figure 1). Indeed, consistent
with this hypothesis, early evidence from the clinic suggests that tumors demonstrating VCAN proteolysis are
more likely to respond to checkpoint inhibition immunotherapy [93].
VCAN proteolysis is a cardinal signaling modification in embryonic provisional matrix or the provisional

matrix associated with wound healing [94–98]. In the embryo, VCAN proteolysis is essential for the develop-
ment of the limb and circulatory systems [97]. Mice with targeted disruption of the Glu441–Ala442 bond that
generates versikine demonstrate developmental abnormalities [94,99]. In wound healing, disruption of the
Glu441–Ala442 bond, thus generating versikine from VCAN-V1, attenuates inflammation and promotes healing
[94]. Similarly, in a model of inflammatory colitis, elimination of versikine reduces inflammation [100]. Thus,
it appears that signals associated with morphogenesis in the embryo are co-opted in adult inflammation,
wound healing and tumorigenesis (tumors being ‘wounds that do not heal’) to regulate the adaptive-innate
immunity interface. In cancer, generation of versikine likely represents a homeostatic response against the
developing tumor, that may promote immunosurveillance during the early stages of tumorigenesis [52].
Subsequent attenuation of versikine production from intact versican through proteolysis, an event associated
with inflammation resolution in non-cancerous contexts, is exploited by the tumor to evade the immune
response (immune ‘escape’) [52].

Immunotherapeutic targeting of stroma: current
approaches and challenges
Attempts to therapeutically alter stroma in cancer have targeted stromal cells as well as non-cellular stromal
components. In the case of cell-directed therapies, the approaches have mirrored the rationale adopted when
targeting tumor-promoting myeloid cells: the desired outcome is eliminating, reprogramming or neutralizing
deleterious products (such as immunosuppressive cytokines). Earlier approaches such as agonistic CD40 anti-
bodies have been used to indirectly remodel tumor stroma through activation of tumor-infiltrating myeloid
cells and secretion of stroma-modifying enzymes [101]. Pathway-specific approaches to reverse tissue fibrosis
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while enhancing immune infiltration are highlighted by the targeted blockade of focal adhesion kinase (FAK).
FAK is a nonreceptor protein tyrosine kinase which has been related to proliferation, invasion, angiogenesis
and poor survival as well as drug resistance in several cancer malignancies [102]. In pancreatic ductal adenocar-
cinoma (PDAC), FAK activation antagonizes CD8+ cytotoxic T lymphocyte infiltration through an increase in
myeloid cell recruitment, pro-tumor polarization of macrophages and tissue fibrosis [103,104]. Consequently,
FAK inhibitors (FAKi) potentiate the efficacy of immunotherapies in pre-clinical models [105], in part through
decrease in tissue fibrosis and desmoplasia [103]. Clinical trials of FAK inhibitors in combination with PD-1
antagonist are already underway (ClinicalTrials.gov NCT02758587, NCT02546531). FAK inhibition could help
overcome resistance to immunotherapies across a wide range of cancer types, but particularly those with an
intense desmoplastic response.
More recently, direct attempts to target stromal fibroblasts have included cellular therapies against fibroblast

activation protein (FAP) [106]. CAR-T cells targeting FAP have demonstrated promise in tumors with intense
desmoplastic response, such as pancreatic cancer [107]. An interesting recent demonstration of the potential of
this approach has been in the case of the hematopoietic cancer multiple myeloma, where dual targeting of
tumor cells and stroma (through bi-specific CAR-T targeting myeloma cell tumor antigens and FAP, respect-
ively) demonstrated superior effects compared with either single target alone [108]. More mechanistic, and
perhaps more elegant approaches, include therapeutic targeting of specific receptors/signaling pathways that
mediate interactions between immunosuppressive myeloid cells and stroma, such as LAIR receptors that recog-
nize collagen [109].
As mentioned earlier, indiscriminatory targeting of CAFs can have undesired effects so caution is advised.

Fortunately, the increasing focus on the therapeutic potential of targeting stroma is paralleled by the increasing
reliability on single-cell analytical approaches that reveal the full heterogeneity and spectrum of the non-

Figure 2. Stromal versican proteolysis is associated with cDC1-CD8+ cross-talk and T-cell inflammation.

In human T-cell-inflamed tumors, CD8+ T-cells penetrate into tumor nests, whereas cDC1 interact with CD8+ T-cells within

adjacent stroma that recurrently displays site-specific proteolysis of the matrix proteoglycan versican (VCAN), an event

associated with provisional matrix remodeling in embryonic development and adult wound healing [98]. Triple

immunohistochemical staining of a human lung cancer biopsy [DPEAAE (versikine) = teal, XCR1 = brown, CD8 = purple]. XCR1

is a marker for cDC1. Magnification 400×.
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hematopoietic stromal compartment (see ref. [110] for an excellent demonstration of the power of cutting-edge
high-resolution technologies). Our ability to carry out precision-attack against tumor-promoting stromal actors
while preserving tumor-countering stromal activities such as apCAFs will depend on a better understanding of
their distinct modes and pathways of regulation through high resolution ‘-omic’ technologies. Alternatively, the
focus can be on enhancing immunostimulatory CAFs or turning them into vehicles or platforms of vaccination.
The latter could be achieved through nanotechnologies that can efficiently deliver molecular templates encoding
tumor neoantigens into distinct subsets of antigen-presenting immunogenic mesenchymal cells [74]. The dem-
onstration that mesenchymal stromal cells (MSC) can be converted into efficient vaccination platforms gener-
ates significant optimism to overcome manufacturing limitations associated with hematopoietic-derived
antigen-presenting cells [111].

Perspectives
• The tumor stroma has traditionally been considered as an immune barrier; however, this view-

point is rapidly evolving. We propose that tumor stroma acts as an immune rheostat. Cellular
stromal actors, e.g. CAFs, may exert context-specific pro- or anti-tumor effects. Moreover,
stromal matrix-remodeling signals actively regulate the magnitude and quality of the adaptive
anti-tumor immune response.

• Tumor stroma hosts specialized APC niches that are critical for anti-tumor immunity, through
‘second touch’ antigenic encounters promoting effector T cell proliferation and differentiation
of lymph node-primed CD8+ T cells. APC within stromal niches become licensed for
co-stimulation through instructive stromal signals emulating embryonic or adult wound-healing
provisional matrix remodeling.

• Provisional matrix-like stroma triggering T cell inflammation likely reflects the persistence of a
host-derived anti-tumor homeostatic response. Transition into fibrotic stroma simulating
embryonic matrix compaction and adult wound resolution is exploited by tumors to promote
immune evasion.
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