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A healthy brain is protected by the blood–brain barrier (BBB), which is formed by the
endothelial cells that line brain capillaries. The BBB plays an extremely important role in
supporting normal neuronal function by maintaining the homeostasis of the brain micro-
environment and restricting pathogen and toxin entry to the brain. Dysfunction of this
highly complex and regulated structure can be life threatening. BBB dysfunction is impli-
cated in many neurological diseases such as stroke, Alzheimer’s disease, multiple scler-
osis, and brain infections. Among other mechanisms, inflammation and/or flow
disturbances are major causes of BBB dysfunction in neurological infections and diseases.
In particular, in ischaemic stroke, both inflammation and flow disturbances contribute to
BBB disruption, leading to devastating consequences. While a transient or minor disrup-
tion to the barrier function could be tolerated, chronic or a total breach of the barrier can
result in irreversible brain damage. It is worth noting that timing and extent of BBB disrup-
tion play an important role in the process of any repair of brain damage and treatment
strategies. This review evaluates and summarises some of the latest research on the role
of the BBB during neurological disease and infection with a focus on the effects of inflam-
mation and flow disturbances on the BBB. The BBB’s crucial role in protecting the brain is
also the bottleneck in central nervous system drug development. Therefore, innovative
strategies to carry therapeutics across the BBB and novel models to screen drugs, and to
study the complex, overlapping mechanisms of BBB disruption are urgently needed.

Introduction
The blood–brain barrier (BBB) formed by brain capillary endothelial cells is the dynamic physiological
structure that protects the brain to maintain normal neuronal function. These highly specialised endo-
thelial cells have intercellular tight junctions such as claudins, occludin, zonula occludens, and junc-
tional adhesion molecules that control the movement of molecules through the paracellular pathway
(‘gate function’) by showing size and charge selectivity. An array of specific transporters, receptors
and enzymes controls the molecular traffic via the transcellular route and permit the passage of nutri-
ents and removal of waste products across the BBB. Tight junctions also act as a ‘fence’ to segregate
these transporters to the apical and basal domains, so that the endothelium can act as a polarised
barrier to prevent free movement of the transporters. The presence of complex intercellular tight junc-
tions results in high transendothelial electrical resistance (TEER) in brain microvessels, compared with
peripheral microvessels. In addition, brain endothelial cells lack fenestrations, have very few pinocyto-
tic vesicles, and reduced expression of adhesion molecules, which limit immune cell infiltration (for a
comprehensive review on the BBB see [1]).
Disruption of the BBB can leave the brain vulnerable to damage. Understanding the detailed cellu-

lar and molecular mechanisms of BBB disruption has been a long-standing interest in the field.
However, in many neuropathological conditions, whether BBB dysfunction is a causative or
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consequence of the pathology remains incompletely understood. Investigating these mechanisms can be chal-
lenging, due to the complexities with direct assessment of BBB function. However, recent developments in the
field have provided some insights. This review aims to evaluate some of these latest developments and sum-
marises the findings with a particular focus on the effects of inflammation and flow disturbances on the BBB
during neurological disease and infection, and discusses whether timing of BBB disruption plays a role.
An intact BBB is extremely important for regulating central nervous system (CNS) homeostasis to maintain

normal neuronal function, and to protect the brain from fluctuations in plasma neurotransmitter levels, circu-
lating pathogens and toxins. However, the BBB does not function independently, but is in continuous ‘cross-
talk’ with other cells [2] such as astrocytes [3,4], pericytes [5,6], neurones [7,8], perivascular macrophages [9],
microglia [10] and immune cells [11]. The unique relationship between these cells and the BBB gave rise to the
concept of the neurovascular unit (NVU) (Figure 1).

Role of astrocytes and pericytes in supporting the BBB
The NVU is a relatively new concept. However, the critical importance of astrocytes in the induction and main-
tenance of BBB structure and function has long been established (reviewed in [12]). Brain capillaries are sur-
rounded by perivascular endfeet of astrocytes and therefore astrocytes occupy a strategic position between brain
capillaries and neurons. This close proximity and the ability of astrocytes to secrete soluble factors [13,14]
allow them to induce BBB phenotype in brain endothelial cells. Most in vitro BBB models use astrocytes in
co-culture to take advantage of the astrocyte-secreted factors to increase the tightness/TEER of brain endothe-
lial cells [15,16]. These in vitro studies have provided a great deal of information to support the role of astro-
cytes in up-regulating many BBB features, including low paracellular permeability and up-regulation of tight
junctions [14,17,18], transporters [19–22] and enzymes [23]. Although astrocytes are important for the devel-
opment and maintenance of the BBB, recent evidence suggests that it is pericytes that are critical for the forma-
tion and induction of the BBB and are implicated in contributing to the progression of CNS disease.

Figure 1. Structure of the blood–brain barrier (BBB).

The BBB is formed by brain endothelial cells that line cerebral capillaries and is the main protective physiological barrier

preventing the entry of toxins and pathogens into the brain. These endothelial cells are supported by other cells such as

astrocytes and pericytes of the neurovascular unit, which are important in inducing and maintaining BBB characteristics. Brain

endothelial cells differ from those of peripheral tissues by having more complex intercellular tight junctions that restrict the

paracellular permeation of molecules through the junctional cleft. Furthermore, endothelial cells in vivo are continuously

exposed to shear stress (the frictional force generated by blood flow), which affects endothelial cell structure and function.

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).614

Biochemical Society Transactions (2023) 51 613–626
https://doi.org/10.1042/BST20220830

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/51/2/613/945822/bst-2022-0830c.pdf by guest on 19 April 2024

https://creativecommons.org/licenses/by/4.0/


Pericytes are embedded in the basement membrane in the abluminal surface of brain microvessels. Unlike
astrocytes, they only partially cover the microvessel, but their processes can span several endothelial cells. Due
to a lack of pericyte-specific markers, pericytes can be difficult to differentiate from other mesenchymal cells
such as vascular smooth muscle cells that also sit in the basement membrane [24]. Pericytes extend their pro-
cesses along and around pre-capillary arterioles, capillaries and post-capillary venules, and may have different
morphological and functional features depending on their position along the vascular tree [25]. The heterogen-
eity of pericyte morphology and the lack of specific pericyte markers have led to controversy and confusion
about their functions [26,27]. Nevertheless, pericytes have been shown to have diverse functions including regu-
lating BBB permeability and integrity [6,28], cerebral blood flow regulation and neurovascular coupling [29,30],
secreting neuroinflammatory mediators [31], involvement in fibrosis following neuronal injury [32], cognitive
decline and Alzheimer’s disease [33,34] clearance of neurotoxins [35], providing neurotrophic support [36],
maintaining white matter structure and function [37], potential to transform into multipotent stem cells
[38,39] and are critically important for angiogenesis [40,41] and induction of the BBB.
Convincing evidence for the role of pericytes in BBB induction came from studies using mice that were gen-

etically modified to have defects in pericyte generation by targeting the platelet-derived growth factor
(PDGF)-B/PDGF receptor-β (PDGFR-β) signalling pathway. These studies showed that many BBB properties
such as expression of occludin, claudin-5, zonula occludens-1 and BBB influx transporter Glut-1 were present a
week earlier than astrogliogenesis [5], at the time of pericyte recruitment by endothelial cells via PDGF-B secre-
tion during early embryogenesis [42]. Pericyte recruitment coincided with BBB sealing, as the pericyte-deficient
mice had increased BBB permeability and increased expression of leukocyte adhesion molecules. They showed
that the extent of the pericyte coverage determined BBB permeability. Remarkably, the basis for this increased
permeability was an up-regulation of endothelial transcytosis and not a lack of tight junctions [5,6]. Thus, peri-
cytes are critical during BBB development, and maintain BBB properties by inhibiting the expression of ‘leaky’
BBB features (such as transcytosis and expression of leukocyte adhesion molecules) to stabilise vessels, as they
do not directly affect tight junction protein expression. Interestingly, this study also showed that pericytes
express cues for guiding astrocyte endfeet attachment to endothelial cells, and the absence of pericytes led to
abnormal endfeet polarisation [6]. Therefore, pericytes seem to play an important role in orchestrating the
proper formation of the BBB and the NVU. Given that astrocytes are unlikely to be required for BBB induction,
they are expected to be important for maintaining the fully differentiated BBB phenotype during adulthood
and involved in BBB response to disease.

Mechanisms of BBB disruption
Destabilisation of the BBB occurs under or leads to several pathological conditions including stroke [43,44],
Alzheimer’s disease [45], multiple sclerosis [46,47], epilepsy [48–50], viral encephalitis [51–53], COVID-19
[54–56], Neuro Aids [57], malaria [58–60] and sequelae of traumatic brain injury [61] as well as peripheral dis-
eases such as atrial fibrillation (AF) [62] (Figure 2). While some of the mechanisms of BBB disruption are
CNS-derived (e.g. microglia, glutamate), others are peripheral in origin. Dysfunction of the BBB during most
neurological diseases can lead to increased permeability (due to disrupted tight junctions and increased transcy-
tosis) [63–65], leading to immune cell infiltration, [46] neuroinflammation [66] and oedema [67,68].
Leukocytes, interleukins, and other soluble factors are known to disrupt the integrity of the BBB [69–71].
Therefore, anti-inflammatory manoeuvres could prevent or repair the BBB [72–74]. In addition, disruption in
ion regulation and transporter function in BBB [43,75–77] has also been reported, which severely impact neur-
onal function [78]. The initiation of this damage can be either due to a direct assault on the BBB, for example
during infections, or due to secondary neurological damage, which leads to activation of neuroinflammatory
pathways as is the case of ischaemic stroke.
Increased BBB permeability leading to cerebral oedema [68,79] and haemorrhagic transformation [80,81] are

common complications of ischaemic stroke, which can impact the outcome of these patients with potential
serious and life-threatening consequences [82]. A series of factors or events in combination or in sequence can
lead to BBB disruption in ischaemic stroke. For example, several factors including reactive oxygen species
(ROS) [83], pro-inflammatory cytokines [67,84] and matrix metalloproteinases (MMPs) [85–88] have been
implicated in BBB damage after stroke. Neuronal injury following ischaemia leads to the release of proinflam-
matory mediators such as tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1α, IL-1β and
interferon-γ (IFN-γ) that can activate microglia, astrocytes and endothelial cells, promoting the expression of
molecules that can contribute to NVU breakdown [83,89]. This local inflammation leads to the up-regulation
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of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1
(ICAM-1), P-selectin in endothelial cells and secretion of MMPs such as MMP2 and MMP9 [86,88]. The
enhanced expression of adhesion molecules in brain endothelial cells attracts leukocytes and platelets, and pro-
motes the tethering/rolling, firm adhesion and transmigration of these cells across the BBB [90]. Adhesion of
leukocytes causes further damage due to the activation of signalling pathways and release of ROS and inflam-
matory cytokines and MMPs from other cells of the NVU. This creates a proinflammatory environment, which
further activates the endothelium and leads to increased BBB permeability. Increased permeability due to
inflammation has been demonstrated using magnetic resonance imaging (MRI) at both the acute and chronic
phases of stroke in patients with ischaemic stroke [91,92] and in animal models [93,94].
BBB damage due to inflammation is a final common pathway in many brain infections as well, allowing

pathogens and immune cells access to the brain, and leading to CNS damage. For example, an inflammatory
cytokine-mediated pathway is implicated for the BBB disruption seen in encephalitis caused by viruses such as
Japanese encephalitis virus ( JEV) [51,95], herpes simplex virus (HSV) [52,53], West Nile virus (WNV) [96,97]
and human immunodeficiency virus (HIV) [98,99] and in severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [56,100]. Several studies have provided evidence for an important role for inflammation in BBB

Figure 2. Blood–brain barrier (BBB) disruption during neurological infections and diseases.

BBB disruption is implicated in many neurological infections and diseases, including neurodegenerative diseases, ischaemic

stroke as well as viral infections such as SARS-CoV-2, and peripheral diseases such as atrial fibrillation. Disruption of the BBB

may involve the opening of tight junctions, damage to the endothelium, increased transport of molecules across the BBB

(transcytosis) and alterations in transport systems. Inflammation is a final common pathway in many neurological diseases,

allowing immune cell and pathogen entry to the brain, which leaves the brain vulnerable to damage. Furthermore, abnormal

flow patterns or flow cessation can lead to changes in shear stress or pulsatility. This can deteriorate the brain endothelium

and lead to barrier impairment. Deterioration in neuroprotective BBB function plays a major role in the pathogenesis of disease

since the BBB dynamically responds to many events associated with flow disturbances, oxidative stress and proinflammatory

cytokine generation. Any condition that affects the functional integrity of the BBB will cause secondary effects on cerebral

blood flow and vascular tone, resulting in further damage to the brain.
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disruption and disease outcome. In clinical samples from patients with Japanese encephalitis, increased levels
of pro-inflammatory cytokines and chemokines in cerebrospinal fluid (CSF) were shown to be associated with
poor outcome [101]. Another study using human autopsy material showed that perivascular inflammation and
a damaged BBB are associated with widespread perivascular oedema [102]. Further studies using in vitro
human BBB models have provided evidence for JEV-induced inflammation causing increased BBB permeability
[51,103]. Pro-inflammatory cytokine milieu seems to be main the driving force contributing to increased BBB
permeability in JEV [51]. This was also demonstrated in a mouse model where the virus was detected in the
brain and the onset of inflammation occurred prior to BBB disruption [95]. It is now established that JEV does
cross the BBB, causing neurological damage primarily due to the resulting inflammatory response.
Mechanisms of neuroinvasion of other viruses such as SARS-CoV-2 are still under investigation.

SARS-CoV-2 has been detected in the brains of patients with severe disease who present with neurological
symptoms [104–106]. Among others, the most common neurological symptoms presented in hospital by
patients infected with SARS-CoV-2 are stroke, seizures and encephalitis or meningitis [107]. BBB disruption
is generally implicated in these neurological manifestations. A post-mortem study of patients with COVID-19
demonstrated microvascular damage and fibrinogen leakage, indicating a disrupted BBB. However, the study
failed to detect SARS-CoV-2 in the brain, possibly due to the virus being cleared at the time of death or
detection limitations in the assay used [108]. Another study by the same authors showed a significant
increase in serum protein leakage, platelet accumulation as well as increased expression of platelet endothelial
cell adhesion molecule-1 (PECAM-1) and von Willebrand factor in patients that died from COVID-19 com-
pared with control subjects [109]. Furthermore, macrophages and some CD8+ T cells infiltration were also
detected, similar to other neurological diseases where a leaky BBB leads to immune cell infiltration. The
results suggest that SARS-CoV-2 infection could cause BBB disruption via activation of the endothelium
leading to increased BBB permeability. Indeed, a recent study in COVID-19 patients has demonstrated that
patients with neurological complications had the highest levels of biomarkers associated with BBB disruption,
such as MMP9 [110].
The angiotensin-converting enzyme 2 (ACE2) has been shown to be the host receptor responsible for

binding SARS-CoV-2 [111]. ACE2 is present in brain vascular endothelial cells [112] and the mechanisms of
SARS-CoV-2 infection have been implicated in brain endothelial dysfunction and BBB damage, which may
explain the neurological manifestations compounded by the effects of the systemic inflammatory response
[113]. Convincing evidence from clinical/post-mortem studies is still lacking to provide a definite answer to
whether BBB disruption due to SARS-CoV-2 infection is due to a direct infection of endothelial cells and/or
the resulting inflammation. Results from animal and in vitro studies have provided some clues. SARS-CoV-2
can be detected in the brain [114] and that the virus is able to infect brain endothelial cells [115] and cause
BBB disruption [116]. In addition, SARS-CoV-2 spike protein has been shown to increase BBB permeability,
trigger a pro-inflammatory response (increased expression of cell adhesion molecules) and up-regulate the
expression of MMPs in 2D static and 3D microfluidic in vitro human BBB models [56]. SARS-CoV-2 spike
proteins have also been shown to induce brain endothelial dysfunction [117]. Another study using K18-hACE2
transgenic mice and Syrian hamsters demonstrated that SARS-CoV-2 can cross the BBB with direct infection
of brain microvascular endothelial cells in both in vivo and in vitro models [118]. Infection led to an increase
in BBB permeability with disrupted basement membrane via MMP9 mediated pathway. However, alterations in
tight junctions were not observed. In agreement with other studies, pro-inflammatory modulators were also
up-regulated. Others have reported conflicting findings, where SARS-CoV-2 replication in human brain endo-
thelial cells was shown to be weak, and infection of the cells did not affect BBB integrity or lead to an increase
in inflammation despite inoculating the cells with a high virus load [119]. It is possible that BBB disruption in
COVID-19 is due to inflammation triggered by circulating pro-inflammatory cytokines in response to the sys-
temic disease. Furthermore, the resulting leaky BBB could increase neuroinvasion of the virus, which could
further exacerbate inflammation via triggering pro-inflammatory responses of other cells of the NVU.
Finally, it is also worth noting that stroke and COVID-19 pathophysiology exhibit overlapping molecular

mechanisms that contribute to BBB disruption. In particular, in both conditions, inflammation plays a major
role in the pathophysiology of CNS disease via vascular dysfunction. While in COVID-19, peripheral inflamma-
tion seems to be the major trigger of BBB disruption, in stroke, the inflammatory response of the cells forming
the NVU plays a major role. Astrocyte activation in ischaemic stroke has a major impact on brain damage and
repair mechanisms [120]. Similarly, Sánchez and Rosenberg propose that astrocyte dysfunction may play a
major role in contributing to stroke development in COVID-19 patients, and that further understanding of the
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molecular pathways could provide potential insights into new therapies to combat neurological dysfunction due
to SARS-CoV-2 infection [121].

Timing and extent of BBB disruption during neurological
disease
BBB disruption can manifest as a transient event with minor consequences on normal brain function or lead
on to a chronic or total breakdown of the barrier properties, resulting in significant and/or irreversible brain
damage. In neurological diseases such as stroke [122–126], traumatic brain injury [127,128] and Alzheimer’s
disease [129], as well as in some neurological infections [130], BBB disruption has been demonstrated to be
biphasic in nature. For example, experimental studies in ischaemic stroke have provided extensive evidence that
demonstrates an early opening of the BBB within the first 4–6 h of a stroke is followed by a refractory period
and then a late opening ∼48–72 h [131,132]. However, there is also evidence to suggest BBB recovery is not
complete following the initial opening, and that BBB continues to be leaky [133,134]. Some studies have also
shown further disruption to the BBB where BBB permeability is increased after 7 days or more post-reperfusion
[135,136]. Conflicting data from these studies could be the result of using different stroke models and methods
for detecting BBB disruption, but could also be due to the heterogenous nature of the mechanisms responsible
for BBB disruption and stroke severity.
While BBB tight junction protein disassembly and reassembly have been shown to be responsible for BBB

disruption following ischaemia [125], mainly via degradation of tight junction proteins by MMPs [137–140],
other mechanisms such as an increase in the number of endothelial caveolae, up-regulation of endothelial
transcytosis [141] and disruption of the glycocalyx [126] have also been suggested to play an important role
depending on the phase of BBB disruption. For example, Knowland et al.’s study using a novel transgenic
mouse strain with Claudin-5 labelled with eGFP demonstrated that tight junction disruption only appeared at
the late phase, ∼48–58 h post-stroke, while the rate of transcytosis and the number of endothelial caveolae
increased in the early phase at 6 h post-reperfusion [141]. Traditional view of BBB tight junction disassembly
during the early phase of reperfusion has been questioned by several studies, which strongly suggest that trans-
cellular permeability rather than paracellular permeability is increased during this phase, given that these
studies demonstrate normal tight junction morphology despite elevated vascular permeability/transcytosis at
the BBB [126,142–146]. Therefore, maintaining low rates of transcytosis appear to be important in maintaining
barrier properties following stroke, and therapeutics that target up-regulated transcytosis, which precedes tight
junction abnormalities will have significant potential in preventing BBB disruption in stroke.
There is now also strong evidence to demonstrate that BBB breakdown could be considered as an early bio-

marker of neurological disease. For example, in individuals with early cognitive impairment, brain capillary
damage and BBB disruption can be seen independently of Alzheimer’s Aβ and/or tau biomarker changes [147].
Another study has demonstrated that in carriers of the main susceptibility gene for Alzheimer’s disease (E4
variant of apolipoprotein E), breakdown of the BBB contributes to cognitive decline independently of
Alzheimer’s disease pathology [33]. In addition, age-dependent early BBB breakdown has also been implicated
in the hippocampus, which worsened with mild cognitive impairment [148]. In patients with early Alzheimer’s
disease, increased BBB permeability is associated with cognitive decline [149]. These studies suggest that com-
promised BBB is an early indication of developing cognitive deficits and dementia.

Role of shear stress in BBB
One of the distinctive features of endothelial cell physiology is their exposure to pulsatile shear stress [150,151].
This is a most neglected aspect for in vitro modelling of endothelial cells, where the majority of systems used
lack a physiological level of shear stress [152]. When exposed to shear stress to levels comparable to in vivo,
endothelial cells respond by morphological, transcriptional, and functional levels. In addition, it is becoming
increasing accepted that altered shear stress promotes pathological changes in vascular function. At the mor-
phological level, it has been shown that endothelial cells align with flow [153–155]. This is likely due to
calcium influx-mediated cytoskeletal rearrangement [151,156]. Atherosclerosis-prone regions of larger arteries
have endothelial cells exposed to irregular, complex flow patterns with a non-physiological magnitude of shear
stress (low levels and rapidly changing direction) [157]. After complete flow cessation, endothelial cells re-enter
cell cycle and ‘pile up’ onto each other [158–160]. This is commonly observed in traditional, no-flow models in
vitro [160]. Transcriptional changes in endothelial cells exposed to shear stress were first reported by the
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Janigro group [158,159]. The changes in mRNA levels were primarily related to cytoskeletal remodelling, abol-
ishment of cell cycle (mitotic arrest and differentiation), glucose metabolism and nicotinamide adenine
dinucleotide (NADH) production (shift of glycolytic efficiency towards reduction mechanism to counter oxida-
tive stress), and transporter levels and membrane positioning [20,161]. From the functional viewpoint, the
main effect of shear is the control of vascular tone by a mechanism mediated by calcium entry and nitric oxide
(NO) production by endothelial nitric oxide synthase (eNOS) [162–164]. NO released by endothelial cells
causes smooth muscle relaxation and increased blood flow to the organ.

Pathophysiology of BBB due to flow disturbances
At the pathological level, turbulent flow (altered shear stress) or flow cessation/reperfusion have been shown to
alter vascular function by impeding many of the physiological mechanisms listed above. In addition, low NO
levels have a prothrombotic effect, triggering the formation of emboli and ultimately causing stroke. A para-
digm of pathological changes due to altered flow is evident during AF. AF, the most common cardiac dysrhyth-
mia, is associated with poor outcomes, including stroke [165–167]. The incidence of stroke attributable to AF
increases from 1.5% at age 50–59 years to 23.5% at age 80–89 years [168]. Over 12 million people worldwide
have a stroke yearly [169], of which at least 25% have been directly attributed to clinically diagnosed AF [170].
The adverse effects of AF are due to haemodynamic changes with multiple factors leading to a prothrombotic
state [171]. AF also affects the BBB (For a comprehensive review on the effects of AF on BBB, see [62]) and ele-
vates biomarkers of cerebral injury [172]. A link between AF, the BBB and cognitive impairment has been pro-
posed [62]. NO has been recognised as a key component in the regulation of vascular tone and in mediating
the prothrombotic state in AF [171]. NO production by endothelial cells is reduced in AF [173,174]; reduced
NO affects vessel diameter and increases the probability of thrombus formation [175]. Reversal of AF to
normal rhythm also reverses endothelial cell dysfunction [176]; AF-like pacing reduces NO production by
endothelial cells in an animal model and in vitro [177]. Finally, wall shear stress, the frictional force of blood
flow tangential to an artery lumen, has been demonstrated in multiple studies to influence aneurysm formation
and risk of rupture [178,179].
If one looks more specifically at the brain vasculature and the BBB, most of the findings on systemic vessels

hold true. Intriguingly, Aryal and Patabendige have suggested that AF may be causative of cognitive decline by
a mechanism involving altered shear stress [62]. This was also suggested in seminal translational articles on
aging and the vascular unit [180,181]. However, only sparse data [157,158] are available addressing
BBB-specific changes triggered by altered shear stress, since most of the literature has focused on endothelial
sequelae after embolic or cardiogenic stroke and reperfusion. Novel tools will be required to study the effects of
altered vascular perfusion on NO production and TEER in cultured brain endothelial cells exposed to pulsatile
flow (but see [164,182–184]). Ideally, to study AF on brain vasculature endothelial cells one should devise a
system where shear stress can be modulated beyond the usual parameters of increasing or decreasing
steady-state perfusion (and shear), flow cessation/reperfusion, and static conditions. In particular, a system
where AF-derived abnormal heart rhythms to trigger perfusion events would be useful to study acute and
chronic effects on endothelial cell cultures exposed to pathological levels of intermittent shear and turbulence.

Concluding remarks
A healthy brain is protected by the BBB, and is extremely important for the normal functioning of neurons.
However, during many neurological diseases and infections, this barrier is disrupted, leaving the brain vulner-
able to further damage. Worldwide, neurological disorders remain the main cause of disability and the second
leading cause of death [185]. Therefore, novel therapies are urgently required. However, given the highly select-
ive nature of the BBB, drug penetration into the CNS has always been a major hurdle in developing treatments
for neurological disorders [186]. To overcome this hurdle, several innovative approaches are currently being
developed. Some of the novel techniques include, using receptor-mediated transcytosis to deliver nanoparticles
[187], cell-penetrating peptide conjugated adeno-associated viruses (AAVs) to deliver novel gene therapies
[188], organic cation transporters 1 and 2 (Oct1/Oct2) to deliver novel stroke therapeutics [189], intranasal
delivery methods [190], cell therapies [191] and focused ultrasound (FUS) in conjunction with gas-filled micro-
bubble contrast agents [192]. Finally, to make progress, the development of suitably robust and reliable in vitro
BBB models for high throughput drug screening as well as models that can mimic the complex pathophysi-
ology of BBB dysfunction to elucidate the underlying mechanisms are essential.
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Perspectives
• BBB disruption is implicated not only in neurological infections and diseases but also in per-

ipheral diseases, leading to CNS damage. Yet, our understanding of the complex mechanisms
underlying the pathophysiology of BBB dysfunction remains incomplete.

• Deterioration of neuroprotective BBB function plays a major role in the pathogenesis of
disease since the BBB dynamically responds to many events associated with inflammation
and flow disturbances, which can cause brain damage.

• Novel models that closely simulate the structure and function of the BBB are required to study
the complex cellular and molecular pathways that are disrupted during neurological disease.
Furthermore, innovative strategies are required to deliver therapeutic drugs across the BBB for
CNS disease.
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