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The discovery of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) along
with its potent and selective antitumor effects initiated a decades-long search for thera-
peutic strategies to target the TRAIL pathway. First-generation approaches were focused
on the development of TRAIL receptor agonists (TRAs), including recombinant human
TRAIL (rhTRAIL) and TRAIL receptor-targeted agonistic antibodies. While such TRAIL
pathway-targeted therapies showed promise in preclinical data and clinical trials have
been conducted, none have advanced to FDA approval. Subsequent second-generation
approaches focused on improving upon the specific limitations of first-generation
approaches by ameliorating the pharmacokinetic profiles and agonistic abilities of TRAs
as well as through combinatorial approaches to circumvent resistance. In this review, we
summarize the successes and shortcomings of first- and second-generation TRAIL
pathway-based therapies, concluding with an overview of the discovery and clinical intro-
duction of ONC201, a compound with a unique mechanism of action that represents a
new generation of TRAIL pathway-based approaches. We discuss preclinical and clinical
findings in different tumor types and provide a unique perspective on translational direc-
tions of the field.

Introduction
The evasion of apoptosis was recognized in the late 1980s as a mechanism of cancer development and
progression and was included in 2000 among the original key hallmarks of cancer. Since then, much
work has been done to pursue the targeted activation of apoptotic pathways in cancer cells as a viable
therapeutic strategy [1,2].
Apoptosis itself was first identified as a controlled cell death pathway in 1972, and years since have

seen the emergence of two broad ‘pathways’ driving the process: cell ‘intrinsic’ and cell ‘extrinsic’
[3,4]. Though interplay between the two pathways has been observed, the intrinsic pathway largely
relies on the mitochondria and the BCL-2 family of proteins to trigger apoptosis in response to
internal stress borne by the cell, while for the extrinsic pathway, ligand binding to cell surface death
receptors translates various death signals into a caspase cascade which ultimately leads to cell death
[5] (Figure 1).
One such death receptor ligand is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL),

which binds death receptors DR4 and DR5 and several decoy receptors. While DR4 and DR5 are
tumor cell-expressed TRAIL-binding receptors that contain death domains to trigger the induction of
apoptosis, decoy receptors lack the death domain and are primarily expressed on normal cells. This
ability of TRAIL to preferentially induce apoptosis in tumor cells, but not normal cells, provides a
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therapeutic window. Thus, following its discovery in 1996, the tumoricidal potential of TRAIL was pursued
along with a search for TRAIL-based treatments [6,7] (Figure 1). First explored were TRAIL receptor-based
therapies, namely recombinant human TRAIL (rhTRAIL) and death receptor agonistic antibodies. We cloned
Death Receptor 5 (DR5; KILLER/DR5) as a p53 target gene which provided a rationale for the combination of
TRAIL with DNA damaging therapeutics [8]. These first-generation TRAIL treatments were found to both dir-
ectly lead to tumor cell death as well as result in the sensitization of tumor cells to other chemotherapies and

Figure 1. Cell death signaling activated by TRAIL and TRAIL pathway therapeutics.

TRAIL pathway signaling is initiated upon TRAIL binding to DR4 or DR5, driving receptor trimerization and recruitment of the

FADD to form the DISC. DR4 and DR5 compete with decoy receptors DcR1, DcR2, and the soluble OPG for TRAIL. Activation

of DR4 or DR5 triggers apoptotic signaling initially through initiator caspases, primarily caspase-8. Extrinsic apoptotic signaling

(blue arrows) continues through activation of executioner caspases-3, -6, and -7, resulting in apoptotic death. Caspase-8

additionally activates intrinsic apoptotic signaling (green arrows) through facilitating conversion of Bid to tBid, driving

proapoptotic factor release from the mitochondrion, apoptosome assembly, and ultimately also converging on executioner

caspase activation. Several therapies, as described in the text, have been developed to engage at several points along this

path (red labels and red arrows). Some, including first and second generation rTRAIL, TRAs, and antibodies, directly agonize

DR4 and DR5 (unless otherwise indicated, these agonists have described activity against both DR4 and DR5). Downstream,

inhibitors of c-FLIP prevent its competition with pro-caspase-8 for the FADD to enhance caspase-8 activation. Bcl-2 family

inhibitors act to mitigate the function of antiapoptotic members of the Bcl-2 family, especially Bcl-2 and Bcl-xL. Smac

mimetics also help to sequester anti-apoptotic IAPs. On a transcriptional level, ONC201 (initially referred to as TIC10 for

TRAIL-inducing compound 10) antagonizes DRD2 and DRD3 while agonizing ClpP, ultimately bringing about growth arrest

through the integrated stress response (ISR). Moreover, downstream effects of ONC201 (alongside p53) drive increased

expression of TRAIL and DR5. Pointed arrows indicate activation; blunted arrows indicate inhibition.
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radiotherapies [9]. However, such strategies have limitations, ranging from weak binding to death receptors, to
poor pharmacokinetics, to acquired resistance. As such, novel second-generation treatment strategies have been
sought to address these shortcomings, working to either increase or supplement the core efficacy of TRAIL
receptor-based therapies, or to prevent the acquisition of resistance and re-sensitize tumors to first-generation
agents. In addition, the recent discovery and emerging clinical success of TIC10/ONC201 have led to its recog-
nition as a ‘next-generation’ approach.
In this review, we provide a brief overview of key therapies exploiting the TRAIL pathway, along with their

limitations and subsequent advances, concluding with a perspective on novel strategies of therapeutic TRAIL
pathway-mediated induction of tumor cell death.

TRAIL signaling pathway
TRAIL itself can exist in one of two forms: either as a transmembrane protein form expressed by various cell
types, or as a soluble form composed of the shed extracellular domain of membrane-bound TRAIL which self-
trimerizes [9]. As previously mentioned, both forms are capable of binding target receptors DR4 and DR5 to
trigger an apoptotic signal on the death-receptor expressing cell, but may also bind membrane-bound decoy
receptors DcR1 and DcR2 or soluble decoy receptor OPG [10]. Consequently, an initial point of apoptotic
signal modulation exists through the expression of such decoy receptors, which ultimately can reduce
TRAIL-induced death signaling through competition with DR4 and DR5. Indeed, decoy receptor expression
has been implicated, among other mechanisms, in the resistance of normal cells to TRAIL [11,12] as well as in
cancer cell resistance to TRAIL [13].
Cell death via the extrinsic apoptotic pathway is initiated by ligands such as TRAIL binding to their target

death receptors. Upon ligand binding, the death receptors trimerize, leading to their activation. This is followed
by the recruitment of the adaptor protein Fas-associated protein with death domain (FADD) as well as initiator
caspases-8 and -10. Together, these molecules assemble into the death-inducing signaling complex (DISC) [14].
While lower-order death receptor clustering (i.e. trimerization) is essential to efficient DISC formation, the
higher-order clustering of multiple complexes has emerged as being another important factor in apoptotic
signal transduction [15]. Downstream of DISC formation, resultant activation of initiator caspase-8 leads to the
activation of executioner caspases-3, -6, and -7, which leads to cell death.
In so-called Type I cells, this pathway alone is sufficient to activate the executioner caspases and induce cell

death. Conversely, in Type II cells, additional amplification via the intrinsic mitochondrial apoptotic pathway is
required. In these cells, Bid cleavage by caspase-8 is followed by its myristoylation and translocation to the
mitochondria, where it, along with Bax and Bak, allows for the release of proapoptotic factor cytochrome C
[16,17]. Cytochrome C complexes with apoptotic peptidase activating factor 1 (Apaf-1) and initiator caspase-9
to form an executioner caspase cascade-activating apoptosome. TRAIL signaling at DR5 receptors has addition-
ally been shown to translocate proapoptotic Bim and Bax to lysosomes, resulting in a release of cathepsin B
that further enhances mitochondrial outer membrane permeabilization and executioner caspase activation
through the recruitment of phosphofurin acidic cluster sorting protein-2 (PACS-2) to DR5-positive endosomes
[18]. C-Myc was identified as a major determinant of TRAIL sensitivity [19].

TRAIL receptor-based therapies: first generation
An early study in the exploration of TRAIL pathway-based therapeutics assessed the expression of TRAIL
receptors by immunohistochemistry in primary glioblastoma (GBM) specimens. The study showed that higher
receptor expression is correlated with increased patient survival, supporting the important role played by
TRAIL in commanding patient prognosis [20,21]. Thus, receptor-targeted therapies garnered much attention
based on their potential as effective anticancer agents. Many first-generation TRAIL receptor-targeted agents
focused on recombinant forms of TRAIL as well as agonistic antibodies against TRAIL death receptors.

Recombinant forms of TRAIL
One strategy to target the TRAIL pathway is to develop bioactive recombinant soluble forms of TRAIL. One
such example is dulanermin (AMG-951), which is a soluble recombinant human Apo2Ligand/TRAIL
(rhApo2L/TRAIL) protein that induces apoptosis in target cells via its binding and activation of DR4 (i.e.
TRAIL-R1) and DR5 (i.e. TRAIL-R2), though it is also known to bind to decoy receptors [22]. Developed by
Amgen/Genentech, dulanermin is the only rhTRAIL to have reached clinical trials. In a phase 1 dose-escalation
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study in patients with advanced cancer, dulanermin was shown to have a tolerable safety profile; however, its
observed anticancer activity was limited [22]. Of note, the mean terminal phase half-life (t1/2) of rhTRAIL
ranges from 0.56 to 1.02 h, likely restricting its ability to reach tumor cells [22,23]. Moreover, because rhTRAIL
binds to decoy receptors, its delivery to DR4/5 is diluted. This weakened agonism is worsened by the fact that
although rhTRAIL induces lower-order receptor trimerization, it has a limited capacity to induce higher-order
receptor clustering, resulting in a weak apoptotic signal [24,25]. Meanwhile, other first-generation TRAIL
pathway-based therapies were developed.

Death receptor agonist antibodies
The development of agonistic antibodies against DR4/5 presented another strategy to target TRAIL receptors.
Unlike rhTRAIL, which binds to both death receptors and decoy receptors, diluting its apoptotic effect, agonis-
tic antibodies specifically target DR4 or DR5 to activate apoptosis in target cells. Moreover, receptor-targeted
monoclonal antibodies (TRAIL-R mAbs) have a significantly longer half-life than rhTRAIL. Therefore, the
development of these therapeutic antibodies was pursued as an anti-cancer strategy.
Preclinical studies showed promising results, with significant antitumor activity without toxicity seen both in

vivo and in vitro [26]. Consequently, several first-generation TRAIL-R mAbs have been tested in clinical trials
including DR5-targeted agents such as lexatumumab, conatumumab, drozitumab, tigatuzumab, and LBY135.
DR5-targeted mAbs showed results in early clinical trials that only modestly improved upon clinical results
observed with rhTRAIL. For example, in a phase 1 trial of lexatumumab in patients with advanced cancers, the
mAb was well-tolerated and was associated with stable disease in several patients [27]. Safety was also demon-
strated in the first-in-human study of conatumumab in adult patients with advanced solid tumors [28]. In this
study, a single patient with colorectal cancer (CRC) had stable disease for 24 weeks and showed a 24% reduc-
tion in tumor size by RECIST (Response Evaluation Criteria in Solid Tumors) criteria. Drozitumab is another
DR5-targeted mAb that was evaluated in a phase 1 study in patients with advanced malignancies [29]. In this
study, three minor responses were observed in patients with CRC, granulosa cell ovarian cancer, and chondro-
sarcoma, although no objective responses were observed. Moreover, in a phase 1 trial of DR5-targeted tigatuzu-
mab, stable disease and a tolerable safety profile were observed [30]. A DR4-targeted agent, mapatumumab,
which is a fully human mAb also entered clinical trials. In a phase 1 study in patients with advanced solid
malignancies, mapatumumab was observed to be well-tolerated, however, no objective responses were observed
[31]. Another approach using DR4 atrimers was explored although this was not pursued in the clinic [32].
Thus, although successful in preclinical studies, TRAIL-R mAbs have performed modestly in clinical trials.

Despite improving upon the pharmacokinetic ability and specificity of rhTRAIL, the agonistic ability of
TRAIL-R mAbs remains limited. One factor contributing to this is that mAbs have an inherently bivalent struc-
ture, only allowing for their cross-linking to two death receptors. As lower-order receptor trimerization is
required to ensure efficient DISC-formation, additional cross-linking is needed for sufficient apoptotic signaling
[33]. Another limiting factor is that while first-generation TRAIL-R mAbs are DR4- or DR5-specific, there are
differences in the ability of each receptor to transmit apoptotic signals that vary between tissue types [34],
pointing to the need for antibodies that target both receptors.

Improving upon TRAIL receptor-based therapies
First-generation therapies were thus divided into two categories: recombinant forms of TRAIL and receptor-
specific agonistic antibodies. Although these early TRAIL receptor agonists (TRAs) were shown to be promising
in preclinical data [35,36] and well-tolerated in patients [22,37], they ultimately proved to have limited clinical
anticancer activity. This can be attributed to several factors, including poor pharmacokinetics, limited agonistic
ability, and inherent or acquired resistance [2,38]. Second-generation TRAs were developed to target these lim-
itations by improving upon the pharmacokinetic profile and agonistic ability of these agents and circumventing
resistance through combinatorial approaches.

TRAIL derivatives
N-terminal tags
An early second-generation approach was to modulate the rhTRAIL protein through the addition of
N-terminal tags to improve its pharmacokinetic profile and agonistic ability. The small molecular weight of
rhTRAIL is what leads to its rapid clearance via renal filtration. Adding a molecular tag to rhTRAIL increases
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its size and thus improves its half-life [34,39]. Several ‘tagged’ forms of rhTRAIL were developed, including the
addition of Flag (FLAG-TRAIL), poly-histidine (His-TRAIL), leucine zipper (LZ-TRAIL), isoleucine zipper
(IZ-TRAIL), or tenascin-C (TNC) oligomerization domain (TNC-TRAIL) [40]. Both FLAG-TRAIL and
His-TRAIL were created to facilitate the purification process [38]. On the other hand, LZ-TRAIL, IZ-TRAIL,
and TNC-TRAIL were all developed to stabilize rhTRAIL homotrimerization through hydrophobic interactions
within the LZ, IZ, and TNC sequences [6,41,42]. This increased stability enhances the agonistic activity and
apoptotic potential of rhTRAIL. Despite promising preclinical data, FLAG-TRAIL and His-TRAIL were found
to induce significant apoptosis in primary human hepatocytes [43]. While LZ-TRAIL, IZ-TRAIL, and
TNC-TRAIL were not found to be significantly hepatotoxic [41], concern over on-target or off-target toxicity
hindered the translation of tagged rhTRAIL into the clinic.

TLY012
Another approach to improving rhTRAIL is to covalently link it to molecules that enhance its pharmacokinetic
profile. One such fusion product is TLY012, an N-terminal PEGylated rhTRAIL. Like the tags, the covalent
attachment of polyethylene glycol (PEG) to a therapeutic protein increases its size, thereby reducing its clear-
ance by renal filtration and increasing its half-life [44–46]. Indeed, TLY012 was shown to have a greatly
increased half-life compared with rhTRAIL in a molecular weight-dependent manner, with 20K- and
30K-PEG-TRAIL having circulating half-lives of 12 and 18 h, respectively, compared with the 1 h half-life of
rhTRAIL in ICR mice [47]. This increased half-life was associated with a greater anti-tumor effect both in vitro
and in vivo in CRC models [47]. Later, TLY012 was shown also to have activity against fibrotic cells [48,49].
While TLY012 is entering clinical trials for the treatment of fibrotic diseases and was granted Orphan Drug
Designation (ODD) by the FDA in 2019 for the treatment of systemic sclerosis, further exploration of its antic-
ancer potential as a single agent and in combination has been ongoing (further discussed below).

TRAIL-Mu3
A similar approach to enhancing the pharmacokinetic profile of rhTRAIL involves making modifications to the
amino acid sequence to alter the chemical properties of the complete peptide. Mutagenesis of amino acid
sequence VRERGPQR (114–121) into RRRRRRRR, for instance, has been shown to enhance the membrane-
penetrating abilities of wild-type TRAIL, leading to the development of a novel membrane-penetrating
TRAIL-Mu3 [50]. TRAIL-Mu3 has been shown to have enhanced efficacy both in in vitro and in vivo preclin-
ical models against pancreatic cancers over both rhTRAIL as well as gemcitabine [50]. TRAIL-Mu3 has a
greater tendency to activate caspase cascade in pancreatic cancer cell lines compared with rhTRAIL [51].
Though TRAIL-Mu3 is currently confined to the preclinical setting, its deployment into the clinic may allow
for a novel therapeutic strategy against gemcitabine-resistant pancreatic cancers.

Eftozanermin alfa
As previously noted, a major limitation of both first- and second-generation rhTRAIL, receptor-specific mAbs,
and TRAIL derivatives is their inability to induce efficient lower- and higher-order receptor clustering, leading
to reduced apoptotic signaling. In the case of mAbs, it has been shown that due to the bivalent structure of
antibodies, additional cross-linking of the Fc region of antibodies to Fcγ receptors (FcγR) is necessary for
lower-order clustering and trimerization to occur [33,52]. However, IgG is known to compete with these anti-
bodies for this interaction. Mouse models have very low levels of IgG as compared with cancer patients, provid-
ing a likely explanation for the discrepancy between preclinical studies and clinical trials of receptor-specific
mAbs [33]. With this in mind, a new family of TRAIL-R agonists was produced.
APG350 is a first-in-class prototype of Eftozanermin alfa (ABBV-621). It was designed to increase receptor

clustering while remaining independent of FcγR cross-linking. The molecule is composed of two single chain
TRAIL trimers dimerized via fusion to the Fc region of IgG1 and is therefore able to bind to six TRAIL recep-
tors (both DR4 and DR5) with limited FcγR binding capability [33]. APG350 was shown to have an enhanced
lower-order clustering efficiency as compared with TRAIL-R mAbs, and because it can simultaneously bind
two death receptor trimers, it has a greater ability to induce higher-order receptor clustering as compared with
rhTRAIL and its derivatives [53,54]. Moreover, the later developed Eftozanermin alfa has an estimated human
half-life of ∼2 days [54]. Thus, Eftozanermin alfa clearly improves upon the agonistic ability and pharmacoki-
netic profile of first-generation TRAIL therapeutics and has consequently progressed into clinical trials
(Table 1). A first-in-human study showed Eftozanermin alfa was well-tolerated in patients with advanced solid
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tumors and hematological malignancies alone and in combination with venetoclax or chemotherapeutics
[55,56] (NCT03082209). The results of dose-escalation and dose-optimization cohorts of patients with
advanced solid tumors receiving Eftozanermin alfa monotherapy showed partial responses according to
RECIST in three patients (two with CRC and one with pancreatic cancer) among the 105 patients participating
in the clinical trial (PMID 35467243). Pharmacodynamics studies demonstrated saturation of Eftozanermin alfa
binding sites on the TRIAL receptors and increased levels of M30 and M65 markers of apoptosis in the periph-
eral blood. Analysis of paired tumor specimens collected during the clinical trial also showed increase tumor
infiltration of immune cells including CD4+ T cells in post-treatment biopsies compared with baseline tumor
specimens as well as increased PARP cleavage and down-regulation of MEK/Erk/AKT pathway. Another phase
1B study is currently recruiting patients with relapsed or refractory multiple myeloma (NCT04570631).

Table 1 Ongoing clinical trials involving TRAIL-based therapeutics

Cancer type Combined with Phase Status
Clinicaltrials.gov
ID

Eftozanermin alfa

Multiple myeloma – 1 Recruiting NCT04570631

Advanced solid tumors,
hematological malignancies

– 1 Completed NCT03082209

SCB-313

Peritoneal malignancies – 1 Completed NCT03443674

Malignant pleural effusions – 1 Completed NCT03869697

Peritoneal carcinomatosis – 1 Recruiting NCT04047771

Malignant ascites – 1 Completed NCT04051112

Malignant pleural effusions – 1 Completed NCT04123886

GEN1029

Solid tumors – 1/2 Terminated NCT03576131

INBRX-109

Metastatic solid tumors, including
sarcomas

– 1 Recruiting NCT03715933

Conventional chondrosarcoma – 2 Recruiting NCT04950075

IGM-8444

Solid tumors Numerous agents 1 Recruiting NCT04553692

ONC201

Neuroendocrine – 2 Active, not
recruiting

NCT03034200

Acute myeloid leukemia – 1 Recruiting NCT03932643

Leukemia – 1/2 Recruiting NCT02392572

Multiple myeloma – 1/2 Active, not
recruiting

NCT02863991

Metastatic colorectal cancer – 1/2 Terminated NCT03791398

Ovarian cancer Paclitaxel 2 Recruiting NCT04055649

Glioma – 2 Active, not
recruiting

NCT03295396

H3 K27M Glioma – 1 Recruiting NCT03416530

Recurrent GBM, H3 K27M Glioma,
midline glioma

– 2 Active, not
recruiting

NCT02525692

Midline glioma Radiation, Paxalisib, or
Panobinostat

2 Recruiting NCT05009992
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Modified TRAIL-R antibodies
Besides TRAIL derivatives, modified TRAIL-R mAbs are another class of second-generation therapeutics.
Unlike their bivalent first-generation counterparts which are unable to induce efficient receptor trimerization,
these antibodies are multivalent, which allows them to bind more than just two receptors, thereby enhancing
receptor clustering.
GEN1029 (HexaBody-DR5/DR5) is novel a mixture of two DR5-specific IgG1 mAbs, each targeting two dis-

tinct DR5 epitopes and containing E430G mutations that enhance antibody hexamerization via Fc-Fc interac-
tions [57–59]. This unique structure results in the ability to induce lower- and higher-order receptor clustering
in an FcγR-independent manner. GEN1029 has shown potent antitumor activity in preclinical models in a
variety of solid and hematological malignancies [59,60]. A two-part safety trial consisting of a first-in-human
dose-escalating phase 1 and an expansion phase 2A for a variety of solid tumors was recently terminated by its
sponsor, Genmab (Copenhagen, Denmark), for unspecified reasons (NCT03576131) (Table 1).
INBRX-109 (Inhibrx, La Jolla, CA, U.S.A.) is another multivalent DR5 agonistic antibody. Previous attempts

to produce multivalent antibodies led to the realization that excessive receptor clustering can cause hepatotox-
icity (as shown by the terminated phase 1 trial for TAS266, a DR5-targeting tetravalent nanobody [61]).
INBRX-109 was engineered to avoid hepatotoxicity by limiting its valency to four. Preclinical studies indeed
showed that INBRX-109 maintained superior induction of apoptosis in cancer cells while sparing human hepa-
tocytes. INBRX-109 entered an ongoing phase 1 clinical study to evaluate its single agent efficacy in subjects
with locally advanced or metastatic tumors (NCT04950075). The drug was shown to be well-tolerated, which
led to the FDA granting it orphan drug designation (ODD) in 2021 as well as a phase 2 study of INBRX-109
in conventional chondrosarcoma (NCT03715933) (Table 1).
Finally, IGM-8444 is an IgG DR5 antibody. With 10 binding units, it is capable of binding multiple receptors

at once, facilitating receptor clustering [62]. IGM-8444 was found to induce apoptosis in a broad panel of solid
and hematological malignancies [62]. A phase I study is currently recruiting patients to test IGM-8444 alone
and in combination in subjects with cancer (NCT04553692).

Combination therapies
Second-generation approaches have clearly improved upon first-generation therapeutics, with larger, multiva-
lent molecules enhancing the pharmacokinetic profiles and agonistic abilities of rhTRAIL and TRAIL-R mAbs.
However, it is established that resistance to monotherapy with these TRAs is inherent or acquired [9,38,63,64].
Combinations of TRAs with chemotherapeutics and TRAIL-sensitizers are being explored to help overcome
this resistance.
TRAs have been tested in combination with chemotherapeutics including gemcitabine, cisplatin, carboplatin,

irinotecan, 5-FU, oxaliplatin, paclitaxel, capecitabine and doxorubicin. In the case of rhTRAIL, in a phase 1B
study of patients with CRC, dulanermin was evaluated in combination with FOLFOX6 regimen plus bevacizu-
mab. Study results showed that the combination was well-tolerated. A partial response (PR) was observed in
57% of patients, stable disease was observed in 30% of patients, and progressive disease (PD) was observed in
the remaining 13% [65]. Dulanermin was also evaluated in combination with paclitaxel, carboplatin and bevaci-
zumab in a randomized phase 2 study in patients with advanced non-small-cell lung cancer (NSCLC). The
addition of dulanermin to these therapeutic regimes was tolerated but did not significantly improve patient out-
comes [66]. In a phase 3 study in patients with advanced NSCLC, the combination of dulanermin plus vinorel-
bine and cisplatin was evaluated. Here, researchers noted that the addition of dulanermin to the vinorelbine
and cisplatin regime significantly improved overall response rate (ORR) and progression-free survival (PFS)
[67]. Finally, in a phase 1b open-label study, a patient with BRAF-mutant metastatic colon cancer received
dulanermin and FOLFIRI. The patient maintained stable disease through 25 doses administered every two
weeks, a period which extended beyond the median overall survival (OS) for patients with this disease [68]. An
ongoing phase 1 trial with Eftozanermin alfa is investigating the combination with FOLFIRI and bevacizumab
for treatment of patients with KRAS-mutant CRC (NCT03082209).
In the case of TRAIL-R antibodies, in a phase 2 study in chemotherapy-naïve patients with unresectable or

metastatic pancreatic cancer, the combination of tigatuzumab with gemcitabine was well-tolerated. Here, an
ORR of 13.1% was reported while 45.9% of patients had stable disease and 23% of patients had progressive
disease [71]. LBY135 has been evaluated in combination with capecitabine in a phase 1 clinical trial of patients
with advanced solid tumors. Here, there were some signs of clinical activity and the mAb was shown to be well-
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tolerated, once again [72]. Numerous mechanisms have been proposed to explain chemotherapy-induced
TRA-sensitization, including receptor up-regulation and suppression of anti-apoptotic proteins [38].
Nonetheless, this sensitization remains limited due to the previously mentioned agonistic and pharmacokinetic
issues associated with rhTRAIL and TRAIL-R mAbs.
We discovered a potent synergy between rhTRAIL and sorafenib through effects on NF-kB and Mcl-1 [69].

This strategy was pursued in the clinic through a randomized phase II study using mapatumumab in combin-
ation with sorafenib in hepatocellular cancer, but with limited efficacy [70].
TRAs have also been tested in combination with apoptotic pathway agents that act as TRAIL-sensitizers. The

rationale is that cancer cells often become resistant to TRAIL therapy through cross-talk between the extrinsic
and intrinsic pathways and by up-regulating anti-apoptotic proteins [73]. For instance, c-FLIP is known to
inhibit DISC formation by competing with caspase-8/-10 for binding to FADD. FLIP is often overexpressed in
cancer [19], leading to the development of FLIP inhibitors and siRNAs that silence the protein [74]. Such
approaches were shown to sensitize cancer cells to TRAIL therapy [75]. In addition, XIAP interacts with and
inhibits caspases, and its high expression is associated with TRAIL resistance. Smac mimetics have been devel-
oped to mimic the binding site of the XIAP antagonist Smac and have shown promising preclinical activity
[76]. siRNA silencing of XIAP has been shown to effectively sensitize cells to TRAIL [77]. Finally, overexpres-
sion of BCL-2 family anti-apoptotic proteins, including BCL-2, Mcl-1, and Bcl-xl, are associated with TRAIL
resistance [78]. BH3-mimetics such as ABT-263, ABT-199 and ABT-737 bind to and inhibit one or more of
these proteins and have also been shown to sensitize cells to TRAIL therapy [54,79,80].

Moving away from TRAIL-R agonists: an alternative
approach
Regardless of the improvements made by combination therapies, resistance continues to be a limiting factor for
some receptor agonist-based therapies, as cancer cells often up-regulate anti-apoptotic proteins and down-
regulate TRAIL and its receptors [9]. Thus, agents that increase the expression of TRAIL and its receptors have
some therapeutic potential. One such agent is TIC10/ONC201 [81].
Originally discovered as TRAIL-inducing compound 10 (TIC10), ONC201 is a first-in-class molecule and a

founding member of the imipridone small molecule family. ONC201 acts directly to agonize ClpP, which leads
to the activation of the integrated stress response (ISR) and downstream ATF4 and CHOP-mediated
up-regulation of DR5 [82]. Earlier work has shown that ONC201 also inhibits Akt and ERK, which allows for
the nuclear translocation of Foxo3a and subsequent up-regulation of TRAIL [83]. Thus, ONC201 up-regulates
TRAIL in all cells and DR5 selectively in tumor cells. This up-regulation has been shown to translate to
increased expression of TRAIL and DR5 at the cell surface which leads to downstream induction of apoptosis
[84,85]. In addition, ONC201 inhibits cancer stem cells and has documented immunostimulatory effects
[86,87]. Thus, ONC201 induces tumor-selective apoptosis and promotes immune function through several
mechanisms, many of which are still being studied.
ONC201 has shown preclinical activity as a single agent against a wide variety of solid and hematological

[88] tumors, including lung [89], breast [90], pancreatic [91], ovarian [92], colorectal [81], prostate [81], hepa-
tocellular [93], leukemia [94] and lymphoma [95]. Of note, ONC201 has shown efficacy against neuroendo-
crine tumors and brain tumors [96,97]. Such activity can be attributed to ONC201’s ability to cross the
blood-brain barrier as well as its ability to antagonize DRD2/3. Indeed, ONC201’s activity against neuroendo-
crine tumors including pheochromocytomas and paragangliomas is correlated with their high expression of
dopamine receptor type II [97]. Treatment with ONC201 reduced tumor growth in multiple glioma xenograft
models, and a single dose doubled the overall survival of mice with an intracranial xenograft of human GBM
[81,98]. ONC201 has also shown preclinical anti-metastatic activity in various tissue types, including breast,
CRC, and endometrial cancers [99]. This is explained by the fact that ONC201 inhibits cell adhesion, migra-
tion, and invasion in a TRAIL-dependent manner [99,100].
The preclinical outcomes of ONC201 led to its approval by the FDA for testing in phase 1 trials for patients

with various cancers. ONC201 has been evaluated in 16 clinical trials as a single agent (Table 1). The
first-in-human study found ONC201 was well-tolerated in patients with advanced solid tumors. Although
objective responses were not achieved by RECIST criteria, a subset of the patients experienced tumor regres-
sion, including one patient with chemotherapy-resistant endometrial cancer [101]. More recently, a phase 2
study of ONC201 monotherapy in patients with recurrent GBM once again found that ONC201 was well-
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tolerated. Of note, this study was the second report of a patient with a H3K27M mutation achieving a complete
regression of enhancing multifocal lesions that was maintained for >1.5 years. It is noteworthy that the more
potent ONC201 analog ONC212 is active against H3K27M-mutated DIPG cells in preclinical studies, but this
analog has not been reported to antagonize dopamine receptors [102].
Although ONC201 has shown some success as a single agent, its activity is limited by resistance-inducing

factors such as PI3K/AKT/mTOR upregulation [103] and insufficient TRAIL induction [104,105]. This, along
with its multifaceted mechanism of action makes it a good candidate for combination therapy. There is exten-
sive preclinical work showing synergism between ONC201 and radiation [106], chemotherapeutics, targeted
therapies [107], and immune-checkpoint agents [96,99]. Most relevant to this review is the combination
between ONC201 and TRAs. ONC201 was shown to be ineffective as a single agent in triple-negative breast
cancer (TNBC) due to insufficient TRAIL induction [104,105]. TRAIL itself has activity only in a subset of
TNBC patients. Combination therapy between ONC201 and rhTRAIL produced a potent apoptotic effect in
breast cancer cells which was replicated in other cancer types [104]. A similar effect was seen in non-TNBC
cells with the combination between lexatumumab and ONC201 [108]. Finally, the combination of ONC201
with TLY012 was shown to produce a synergistic apoptotic effect both in vitro and in vivo in pancreatic cancer
models [109]. Such combinations have potential but remain to be tested in clinical trials. Meanwhile, clinical
trials have been initiated using combinations between ONC201 and radiation (NCT05009992) or chemothera-
peutics (NCT04055649) (Table 1). Preclinical data demonstrate synergy between ONC201 or other imipridones
and EZH2 or HDAC inhibitors and this has been correlated with H3K27 acetylation [102,110].

Conclusion
Unlike other members of the TNF-family, TRAIL possesses the ability to selectively target cancer cells. This
exciting realization led to several decades of intense research focused on the development of TRAIL receptor-
based therapies. However, clinical studies have demonstrated that such therapies have failed to meet their
expectations, with many possessing an inability to induce lower- or higher-order receptor clustering, poor phar-
macokinetic profiles including short half-lives, and rapidly built resistance. While novel TRAs are being devel-
oped to specifically target these shortcomings and have shown promise in the clinic, it has become clear that a
more imaginative approach must be taken to advance the field. The discovery of ONC201/TIC10 provides such
an approach. Unlike TRAs, ONC201 acts independently of receptor binding and instead induces TRAIL and
DR5 at the transcriptional level. This unique mechanism of action represents a new generation of
TRAIL-pathway based approaches. ONC201 has shown promising preclinical and clinical results. Nevertheless,
it must be recognized that the nature of cancer is complex, with tumor heterogeneity, evolution, and resistance
to anti-cancer therapy acting as major limiting factors to single-drug therapies. Thus, further exploration of
ONC201 and other TRAIL-based approaches is needed to address such obstacles.

Perspectives
• The TRAIL pathway is a powerful innate immune system whose therapeutic potential is yet to

be realized.

• It is likely that harnessing the TRAIL pathway in cancer therapy alone or in combination with
other cancer therapeutic modalities holds promise.

• Mechanistic studies with first- and second-generation TRAIL receptor agonists will help inform
translational directions and combinatorial cancer therapeutics.
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